1
|
Cecchinato A, Toledo-Alvarado H, Mota LFM, Bisutti V, Trevisi E, Negrini R, Pegolo S, Schiavon S, Gallo L, Bittante G, Giannuzzi D. Associations between milk infrared-predicted plasma biomarkers of stress resilience and fertility in dairy cattle: insights for enhancing breeding programs and herd management. J Dairy Sci 2024:S0022-0302(24)01288-8. [PMID: 39521427 DOI: 10.3168/jds.2024-25461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Fertility is a crucial aspect of dairy herd efficiency and sustainability. Among factors influencing fertility in dairy cattle, metabolic stress and systemic inflammation of animals are of main relevance, especially in the postpartum stage when ovarian activity begins and cows are inseminated. Our study aimed to infer the associations between milk infrared-predicted blood biomarkers of stress resilience and fertility traits, namely the interval from calving to first service (iCF), days open (DO), and the pregnancy rate at first service (PRF) in a multi-breed population of 89,097 dairy cows. The blood metabolites (15 blood biomarkers related to hepatic damage and function, oxidative stress, and inflammation/innate immunity) were predicted using milk Fourier-transform mid-infrared (MIR) spectroscopy. A gradient boosting machine (GBM) approach with leave-one-batch-out cross-validation (R2 range from 0.45 to 0.82) was implemented to an independent calibration database of 1,367 lactating cows reared in 5 herds. Calibration equations were then applied to a population database of 1,799,186 MIR milk spectral data, that were then merged with fertility data collected by the Breeders Federation of Alto Adige (Bolzano province, Italy) generating a final database of 285,145 records. The 2 databases were merged according to the milk test day (and thus the MIR spectrum) closest to the date of insemination. The interval fertility traits were fitted as the hazard of either receiving the first service after calving at time t for iCF or becoming pregnant after calving at time t for DO in a Cox proportional-hazards model. Statistical analyses were performed including in the model the number of lactations, year of calving, and herd as fixed effects. The independent effect of the MIR-based predictions of metabolites was also included with each metabolite evaluated separately and discretized into 7 levels based on percentiles. Pregnancy rate at first service, on the other hand, was analyzed using logistic regression and the same explanatory variables. The metabolites linked to liver function and damage, such as aspartate aminotransferase, total bilirubin, and alkaline phosphatase, had a relevant influence on iCF and DO in terms of the hazard ratio (HR). Relevant results were also obtained for the biomarkers related to oxidative stress and inflammation/innate immunity. Specifically, increasing levels of ceruloplasmin, total reactive oxygen metabolites, and advanced oxidation protein products resulted in a relevant decrease in the HR of cows becoming pregnant. The logistic regression analysis did not reveal any significant effect of the aforementioned biomarkers on PRF, indicating that the effects of the stress response mainly concern the resumption of the ovarian cycle after calving. The results for the associations of the predicted biomarkers of the stress response with iCF and DO were consistent with expected physiological patterns. In conclusion, the predicted biomarkers investigated revealed to be promising novel phenotypes for assessing animal health and welfare, in the view of enhancing fertility in dairy cattle also through selective breeding, thus improving the overall efficiency of dairy herds.
Collapse
Affiliation(s)
- Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy.
| | - Hugo Toledo-Alvarado
- Department of Genetics and Biostatistics, National Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Lucio Flavio Macedo Mota
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Vittoria Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Italian Association of Breeders (AIA), 00161 Rome, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Lugi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
Ma J, Kok A, Burgers EEA, Bruckmaier RM, Goselink RMA, Gross JJ, Kemp B, Lam TJGM, Minuti A, Saccenti E, Trevisi E, Vossebeld F, van Knegsel ATM. Time profiles of energy balance in dairy cows in association with metabolic status, inflammatory status, and disease. J Dairy Sci 2024; 107:9960-9977. [PMID: 38969001 DOI: 10.3168/jds.2024-24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/08/2024] [Indexed: 07/07/2024]
Abstract
The early lactation period in dairy cows is characterized by complex interactions among energy balance (EB), disease, and alterations in metabolic and inflammatory status. The objective of this study was to cluster cows based on EB time profiles in early lactation and investigate the association between EB clusters and inflammatory status, metabolic status, oxidative stress, and disease. Holstein-Friesian dairy cows (n = 153) were selected and monitored for disease treatments during wk 1 to 6 in lactation. Weekly EB was calculated based on energy intake and energy requirements for maintenance and milk yield in wk 1 to 6 in lactation. Weekly plasma samples were analyzed for metabolic variables in wk 1 to 6, and inflammatory and oxidative stress variables in wk 1, 2, and 4 in lactation. Liver activity index (LAI) was computed from plasma albumin, cholesterol, and retino-binding protein concentration. First, cows were clustered based on time profiles of EB, resulting in 4 clusters (SP: stable positive; MN: mild negative; IN: intermediate negative; SN: severe negative). Cows in the SN cluster had higher plasma nonesterified fatty acids and BHB concentrations, compared with cows in the SP cluster, with the MN and IN clusters being intermediate. Cows in the SN cluster had a higher milk yield, lower DMI in wk 1, lower insulin concentration compared with cows in the SP cluster, and lower glucose and IGF-1 concentration compared with cows in the SP and MN clusters. Energy balance clusters were not related to plasma haptoglobin, cholesterol, albumin, paraoxonase, and LAI. Second, cows were grouped based on health status: IHP, cows with treatment for inflammatory health problem (endometritis, fever, clinical mastitis, vaginal discharge or retained placenta); OHP, cows with no IHP but treatment for other health problem (milk fever, cystic ovaries, claw and leg problems, rumen and intestine problems, or other diseases); and NHP, cows with no treatments, in the first 6 wk after calving. Energy balance was not different among health status groups. The IHP cows had lower nonesterified fatty acids and greater insulin concentration in plasma compared with OHP cows. The IHP cows had lower plasma albumin concentration, lower LAI, and higher haptoglobin concentration compared with OHP and NHP. Overall, EB time profiles were associated with the metabolic status of dairy cows in early lactation, but were only limitedly related to markers of inflammation and oxidative stress status. Inflammatory and metabolic status were related to disease events in early lactation and caused prolonged effects on liver metabolism.
Collapse
Affiliation(s)
- J Ma
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - A Kok
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - E E A Burgers
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - R M A Goselink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - B Kemp
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - T J G M Lam
- Population Health Sciences Department, Utrecht University and Royal GD Deventer, 3508 TD Utrecht, the Netherlands
| | - A Minuti
- Istituto di Zootecnica, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - E Trevisi
- Istituto di Zootecnica, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Vossebeld
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands; Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - A T M van Knegsel
- Adaptation Physiology group, Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
| |
Collapse
|
3
|
Ahmad G, Daddam JR, Trevisi E, Mezzetti M, Lovotti G, Puda E, Gallagher K, Bernstein I, Vandehaar M, Zhou Z. Effects of abomasal infusion of branched-chain amino acids or branched-chain keto-acids on liver function, inflammation, and oxidative stress in multiparous fresh cows. J Dairy Sci 2024; 107:9309-9321. [PMID: 39004121 DOI: 10.3168/jds.2024-24914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Reduced liver function, increased oxidative stress, and inflammation in early lactation negatively affect lactation performance and health of fresh cows. Previous findings from our group demonstrated that branched-chain AA (BCAA) infusion improved lactation performance and branched-chain keto-acids (BCKA) infusion decreased liver triglyceride (TG) in fresh cows. The objectives of this study were to determine the effect of BCAA and BCKA on blood and liver biomarkers of liver function, oxidative stress, and inflammation as well as expression of genes regulating inflammation and antioxidant metabolism in the liver. Thirty multiparous Holstein cows were used in a randomized block design receiving continuous abomasal infusion for 21 d after parturition. Treatments (10 cows each) were control (CON), cows abomasally infused with 0.9% saline; cows abomasally infused with BCAA (67 g valine, 50 g leucine, and 34 g isoleucine; BCA); and cows abomasally infused with BCKA (77 g keto-valine, 57 g keto-leucine, and 39 g keto-isoleucine; BCK). All cows were randomly assigned to treatments after parturition and received the same diet throughout the experimental period. Blood was collected at 3, 7, 14, and 21 d postpartum for liver function, oxidative stress, and inflammation biomarker profiling. Liver was also harvested on 7, 14, and 21 d postpartum for quantification of glutathione, protein carbonylation, and expression of genes. ANOVA was conducted for all data using PROC GLIMMIX in SAS. No treatment differences were observed for liver function biomarkers (bilirubin, gamma-glutamyl transferase, and aspartate aminotransferase). Cows receiving BCAA had lower blood NO2- and NO3- concentrations compared with CON. A tendency for lower advanced oxidized protein products was also observed in BCA cows compared with CON. Additionally, on d 7, BCA cows had lower protein carbonylation in the liver compared with CON. In contrast, BCK cows had higher plasma thiol and albumin, as well as liver reduced and total glutathione compared with CON cows. Compared with CON, BCK cows had higher expression glutathione reductase in the liver. Overall, these results suggest favorable alterations in oxidative stress and inflammation status in fresh cows receiving BCAA or BCKA infusion during the first 3 wk of lactation, which likely contributed to previously-observed changes in lactation performance and liver TG concentrations. Future work is required to evaluate the interrelated metabolism of BCAA and BCKA to better understand their effects on oxidative and immune metabolism.
Collapse
Affiliation(s)
- G Ahmad
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - J R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - E Trevisi
- Faculty of Agricultural, Food and Environ-mental Sciences, Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Mezzetti
- Faculty of Agricultural, Food and Environ-mental Sciences, Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - G Lovotti
- Faculty of Agricultural, Food and Environ-mental Sciences, Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Puda
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - K Gallagher
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - I Bernstein
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - M Vandehaar
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
4
|
Sadri H, Ghaffari MH, Sauerwein H, Schuchardt S, Martín-Tereso J, Doelman J, Daniel JB. Longitudinal characterization of the muscle metabolome in dairy cows during the transition from lactation cessation to lactation resumption. J Dairy Sci 2024:S0022-0302(24)01176-7. [PMID: 39343201 DOI: 10.3168/jds.2024-25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Skeletal muscle is vital in maintaining metabolic homeostasis and adapting to the physiological needs of pregnancy and lactation. Despite advancements in understanding metabolic changes in dairy cows around calving and early lactation, there are still gaps in our knowledge, especially concerning muscle metabolism and the changes associated with drying off. This study aimed to characterize the skeletal muscle metabolome in the context of the dietary and metabolic changes occurring during the transition from the cessation of lactation to the resumption of lactation in dairy cows. Twelve Holstein dairy cows housed in tie stalls were dried off 6 weeks (wk) before the expected calving date. Cows were individually fed ad libitum total mixed rations composed of grass silage, corn silage, and concentrate during lactation and of corn silage, barley straw, and concentrate during the dry period. The metabolome was characterized in skeletal muscle samples (M. longissimus dorsi) collected on wk -7 (9 d before dry-off), -5 (6 d after dry-off), and wk -1, and 1 relative to calving. The targeted metabolomics approach was conducted using the MxP Quant 500 kit (Biocrates Life Sciences AG) with liquid chromatography, flow injection, and electrospray ionization triple quadrupole mass spectrometry. Statistical analysis on the muscle metabolite data was performed using MetaboAnalyst 5.0, which allowed us to conduct various multivariate analyses such as principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), informative heat map generation, and hierarchical clustering. The statistical analysis revealed a clear separation between pregnancy (wk -7, -5, and -1) and post-calving (wk 1). Starting 5 wk before calving and continuing through the first wk thereafter, the concentration of 3-methylhistidine (3-MH) in the muscle increased. This coincided with an increase in the concentrations of 11 AA (Phe, His, Tyr, Trp, Arg, Asn, Leu, Ile, Gly, Ser, and Thr) in the first wk after calving, whereas Gln decreased. l-arginine pathway metabolites (homoarginine, ornithine, citrulline, and asymmetric dimethylarginine), betaine, and sarcosine followed a similar pattern, increasing from wk -7 to -5, but decreasing from wk -1 to 1. The transition from pregnancy to lactation was associated with an increase in concentrations of the long-chain acylcarnitine species C16, C16:1, C18, and C18:1 in the muscle, whereas the concentrations of phosphatidylcholine and sphingomyelin in the muscle remained stable. The significant changes observed in the metabolome mainly concerned the AA and AA-related metabolites, indicating muscle protein breakdown in the first wk after calving. The metabolites produced by the L-Arg pathway might contribute to regulating skeletal muscle mass and function in periparturient dairy cows. The elevated concentrations of long-chain acylcarnitine species in the muscle in the first wk after calving suggest incomplete fatty acid oxidation, likely due to insufficient metabolic adaptation in response to the fatty acid load around the time of calving.
Collapse
Affiliation(s)
- H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran; Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - J Martín-Tereso
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - John Doelman
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J B Daniel
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
5
|
Zhang MQ, Heirbaut S, Jing XP, Stefańska B, Vandaele L, De Neve N, Fievez V. Systemic inflammation in early lactation and its relation to the cows' oxidative and metabolic status, productive and reproductive performance, and activity. J Dairy Sci 2024; 107:7121-7137. [PMID: 38754826 DOI: 10.3168/jds.2023-24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
A dysregulated inflammatory response contributes to the occurrence of disorders in cows during the transition period from pregnancy to lactation. However, a detailed characterization of clinically healthy cows that exhibit an enhanced inflammatory response during this critical period remains incomplete. In this experiment, a total of 99 individual transition dairy cows and 109 observations (18 cows monitored in 2 consecutive lactations), submitted to similar transition management were involved to evaluate the relationship between elevated an inflammatory response and metabolic and oxidative status, as well as transition outcomes. Blood was taken at -7, 3, 6, 9, and 21 DIM, and concentrations of metabolic parameters (glucose, β-hydroxybutyric acid, nonesterified fatty acids [NEFA], insulin, IGF-1, and fructosamine) were analyzed. Additionally, oxidative parameters (proportion of oxidized glutathione to total glutathione in red blood cells, the activity of glutathione peroxidase [GPx] and superoxide dismutase, concentrations of malondialdehyde, and oxygen radical absorbance capacity) and acute phase proteins (APP) including haptoglobin (Hp), serum amyloid A (SAA) and albumin-to-globulin ratio (A:G) were determined in the blood at 21 DIM. The 3 APP parameters were used to group clinically healthy cows into 2 categories through k-medoids clustering (i.e., a group showing an acute phase response, APR; n = 39) and a group not showing such a response (i.e., non-APR; n = 50). Diseased cases (n = 20) were handled in a separate group. Lower SAA and Hp concentrations as well as higher A:G were observed in the non-APR group, although for Hp, differences were observed from the APR group and not from the diseased group. Only 1 of the 5 oxidative parameters differed between the groups, with the non-APR group exhibiting lower GPx activity compared with the diseased group. The non-APR group showed the highest IGF-1 levels among the 3 groups and and lower NEFA concentrations compared with the diseased groups. Cows in the diseased group also showed reduced dry matter intake and milk yield compared with clinically healthy cows, regardless of their inflammatory status. Moreover, the APR group exhibited temporarily lower activity levels compared with the non-APR group. These findings highlight that cows with a lower inflammatory status after 21 DIM exhibited better metabolic health characteristics and productive performance, as well as activity levels. Nevertheless, the detrimental effects of a higher inflammatory status in the absence of clinical symptoms are still relatively limited.
Collapse
Affiliation(s)
- M Q Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - S Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - X P Jing
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium; State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - B Stefańska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - L Vandaele
- Animal Sciences Unit, ILVO, 9090 Melle, Belgium
| | - N De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|
6
|
Paz A, Michelotti TC, Suazo M, Bonilla J, Bulnes M, Minuti A, Luchini D, Trevisi E, Lima AF, Halfen J, Rovai M, Osorio JS. Rumen-protected methionine supplementation improves lactation performance and alleviates inflammation during a subclinical mastitis challenge in lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)01099-3. [PMID: 39218072 DOI: 10.3168/jds.2024-25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the effects of rumen-protected Met on lactation performance, inflammation and immune response, and liver glutathione of lactating dairy cows during a subclinical mastitis challenge (SMC). Thirty-two Holstein cows (145 ± 51 DIM) were enrolled in a randomized complete block design. At -21 d relative to the SMC, cows were assigned to dietary treatments, and data were collected before and during the SMC. Cows were blocked according to parity, DIM, and milk yield and received a basal diet (17.4% CP; Lys 7.01% MP and Met 2.14% MP) plus 100 g/d of ground corn (CON; n = 16) or a basal diet plus 100 g/d of ground corn and rumen-protected Met (SM, Smartamine M at 0.09% of dietary DM; n = 16), fed as a top-dress. At 0 d, the mammary gland's rear right quarter was infused with 100,000 cfu of Streptococcus uberis (O140J). Milk yield was recorded twice daily from 0 until 3 d relative to SMC. Milk samples were collected during each milking from 0 to 3 d relative to SMC, blood samples were collected at 0, 6, 12, 24, 48, and 72 h relative to SMC. The mTOR pathway activation was assessed in immune cells in blood and milk samples by measuring quantity and phosphorylation status of mTOR-related proteins, including AKT, S6RP, and 4EBP1. For the ratio of phosphorylated to total AKT, S6RP, and 4EBP1, blood samples were collected at 0, 12, and 24 h, and milk samples at 24 h relative to SMC. Liver biopsies were performed at -10 d and 24 h relative to SMC for measurement of glutathione. Linear mixed models with repeated measures were used to analyze the results. There was a trend for greater milk yield per milking (+ 0.8 kg) and per day (+1.7 kg) after SMC in SM cows compared with CON. The DMI was not affected by dietary treatments. Reactive oxygen metabolites (ROM) were lower in SM cows than in CON. Milk somatic cell linear score was not affected by dietary treatments, and a score >4 at 24 h confirmed subclinical mastitis. The SM cows had greater milk fat percentage at 24 and 36 h post SMC, resulting in overall greater milk fat. Milk protein tended to be greater in SM cows than in CON. We observed greater liver glutathione in SM cows than in CON. Among inflammation biomarkers, ceruloplasmin was lower for SM cows compared with CON. In milk, greater pAKT:AKT and pS6RP:S6RP ratios were observed in immune cell populations from SM cows compared with CON. Blood neutrophils had a greater p4EBP1:4EBP1 ratio in SM cows compared with CON. Overall, our results show that Met supplementation during an SMC positively affected milk performance, lowered the risk of oxidative stress, and attenuated inflammation partially by increasing liver glutathione and immune cells' protein synthesis via mTOR signaling.
Collapse
Affiliation(s)
- A Paz
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - T C Michelotti
- INRAE, UMR Herbivores, Saint-Genès-Champanelle, France 631222
| | - M Suazo
- Department of Animal Sciences, University of Minnesota, Falcon Heights, Minnesota 55108
| | - J Bonilla
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - M Bulnes
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A F Lima
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - J Halfen
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - M Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - J S Osorio
- School of Animal Science, Virginia Tech, Blacksburg 24061..
| |
Collapse
|
7
|
Giannuzzi D, Piccioli-Cappelli F, Pegolo S, Bisutti V, Schiavon S, Gallo L, Toscano A, Ajmone Marsan P, Cattaneo L, Trevisi E, Cecchinato A. Observational study on the associations between milk yield, composition, and coagulation properties with blood biomarkers of health in Holstein cows. J Dairy Sci 2024; 107:1397-1412. [PMID: 37690724 DOI: 10.3168/jds.2023-23546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
The considerable increase in the production capacity of individual cows owing to both selective breeding and innovations in the dairy sector has posed challenges to management practices in terms of maintaining the nutritional and metabolic health status of dairy cows. In this observational study, we investigated the associations between milk yield, composition, and technological traits and a set of 21 blood biomarkers related to energy metabolism, liver function or hepatic damage, oxidative stress, and inflammation or innate immunity in a population of 1,369 high-yielding Holstein-Friesian dairy cows. The milk traits investigated in this study included 4 production traits (milk yield, fat yield, protein yield, daily milk energy output), 5 traits related to milk composition (fat, protein, casein, and lactose percentages and urea), 11 milk technological traits (5 milk coagulation properties and 6 curd-firming traits). All milk traits (i.e., production, composition, and technological traits) were analyzed according to a linear mixed model that included the days in milk, the parity order, and the blood metabolites (tested one at a time) as fixed effects and the herd and date of sampling as random effects. Our findings revealed that milk yield and daily milk energy output were positively and linearly associated with total cholesterol, nonesterified fatty acids, urea, aspartate aminotransferase, γ-glutamyl transferase, total bilirubin, albumin, and ferric-reducing antioxidant power, whereas they were negatively associated with glucose, creatinine, alkaline phosphatase, total reactive oxygen metabolites, and proinflammatory proteins (ceruloplasmin, haptoglobin, and myeloperoxidase). Regarding composition traits, the protein percentage was negatively associated with nonesterified fatty acids and β-hydroxybutyrate (BHB), while the fat percentage was positively associated with BHB, and negatively associated with paraoxonase. Moreover, we found that the lactose percentage increased with increasing cholesterol and albumin and decreased with increasing ceruloplasmin, haptoglobin, and myeloperoxidase. Milk urea increased with an increase in cholesterol, blood urea, nonesterified fatty acids, and BHB, and decreased with an increase in proinflammatory proteins. Finally, no association was found between the blood metabolites and milk coagulation properties and curd-firming traits. In conclusion, this study showed that variations in blood metabolites had strong associations with milk productivity traits, the lactose percentage, and milk urea, but no relationships with technological traits of milk. Specifically, increasing levels of proinflammatory and oxidative stress metabolites, such as ceruloplasmin, haptoglobin, myeloperoxidase, and total reactive oxygen metabolites, were shown to be associated with reductions in milk yield, daily milk energy output, lactose percentage, and milk urea. These results highlight the close connection between the metabolic and innate immunity status and production performance. This connection is not limited to specific clinical diseases or to the transition phase but manifests throughout the entire lactation. These outcomes emphasize the importance of identifying cows with subacute inflammatory and oxidative stress as a means of reducing metabolic impairments and avoiding milk fluctuations.
Collapse
Affiliation(s)
- D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, Piacenza IT-29122, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy.
| | - V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| | - S Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| | - L Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| | - A Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, Piacenza IT-29122, Italy; Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Catholic University of the Sacred Heart, Piacenza IT-29122, Italy
| | - L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, Piacenza IT-29122, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, Piacenza IT-29122, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro (PD) IT-35020, Italy
| |
Collapse
|
8
|
Pegolo S, Ramirez Mauricio MA, Mancin E, Giannuzzi D, Bisutti V, Mota LFM, Ajmone Marsan P, Trevisi E, Cecchinato A. Structural equation models to infer relationships between energy-related blood metabolites and milk daily energy output in Holstein cows. J Anim Sci 2024; 102:skae271. [PMID: 39279190 PMCID: PMC11484805 DOI: 10.1093/jas/skae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
During lactation, high-yielding cows experience metabolic disturbances due to milk production. Metabolic monitoring offers valuable insights into how cows manage these challenges throughout the lactation period, making it a topic of considerable interest to breeders. In this study, we used Bayesian networks to uncover potential dependencies among various energy-related blood metabolites, i.e., glucose, urea, beta-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), cholesterol (CHOL), and daily milk energy output (dMEO) in 1,254 Holstein cows. The inferred causal structure was then incorporated into structural equation models (SEM) to estimate heritabilities and additive genetic correlations among these phenotypes using both pedigree and genotypes from a 100k chip. Dependencies among traits were determined using the Hill-Climbing algorithm, implemented with the posterior distribution of the residuals obtained from the standard multiple-trait model. These identified relationships were then used to construct the SEM, considering both direct and indirect relationships. The relevant dependencies and path coefficients obtained, expressed in units of measurement variation of 1σ, were as follows: dMEO → CHOL (0.181), dMEO → BHB (-0.149), dMEO → urea (0.038), glucose → BHB (-0.55), glucose → urea (-0.194), CHOL → urea (0.175), BHB → urea (-0.049), and NEFA → urea (-0.097). Heritabilities for traits of concern obtained with SEM ranged from 0.09 to 0.2. Genetic correlations with a minimum 95% probability (P) of the posterior mean being >0 for positive means or <0 for negative means include those between dMEO and glucose (-0.583, P = 100), dMEO and BHB (0.349, P = 99), glucose and CHOL (0.325, P = 100), glucose and NEFA (-0.388, P = 100), and NEFA and BHB (0.759, P = 100). The results of this analysis revealed the existence of recursive relationships among the energy-related blood metabolites and dMEO. Understanding these connections is paramount for establishing effective genetic selection strategies, enhancing production and animal welfare.
Collapse
Affiliation(s)
- Sara Pegolo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Marco Aurelio Ramirez Mauricio
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Enrico Mancin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Vittoria Bisutti
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Lucio Flavio Macedo Mota
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
9
|
Catellani A, Mezzetti M, Minuti A, Cattaneo L, Trevisi E. Metabolic and inflammatory responses reveal different adaptation to the transition period challenges in Holstein, Brown Swiss, and Simmental dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2196995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- A. Catellani
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - M. Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - L. Cattaneo
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - E. Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
10
|
Stanojević J, Kreszinger M, Radinović M, Kladar N, Tomanić D, Ružić Z, Kovačević Z. Assessment of Mastitis Patterns in Serbian Dairy Cows: Blood Serum Metabolic Profile and Milk Composition Parameters. Pathogens 2023; 12:1349. [PMID: 38003812 PMCID: PMC10674276 DOI: 10.3390/pathogens12111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Mastitis is one of the most important diseases in dairy cows, leading to substantial economic losses associated with decreased milk production and quality. Early detection of changes in metabolic and milk parameters is crucial for maintaining animal welfare and milk quality. This study aimed to detect patterns in metabolic and milk composition parameters in Serbian dairy cows affected by mastitis. It also examined the relationship between these factors in cows with clinical and subclinical mastitis, as well as in healthy cows. This study included 60 Holstein-Friesian cows with the same body score condition that were in the same lactation phase. They were divided into three groups of 20: clinical and subclinical mastitis and a control group of healthy cows. The categorization was based on clinical udder health and the California mastitis test. Blood serum metabolic profiles were measured using a Rayto spectrophotometer (Shenzhen, China), and milk composition was determined using MilcoScanTM (Foss, Hilleroed, Denmark) and FossomaticTM (Foss, Hilleroed, Denmark) instruments. Significant increases in non-esterified fatty acids (NEFAs), beta-hydroxybutyrate (BHB), total protein, globulin, urea, total bilirubin, magnesium, and enzyme activity were noted in mastitis-affected cows compared to healthy ones. Additionally, mastitis-affected cows had higher total protein and globulin levels and increased somatic cell counts (SCCs), while albumin concentrations were decreased. Furthermore, a negative correlation between total protein and lactose suggested inflammation leading to reduced lactose levels due to cell damage, infection, and lactose use by mastitis pathogens. Hence, indicators of the energy and protein status of the metabolic profile, together with the chemical composition of milk, may be significant diagnostic tools for detecting, monitoring, and predicting the outcome of mastitis in cows.
Collapse
Affiliation(s)
- Jovan Stanojević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia; (J.S.); (M.R.); (D.T.); (Z.R.); (Z.K.)
| | - Mario Kreszinger
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miodrag Radinović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia; (J.S.); (M.R.); (D.T.); (Z.R.); (Z.K.)
| | - Nebojša Kladar
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia; (J.S.); (M.R.); (D.T.); (Z.R.); (Z.K.)
| | - Zoran Ružić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia; (J.S.); (M.R.); (D.T.); (Z.R.); (Z.K.)
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000 Novi Sad, Serbia; (J.S.); (M.R.); (D.T.); (Z.R.); (Z.K.)
| |
Collapse
|
11
|
Catellani A, Ghilardelli F, Trevisi E, Cecchinato A, Bisutti V, Fumagalli F, Swamy HVLN, Han Y, van Kuijk S, Gallo A. Effects of Supplementation of a Mycotoxin Mitigation Feed Additive in Lactating Dairy Cows Fed Fusarium Mycotoxin-Contaminated Diet for an Extended Period. Toxins (Basel) 2023; 15:546. [PMID: 37755972 PMCID: PMC10534924 DOI: 10.3390/toxins15090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium mycotoxins are inactivated by rumen flora; however, a certain amount can pass the rumen and reticulum or be converted into biological active metabolites. Limited scientific evidence is available on the impact and mitigation of Fusarium mycotoxins on dairy cows' performance and health, particularly when cows are exposed for an extended period (more than 2 months). The available information related to these mycotoxin effects on milk cheese-making parameters is also very poor. The objective of this study was to evaluate a commercially available mycotoxin mitigation product (MMP, i.e., TOXO® HP-R, Selko, Tilburg, The Netherlands) in lactating dairy cows fed a Fusarium mycotoxin-contaminated diet, and the repercussions on the dry matter intake, milk yield, milk quality, cheese-making traits and health status of cows. The MMP contains smectite clays, yeast cell walls and antioxidants. In the study, 36 lactating Holstein cows were grouped based on the number of days of producing milk, milk yield, body condition score and those randomly assigned to specific treatments. The study ran over 2 periods (March/May-May/July 2022). In each period, six animals/treatment were considered. The experimental periods consisted of 9 days of adaptation and 54 days of exposure. The physical activity, rumination time, daily milk production and milk quality were measured. The cows were fed once daily with the same total mixed ration (TMR) composition. The experimental groups consisted of a control (CTR) diet, with a TMR with low contamination, high moisture corn (HMC), and beet pulp; a mycotoxins (MTX) diet, with a TMR with highly contaminated HMC, and beet pulp; and an MTX diet supplemented with 100 g/cow/day of the mycotoxin mitigation product (MMP). The trial has shown that the use of MMP reduced the mycotoxin's negative effects on the milk yield and quality (protein, casein and lactose). The MTX diet had a lower milk yield and feed efficiency than the CTR and MMP HP-R diets. The MMP limited the negative effect of mycotoxin contamination on clotting parameters, mitigating the variations on some coagulation properties; however, the MMP inclusion tended to decrease the protein and apparent starch digestibility of the diet. These results provide a better understanding of mycotoxin risk on dairy cows' performances and milk quality. The inclusion of an MMP product mitigated some negative effects of the Fusarium mycotoxin contamination during this trial. The major effects were on the milk yield and quality in both the experimental periods. These results provide better insight on the effects of mycotoxins on the performance and quality of milk, as well as the cheese-making traits. Further analyses should be carried out to evaluate MMP's outcome on immune-metabolic responses and diet digestibility.
Collapse
Affiliation(s)
- Alessandro Catellani
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy; (A.C.); (F.G.); (E.T.); (F.F.)
| | - Francesca Ghilardelli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy; (A.C.); (F.G.); (E.T.); (F.F.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy; (A.C.); (F.G.); (E.T.); (F.F.)
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (A.C.); (V.B.)
| | - Vittoria Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (A.C.); (V.B.)
| | - Francesca Fumagalli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy; (A.C.); (F.G.); (E.T.); (F.F.)
| | - H. V. L. N. Swamy
- Selko Feed Additives, Nutreco, Stationsstraat 77, P.O. Box 299, 3800 AG Amersfoort, The Netherlands; (H.V.L.N.S.); (Y.H.); (S.v.K.)
| | - Yanming Han
- Selko Feed Additives, Nutreco, Stationsstraat 77, P.O. Box 299, 3800 AG Amersfoort, The Netherlands; (H.V.L.N.S.); (Y.H.); (S.v.K.)
| | - Sandra van Kuijk
- Selko Feed Additives, Nutreco, Stationsstraat 77, P.O. Box 299, 3800 AG Amersfoort, The Netherlands; (H.V.L.N.S.); (Y.H.); (S.v.K.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy; (A.C.); (F.G.); (E.T.); (F.F.)
| |
Collapse
|
12
|
Zhang Y, Liu J, Niu G, Wu Q, Cao B. Chi-miR-3880 mediates the regulatory role of interferon gamma in goat mammary gland. Dev Biol 2023; 501:104-110. [PMID: 37182733 DOI: 10.1016/j.ydbio.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023]
Abstract
A healthy mammary gland is a necessity for milk production of dairy goats. The role of chi-miR-3880 in goat lactation is illustrated in our previous study. Among the differentially expressed genes regulated by chi-miR-3880, one seventh were interferon stimulated genes, including MX1, MX2, IFIT3, IFI44L, and DDX58. As the inflammatory cytokine interferon gamma (IFNγ) has been identified as a potential marker of caseous lymphadenitis in lactating sheep, the interaction between IFNγ and immune-related microRNAs was explored in this study. Chi-miR-3880 was found to be one of the microRNAs downregulated by IFNγ in goat mammary epithelial cells (GMECs). The study illustrated that IFNγ/chi-miR-3880/DDX58 axis modulates GMEC proliferation and lipid formation through PI3K/AKT/mTOR pathway, and regulates apoptosis through Caspase-3 and Bcl-2/Bax pathways. The role of the axis in mammary involution was reflected by the expression of p53 and NF-κB. In conclusion, IFNγ/chi-miR-3880/DDX58 axis plays an important part in lactation.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China; Department of Oncology Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Jidan Liu
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China; Longmen Animal Disease Prevention and Control Center, 516800, Huizhou, Guangdong, China
| | - Guanglin Niu
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Qiong Wu
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China; Medical College, Qinghai University, 810001, Xining, Qinghai, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Toscano A, Giannuzzi D, Pegolo S, Vanzin A, Bisutti V, Gallo L, Trevisi E, Cecchinato A, Schiavon S. Associations between the detailed milk mineral profile, milk composition, and metabolic status in Holstein cows. J Dairy Sci 2023; 106:6577-6591. [PMID: 37479573 DOI: 10.3168/jds.2022-23161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/07/2023] [Indexed: 07/23/2023]
Abstract
The causes of variation in the milk mineral profile of dairy cattle during the first phase of lactation were studied under the hypothesis that the milk mineral profile partially reflects the animals' metabolic status. Correlations between the minerals and the main milk constituents (i.e., protein, fat, and lactose percentages), and their associations with the cows' metabolic status indicators were explored. The metabolic status indicators (MET) that we used were blood energy-protein metabolites [nonesterified fatty acids, β-hydroxybutyrate (BHB), glucose, cholesterol, creatinine, and urea], and liver ultrasound measurements (predicted triacylglycerol liver content, portal vein area, portal vein diameter and liver depth). Milk and blood samples, and ultrasound measurements were taken from 295 Holstein cows belonging to 2 herds and in the first 120 d in milk (DIM). Milk mineral contents were determined by ICP-OES; these were considered the response variable and analyzed through a mixed model which included DIM, parity, milk yield, and MET as fixed effects, and the herd/date as a random effect. The MET traits were divided in tertiles. The results showed that milk protein was positively associated with body condition score (BCS) and glucose, and negatively associated with BHB blood content; milk fat was positively associated with BHB content; milk lactose was positively associated with BCS; and Ca, P, K and S were the minerals with the greatest number of associations with the cows' energy indicators, particularly BCS, predicted triacylglycerol liver content, glucose, BHB and urea. We conclude that the protein, fat, lactose, and mineral contents of milk partially reflect the metabolic adaptation of cows during lactation and within 120 DIM. Variations in the milk mineral profile were consistent with changes in the major milk constituents and the metabolic status of cows.
Collapse
Affiliation(s)
- Alessandro Toscano
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy.
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Alice Vanzin
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Vittoria Bisutti
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Catholic University of the Sacred Heart, 29122, Piacenza, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padova, Italy
| |
Collapse
|
14
|
Pegolo S, Giannuzzi D, Piccioli-Cappelli F, Cattaneo L, Gianesella M, Ruegg PL, Trevisi E, Cecchinato A. Blood biochemical changes upon subclinical intramammary infection and inflammation in Holstein cattle. J Dairy Sci 2023; 106:6539-6550. [PMID: 37479572 DOI: 10.3168/jds.2022-23155] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to investigate the associations between subclinical intramammary infection (IMI) from different pathogens combined with inflammation status and a set of blood biochemical traits including energy-related metabolites, indicators of liver function or hepatic damage, oxidative stress, inflammation, innate immunity, and mineral status in 349 lactating Holstein cows. Data were analyzed with a linear model including the following fixed class effects: days in milk, parity, herd, somatic cell count (SCC), bacteriological status (positive and negative), and the SCC × bacteriological status interaction. Several metabolites had significant associations with subclinical IMI or SCC. Increased SCC was associated with a linear decrease in cholesterol concentrations which ranged from -2% for the class ≥50,000 and <200,000 cells/mL to -11% for the SCC class ≥400,000 cells/mL compared with the SCC class <50,000 cells/mL. A positive bacteriological result was associated with an increase in bilirubin (+24%), paraoxonase (+11%), the ratio paraoxonase/cholesterol (+9%), and advanced oxidation protein product concentration (+23%). Increased SCC were associated with a linear decrease in ferric reducing antioxidant power concentrations ranging from -3% for the class ≥50,000 and <200,000 cells/mL to -9% for the SCC class ≥400,000 cells/mL (respect to the SCC class <50,000 cells/mL). A positive bacteriological result was associated with an increase in haptoglobin concentrations (+19%). Increased SCC were also associated with a linear increase in haptoglobin concentrations, which ranged from +24% for the class ≥50,000 and <200,000 cells/mL (0.31 g/L) to +82% for the SCC class ≥400,000 cells/mL (0.45 g/L), with respect to the SCC class <50,000 cells/mL (0.25 g/L). Increased SCC were associated with a linear increase in ceruloplasmin concentrations (+15% for SCC ≥50,000 cells/mL). The observed changes in blood biochemical markers, mainly acute phase proteins and oxidative stress markers, suggest that cows with subclinical IMI may experience a systemic involvement.
Collapse
Affiliation(s)
- S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy.
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Gianesella
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, 35020 Legnaro, Padova, Italy
| | - P L Ruegg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| |
Collapse
|
15
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Effect of supplementing live Saccharomyces cerevisiae yeast on performance, rumen function, and metabolism during the transition period in Holstein dairy cows. J Dairy Sci 2023; 106:4353-4365. [PMID: 37080789 DOI: 10.3168/jds.2022-23046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 04/22/2023]
Abstract
Dairy cows have to face several nutritional challenges during the transition period, and live yeast supplementation appears to be beneficial in modulating rumen activity. In this study, we evaluated the effects of live yeast supplementation on rumen function, milk production, and metabolic and inflammatory conditions. Ten Holstein multiparous cows received either live Saccharomyces cerevisiae (strain Sc47; SCY) supplementation from -21 to 21 d from calving (DFC) or a control diet without yeast supplementation. Feed intake, milk yield, and rumination time were monitored until 35 DFC, and rumen fluid, feces, milk, and blood samples were collected at different time points. Compared with the control diet, SCY had increased dry matter intake (16.7 vs. 19.1 ± 0.8 kg/d in wk 2 and 3) and rumination time postpartum (449 vs. 504 ± 19.9 min/d in wk 5). Milk yield tended to be greater in SCY (40.1 vs. 45.2 ± 1.7 kg/d in wk 5), protein content tended to be higher, and somatic cell count was lower. In rumen fluid, acetate molar proportion was higher and that of propionate lower at 21 DFC, resulting in increased acetate:propionate and (acetate + butyrate):propionate ratios. Cows in the SCY group had lower fecal dry matter but higher acetate and lower propionate proportions on total volatile fatty acids at 3 DFC. Plasma analysis revealed a lower degree of inflammation after calving in SCY (i.e., lower haptoglobin concentration at 1 and 3 DFC) and a likely better liver function, as suggested by the lower γ-glutamyl transferase, even though paraoxonase was lower at 28 DFC. Plasma IL-1β concentration tended to be higher in SCY, as well as Mg and P. Overall, SCY supplementation improved rumen and hindgut fermentation profiles, also resulting in higher dry matter intake and rumination time postpartum. Moreover, the postcalving inflammatory response was milder and liver function appeared to be better. Altogether, these effects also led to greater milk yield and reduced the risk of metabolic diseases.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Veterinary Sciences, Università di Messina, 98168 Messina, Italy
| | - F Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
16
|
Mezzetti M, Trevisi E. Methods of Evaluating the Potential Success or Failure of Transition Dairy Cows. Vet Clin North Am Food Anim Pract 2023; 39:219-239. [PMID: 37032299 DOI: 10.1016/j.cvfa.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Early monitoring of the failure of metabolic adaptation to calving, represents the most effective measure for allowing a prompt intervention on transition dairy cows. This prevents deleterious effects on animal performance, health, and welfare, which are driven by multiple disorders during the following lactation. Applying metabolic profiling could (1) provide a deeper view on the cause of any pathologic condition affecting transition cows, aimed at increasing the effectiveness and timely application of any treatment and (2) provide detailed feedback on the management practices adopted in a farm during this challenging phase based on animal responses.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy.
| |
Collapse
|
17
|
Giannuzzi D, Mota LFM, Pegolo S, Tagliapietra F, Schiavon S, Gallo L, Marsan PA, Trevisi E, Cecchinato A. Prediction of detailed blood metabolic profile using milk infrared spectra and machine learning methods in dairy cattle. J Dairy Sci 2023; 106:3321-3344. [PMID: 37028959 DOI: 10.3168/jds.2022-22454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/14/2022] [Indexed: 04/09/2023]
Abstract
The adoption of preventive management decisions is crucial to dealing with metabolic impairments in dairy cattle. Various serum metabolites are known to be useful indicators of the health status of cows. In this study, we used milk Fourier-transform mid-infrared (FTIR) spectra and various machine learning (ML) algorithms to develop prediction equations for a panel of 29 blood metabolites, including those related to energy metabolism, liver function/hepatic damage, oxidative stress, inflammation/innate immunity, and minerals. For most traits, the data set comprised observations from 1,204 Holstein-Friesian dairy cows belonging to 5 herds. An exception was represented by β-hydroxybutyrate prediction, which contained observations from 2,701 multibreed cows pertaining to 33 herds. The best predictive model was developed using an automatic ML algorithm that tested various methods, including elastic net, distributed random forest, gradient boosting machine, artificial neural network, and stacking ensemble. These ML predictions were compared with partial least squares regression, the most commonly used method for FTIR prediction of blood traits. Performance of each model was evaluated using 2 cross-validation (CV) scenarios: 5-fold random (CVr) and herd-out (CVh). We also tested the best model's ability to classify values precisely in the 2 extreme tails, namely, the 25th (Q25) and 75th (Q75) percentiles (true-positive prediction scenario). Compared with partial least squares regression, ML algorithms achieved more accurate performance. Specifically, elastic net increased the R2 value from 5% to 75% for CVr and 2% to 139% for CVh, whereas the stacking ensemble increased the R2 value from 4% to 70% for CVr and 4% to 150% for CVh. Considering the best model, with the CVr scenario, good prediction accuracies were obtained for glucose (R2 = 0.81), urea (R2 = 0.73), albumin (R2 = 0.75), total reactive oxygen metabolites (R2 = 0.79), total thiol groups (R2 = 0.76), ceruloplasmin (R2 = 0.74), total proteins (R2 = 0.81), globulins (R2 = 0.87), and Na (R2 = 0.72). Good prediction accuracy in classifying extreme values was achieved for glucose (Q25 = 70.8%, Q75 = 69.9%), albumin (Q25 = 72.3%), total reactive oxygen metabolites (Q25 = 75.1%, Q75 = 74%), thiol groups (Q75 = 70.4%), total proteins (Q25 = 72.4%, Q75 = 77.2.%), globulins (Q25 = 74.8%, Q75 = 81.5%), and haptoglobin (Q75 = 74.4%). In conclusion, our study shows that FTIR spectra can be used to predict blood metabolites with relatively good accuracy, depending on trait, and are a promising tool for large-scale monitoring.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy.
| | - Lucio Flavio Macedo Mota
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, 29122, Piacenza, Italy; Nutrigenomics and Proteomics Research Center, Catholic University of the Sacred Heart, 29122, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Catholic University of the Sacred Heart, 29122, Piacenza, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
18
|
Carpinelli NA, Halfen J, Michelotti TC, Rosa F, Trevisi E, Chapman JD, Sharman ES, Osorio JS. Yeast Culture Supplementation Effects on Systemic and Polymorphonuclear Leukocytes' mRNA Biomarkers of Inflammation and Liver Function in Peripartal Dairy Cows. Animals (Basel) 2023; 13:ani13020301. [PMID: 36670844 PMCID: PMC9854537 DOI: 10.3390/ani13020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
This study evaluated the effects of feeding a commercial yeast culture on blood biomarkers and polymorphonuclear leukocyte (PMNL) gene expression in dairy cows during the transition period until 50 d postpartum. Forty Holstein dairy cows were used in a randomized complete block design from -30 to 50 d. At -30 d, cows were assigned to a basal diet plus 114 g/d of top-dressed ground corn (control; n = 20) or 100 g/d of ground corn and 14 g/d of a yeast culture product (YC; n = 20). Blood samples were collected at various time points from -30 to 30 DIM to evaluate blood biomarkers and PMNL gene expression related to inflammation, liver function, and immune response. Liver function biomarkers, gamma-glutamyl transferase (GGT) and albumin were greater and lower, respectively, in YC cows in comparison to control. However, these biomarkers remained within physiological levels, indicating an active inflammatory process. Genes in PMNL expression related to inflammation (NFKB1, TNFA, TRAF6), anti-inflammation (IL10), and cell membrane receptors (SELL) were upregulated in the YC group in comparison to control. These results suggest that YC could stimulate a more active inflammatory response with signs of a resolution of inflammation in transition cows.
Collapse
Affiliation(s)
- Nathaly Ana Carpinelli
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Jessica Halfen
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
- Nucleo de Pesquisa, Ensino e Extensao em Pecuaria, Universidade Federal de Pelotas, Pelotas 96010610, Rio Grande do Sul, Brazil
| | | | - Fernanda Rosa
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | | | - Johan S. Osorio
- Department of Dairy and Food Sciences, South Dakota State University, Brookings, SD 57007, USA
- Correspondence: ; Tel.: +1-5402311710
| |
Collapse
|
19
|
Janovick N, Trevisi E, Bertoni G, Dann H, Drackley J. Prepartum plane of energy intake affects serum biomarkers for inflammation and liver function during the periparturient period. J Dairy Sci 2022; 106:168-186. [DOI: 10.3168/jds.2022-22286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
|
20
|
Daniel JB, Sanz-Fernandez MV, Nichols K, Doelman J, Martín-Tereso J. Digestive and metabolic efficiency of energy and nitrogen during lactation and the dry period in dairy cows. J Dairy Sci 2022; 105:9564-9580. [DOI: 10.3168/jds.2022-22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022]
|
21
|
Mezzetti M, Piccioli-Cappelli F, Minuti A, Trevisi E. Effects of an Intravenous Infusion of Emulsified Fish Oil Rich in Long-Chained Omega-3 Fatty Acids on Plasma Total Fatty Acids Profile, Metabolic Conditions, and Performances of Postpartum Dairy Cows During the Early Lactation. Front Vet Sci 2022; 9:870901. [PMID: 35651967 PMCID: PMC9149583 DOI: 10.3389/fvets.2022.870901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
A group of 10 multiparous Italian Holstein cows were housed in individual tied stalls and infused with 150 ml of saline (CTR; 5 cows), or of 10% solution rich in long-chained omega-3 fatty acids (n3FA; 5 cows) at 12, 24, and 48 h after calving. From −7 to 21 days from calving (DFC), the body condition score, body weight, dry matter intake (DMI), and milk yield were measured, blood samples were collected to assess the plasma fatty acids (FA) and metabolic profiles, and milk samples were collected to assess the milk composition. Data underwent a mixed model for repeated measurements, including the treatment and time and their interactions as fixed effects. Plasma FA profile from n3FA cows had lower myristic and higher myristoleic proportions, higher cis-11,14-eicosadienoic acid and monounsaturated FA proportions at 3 DFC, and lower cis-10-pentadecanoic proportion at 10 DFC. Besides these, n3FA cows had higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) proportions (1.09 vs. 0.71 and 0.33 vs. 0.08 g/100 g), confirming the effectiveness of the infusion in elevating plasma availability of these FA. The plasma metabolic profile from n3FA cows revealed a tendency toward a lower concentration of reactive oxygen metabolites at 1 DFC and lower haptoglobin at 2 and 3 DFC, reflecting a mitigated inflammatory state. Furthermore, n3FA cows had a higher DMI during the first week of lactation. Higher DMI of n3FA could account for the changes detected on their plasma FAs, the higher milk yield they had at 1 and 2 DFC, the reduced lactose and urea nitrogen content in their milk. Higher DMI could also account for the lower plasma urea that n3FA cows had at 1 and 2 DFC, suggesting a lower amount of endogenous amino acids deserved to gluconeogenic fate. Milk from n3FA cows had lower rennet clotting time and higher curd firmness, which is probably driven by a higher EPA and DHA inclusion in the milk fat. Together, these outcomes suggest that the infusion exerts a short-term anti-inflammatory action on dairy cows at the onset of lactation.
Collapse
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
- *Correspondence: Erminio Trevisi
| |
Collapse
|
22
|
Giannuzzi D, Toscano A, Pegolo S, Gallo L, Tagliapietra F, Mele M, Minuti A, Trevisi E, Ajmone Marsan P, Schiavon S, Cecchinato A. Associations between Milk Fatty Acid Profile and Body Condition Score, Ultrasound Hepatic Measurements and Blood Metabolites in Holstein Cows. Animals (Basel) 2022; 12:ani12091202. [PMID: 35565628 PMCID: PMC9104722 DOI: 10.3390/ani12091202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Dairy cows have high incidences of metabolic disturbances, which often lead to disease, having a subsequent significant impact on productivity and reproductive performance. As the milk fatty acid (FA) profile represents a fingerprint of the cow’s nutritional and metabolic status, it could be a suitable indicator of metabolic status at the cow level. In this study, we obtained milk FA profile and a set of metabolic indicators (body condition score, ultrasound liver measurements, and 29 hematochemical parameters) from 297 Holstein–Friesian cows. First, we applied a multivariate factor analysis to detect latent structure among the milk FAs. We then explored the associations between these new synthetic variables and the morphometric, ultrasonographic and hematic indicators of immune and metabolic status. Significant associations were exhibited by the odd-chain FAs, which were inversely associated with β-hydroxybutyrate and ceruloplasmin, and positively associated with glucose, albumin, and γ-glutamyl transferase. Short-chain FAs were inversely related to predicted triacylglycerol liver content. Rumen biohydrogenation intermediates were associated with glucose, cholesterol, and albumin. These results offer new insights into the potential use of milk FAs as indicators of variations in energy and nutritional metabolism in early lactating dairy cows.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
- Correspondence:
| | - Alessandro Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Marcello Mele
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, 56124 Pisa, Italy;
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), The Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.M.); (E.T.); (P.A.M.)
- Nutrigenomics and Proteomics Research Center, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, Italy; (A.T.); (S.P.); (L.G.); (F.T.); (S.S.); (A.C.)
| |
Collapse
|
23
|
Predicting ketosis during the transition period in Holstein Friesian cows using hematological and serum biochemical parameters on the calving date. Sci Rep 2022; 12:853. [PMID: 35039562 PMCID: PMC8763895 DOI: 10.1038/s41598-022-04893-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Ketosis often occurs during the postpartum transition period in dairy cows, leading to economic and welfare problems. Previously, ketosis was reported to be associated with hematological and serum biochemical parameters. However, the association between the parameters on the calving date and ketosis during the postpartum transition period remains unclear. This study aimed to investigate this association. Blood samples were collected from the jugular vein of Holstein cows on the calving date and β-hydroxybutyrate was tested once every 3 days (8 times in 21 days). The cows were divided into three groups: non-ketosis, subclinical ketosis, and clinical ketosis. The clinical ketosis group significantly had the highest values of mean corpuscular volume, mean corpuscular hemoglobin, β-hydroxybutyrate, non-esterified fatty acids, and total bilirubin, but the lowest values of red cell distribution width, the counts of white blood cell, monocyte, and eosinophil, albumin, alanine transaminase, lactate dehydrogenase, and amylase. In contrast, the non-ketosis group showed the opposite results (p < 0.05). In conclusion, these parameters are associated with the development and severity of ketosis. Our findings suggest that these parameters on the calving date may be useful indicators to identify dairy Holstein cow susceptible to ketosis during the transition period.
Collapse
|
24
|
Global prevalence of subclinical ketosis in dairy cows: A systematic review and meta-analysis. Res Vet Sci 2022; 144:66-76. [DOI: 10.1016/j.rvsc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
|
25
|
Preliminary Evidence of Endotoxin Tolerance in Dairy Cows during the Transition Period. Genes (Basel) 2021; 12:genes12111801. [PMID: 34828407 PMCID: PMC8618052 DOI: 10.3390/genes12111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 11/24/2022] Open
Abstract
The blastogenic response of bovine peripheral blood mononuclear cells (PBMCs) to lipopolysaccharides (LPS) has been investigated for a long time in our laboratories. In particular, a possible correlation between the blastogenic response to LPS and the disease resistance of dairy cows has been suggested in previous studies. Isolated PBMCs from eight cows at three different time points during the transition period (T0 = 15 days before calving; T1 = 7 days post-calving; T2 = 21 days post-calving) were cultured in the presence or absence of LPS, and the blastogenic response was assayed 72 h after in vitro stimulation. Moreover, the gene expression of proinflammatory cytokines and kynurenine pathway molecules was investigated by real-time RT-PCR on both unstimulated and stimulated PBMCs. The cows were retrospectively divided into healthy and diseased, based on the development of peripartum diseases (subclinical ketosis and placenta retention). The comparison between healthy and diseased cows suggested that healthy animals seemed to better control the response to LPS. On the contrary, diseased animals showed a much higher inflammatory response to LPS. Moreover, cows were retrospectively classified as high and low responders based on the in vitro proliferative response of PBMCs to LPS, using the median value as a threshold. Unstimulated PBMCs of low responders showed higher expression of the proinflammatory cytokines Interleukin 1-β (IL-1β), Interleukin 6 (IL-6) and Tumor Necrosis Factor-α (TNF-α), compared to high responders. Our preliminary data suggest that, during the peripartum period, high responders seem to be more tolerant to endotoxins and develop a lower inflammatory response to different stressors. Instead, low responders could be more prone to the development of unwanted inflammatory conditions in response to mild/moderate stressors.
Collapse
|
26
|
The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. DAIRY 2021. [DOI: 10.3390/dairy2040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent research on the transition period (TP) of dairy cows has highlighted the pivotal role of immune function in affecting the severity of metabolic challenges the animals face when approaching calving. This suggests that the immune system may play a role in the etiology of metabolic diseases occurring in early lactation. Several studies have indicated that the roots of immune dysfunctions could sink way before the “classical” TP (e.g., 3 weeks before and 3 weeks after calving), extending the time frame deemed as “risky” for the development of early lactation disorders at the period around the dry-off. Several distressing events occurring during the TP (i.e., dietary changes, heat stress) can boost the severity of pre-existing immune dysfunctions and metabolic changes that physiologically affect this phase of the lactation cycle, further increasing the likelihood of developing diseases. Based on this background, several operational and nutritional strategies could be adopted to minimize the detrimental effects of immune dysfunctions on the adaptation of dairy cows to the new lactation. A suitable environment (i.e., optimal welfare) and a balanced diet (which guarantees optimal nutrient partitioning to improve immune functions in cow and calf) are key aspects to consider when aiming to minimize TP challenges at the herd level. Furthermore, several prognostic behavioral and physiological indicators could help in identifying subjects that are more likely to undergo a “bad transition”, allowing prompt intervention through specific modulatory treatments. Recent genomic advances in understanding the linkage between metabolic disorders and the genotype of dairy cows suggest that genetic breeding programs aimed at improving dairy cows’ adaptation to the new lactation challenges (i.e., through increasing immune system efficiency or resilience against metabolic disorders) could be expected in the future. Despite these encouraging steps forward in understanding the physiological mechanisms driving metabolic responses of dairy cows during their transition to calving, it is evident that these processes still require further investigation, and that the TP—likely extended from dry-off—continues to be “the final frontier” for research in dairy sciences.
Collapse
|
27
|
An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants (Basel) 2021; 10:antiox10091478. [PMID: 34573111 PMCID: PMC8466393 DOI: 10.3390/antiox10091478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Collapse
|
28
|
Zontini AM, Zerbini E, Minuti A, Trevisi E. Effects of supplementing Saccharomyces cerevisiae fermentation products to dairy cows from the day of dry-off through early lactation. J Dairy Sci 2021; 104:11673-11685. [PMID: 34482982 DOI: 10.3168/jds.2021-20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
The scope of this experiment was to study the effects of Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V) on milk yield, milk composition, somatic cell count, rumination activity, and immunometabolic profile (inflammation) of dairy cows during the peripartum period. Postpartum inflammation severity was evaluated as the liver functionality index (LFI). The LFI is based on profiles of specific blood inflammatory markers in the first month of lactation. We hypothesized that SCFP could increase the rumination time in dairy cows. Treatments were control (CTR; no supplement, n = 17) or SCFP (19 g/d of NutriTek, n = 17) included into a pellet delivered at robotic milking unit. Treatments were fed from d -60 to 42 relative to parturition. Cows were fed the same basal rations formulated to pre- or postpartum requirements. Cows were voluntarily milked with robotic milking unit. Blood samples were collected at d -60, -28, -7, 7, and 28 relative to parturition. To study the effect of the treatment and severity of inflammation during periparturient period on subsequent cow performance, cows were retrospectively divided into 2 groups based on their LFI score: low (LLFI) and high (HLFI). Thus, LFI grouping and supplementation treatment groups were as follows: LLFI-CTR, LLFI-SCFP, HLFI-CTR, HLFI-SCFP. Data were analyzed with ANOVA using a mixed model for repeated measures; the model included the effect of the diet, LFI group, time relative to parturition, and their interaction. The nonesterified fatty acids concentrations were greatest at d 7 of lactation for LLFI-CTR compared with other groups. No other differences in plasma metabolites were observed. The LLFI-CTR cows had a greater reduction of body condition score from d -7 until 28 relative to parturition compared with other groups. Somatic cell counts were not different among groups, with averages of 175, 169, 384, and 126 × 1,000 cells/mL for the HLFI-CTR, HLFI-SCFP, LLFI-CTR, and LLFI-SCFP group, respectively, regardless of day. However, the LLFI-CTR had greater somatic cell count on d 42 compared with other groups. During the week before parturition, the LLFI-CTR group had reduced rumination time of 46 min compared with the other 3 groups. However, the minutes of rumination per day was only different between LLFI-CTR and the LLFI-SCFP groups. Milk production of cows was different for LFI scores as follows: 50.2 versus 46.7 kg/d for HLFI and LLFI, respectively. Interestingly, there were no differences of milk production due to supplementation treatment of the HLFI cows. However, the LLFI-SCFP group produced 49.1 kg/d compared with 44.3 kg/d of the LLFI-CTR group during the first month of lactation. Milk composition did not differ throughout the experimental period for the 4 groups of cows. In conclusion, SCFP supplementation assisted cows experiencing low LFI to maintain milk production, somatic cell count, and plasma nonesterified fatty acid concentrations similar to cows with high LFI.
Collapse
Affiliation(s)
- A M Zontini
- Cargill Animal Nutrition and Health, Fiorenzuola D'Arda (PC), Italy 29017.
| | - E Zerbini
- Cargill Animal Nutrition and Health, Fiorenzuola D'Arda (PC), Italy 29017
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Research Center Romeo and Enrica Invernizzi for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
29
|
Carpinelli NA, Halfen J, Trevisi E, Chapman JD, Sharman ED, Anderson JL, Osorio JS. Effects of peripartal yeast culture supplementation on lactation performance, blood biomarkers, rumen fermentation, and rumen bacteria species in dairy cows. J Dairy Sci 2021; 104:10727-10743. [PMID: 34253357 DOI: 10.3168/jds.2020-20002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Feeding yeast culture fermentation products has been associated with improved feed intake and milk yield in transition dairy cows. These improvements in performance have been further described in terms of rumen characteristics, metabolic profile, and immune response. The objective of this study was to evaluate the effects of a commercial yeast culture product (YC; Culture Classic HD, Phibro Animal Health) on performance, blood biomarkers, rumen fermentation, and rumen bacterial population in dairy cows from -30 to 50 d in milk (DIM). Forty Holstein dairy cows were enrolled in a randomized complete block design from -30 to 50 DIM and blocked according to expected calving day, parity, previous milk yield, and genetic merit. At -30 DIM, cows were assigned to either a basal diet plus 114 g/d of ground corn (control; n = 20) or a basal diet plus 100 g/d of ground corn and 14 g/d of YC (n = 20), fed as a top-dress. Cows received the same close-up diet from 30 d prepartum until calving [1.39 Mcal/kg of dry matter (DM) and 12.3% crude protein (CP)] and lactation diet from calving to 50 DIM (1.60 Mcal/kg of DM and 15.6% CP). Blood samples and rumen fluid were collected at various time points from -30 to 50 d relative to calving. Cows fed YC compared with control showed a trend for increased energy-corrected milk (+3.2 kg/d). Lower somatic cell counts were observed in YC cows than in control. We detected a treatment × time interaction in nonesterified fatty acids (NEFA) that could be attributed to a trend for greater NEFA in YC cows than control at 7 DIM, followed by lower NEFA in YC cows than control at 14 and 30 DIM. In the rumen, YC contributed to mild changes in rumen fermentation, mainly increasing postpartal valerate while decreasing prepartal isovalerate. This was accompanied by alterations in rumen microbiota, including a greater abundance of cellulolytic (Fibrobacter succinogenes) and lactate-utilizing bacteria (Megasphaera elsdenii). These results describe the potential benefits of supplementing yeast culture during the late pregnancy through early lactation, at least in terms of rumen environment and performance.
Collapse
Affiliation(s)
- N A Carpinelli
- Department of Dairy and Food Sciences, South Dakota State University, Brookings 57007
| | - J Halfen
- Department of Dairy and Food Sciences, South Dakota State University, Brookings 57007; Núcleo de Pesquisa, Ensino e Extenssão em Pecuária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil 96010610
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | | | - J L Anderson
- Department of Dairy and Food Sciences, South Dakota State University, Brookings 57007
| | - J S Osorio
- Department of Dairy and Food Sciences, South Dakota State University, Brookings 57007.
| |
Collapse
|
30
|
Huang Y, Wen J, Kong Y, Zhao C, Liu S, Liu Y, Li L, Yang J, Zhu X, Zhao B, Cao B, Wang J. Oxidative status in dairy goats: periparturient variation and changes in subclinical hyperketonemia and hypocalcemia. BMC Vet Res 2021; 17:238. [PMID: 34229683 PMCID: PMC8258950 DOI: 10.1186/s12917-021-02947-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A better comprehension of the redox status during the periparturient period may facilitate the development of management and nutritional solutions to prevent subclinical hyperketonemia (SCHK) and subclinical hypocalcemia (SCHC) in dairy goats. We aimed to evaluate the variation in the redox status of dairy goats with SCHK and SCHC during their periparturient periods. Guanzhong dairy goats (n = 30) were assigned to SCHK (n = 10), SCHC (n = 10), and healthy (HEAL, n = 10) groups based on their blood β-hydroxybutyrate (BHBA) and calcium (Ca) concentrations. Blood were withdrawn from goats every week from 3 weeks before the expected parturition date to 3 weeks post-kidding. On the same day, the body condition scores (BCS) were evaluated, and the milk yield was recorded for each goat. The metabolic profile parameters and the indicators of oxidative status were determined by using the standard biochemical techniques. RESULTS In comparison with the HEAL goats, SCHK and SCHC goats presented with a more dramatic decline of BCS post-kidding and a significant decrease in the milk yield at 2- and 3-weeks postpartum, ignoring the obvious increase at 1-week postpartum. The levels of non-esterified fatty acids (NEFA) peaked at parturition, exhibiting significantly higher levels from 1-week prepartum to the parturition day in the SCHK and SCHC groups. The malondialdehyde (MDA) concentration was increased in the SCHK goats from 1-week antepartum until 3-weeks postpartum, with its concentration being significantly higher in the SCHC goats at parturition. The hydrogen peroxide (H2O2) concentration was significantly lower in the SCHK and SCHC goats from 2-weeks antepartum to 1-week post-kidding. The total antioxidant capacity (T-AOC) and the superoxide dismutase (SOD) level were decreased at 1-week antepartum in the SCHK and SCHC goats, respectively. The glutathione peroxidase (GSH-Px) level was increased in the SCHK and SCHC goats during the early lactation period. CONCLUSIONS The SCHK and SCHC goats exerted more efforts to maintain their redox homeostasis and to ensure the production performance than the HEAL goats during their periparturient period, probably owing to more intense fat mobilization and lipid peroxidation in the former.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jing Wen
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lan Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
31
|
Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals (Basel) 2021; 11:ani11061714. [PMID: 34201201 PMCID: PMC8226749 DOI: 10.3390/ani11061714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study investigates the changes occurring in plasma analytes of healthy multiparous Holstein dairy cows during the dry, the postpartum, the early and the late lactation phases. A welfare assessment at the herd level and a retrospective subclinical diseases screening were used as blocking factors for the selection of reference individuals. Thus, this study provides measurements of the physiological variations affecting plasma analytes concentrations during the pivotal stages of the lactation cycle in a healthy, high welfare-raised subset of reference individuals and suggest an explanation for the underlying processes involved. Finally, we propose reference intervals for plasma analytes in the stages investigated. Abstract Here, we tested the changes occurring in several plasma analytes during different stages of the lactation cycle of high welfare raised multiparous Holstein cows, and provided reference intervals (RI) for plasma analytes concentrations. Eleven high-welfare farms (HWF) located in Northern Italy were selected and their herds used to recruit 361 clinically healthy cows undergoing the dry (from −30 to −10 days from real calving; DFC), the postpartum (from 3 to 7 DFC), the early lactation (from 28 to 45 DFC) and the late lactation phases (from 160 to 305 DFC). Cows affected by subclinical diseases (SCD) were retrospectively excluded, and a subset of 285 cows was selected. Data of plasma analytes underwent ANOVA testing using physiological phases as predictors. The individual effect of each phase was assessed using a pairwise t-test assuming p ≤ 0.05 as a significance limit. A bootstrap approach was used to define the reference interval (RI) for each blood analyte within physiological phases having a pairwise t-test p ≤ 0.05. The concentration of nonesterified fatty acids, albumin, cholesterol, retinol, paraoxonase and tocopherol changed throughout all the physiological phases, whereas the concentration of K, alkaline phosphatase and thiol groups remained stable. Triglycerides, Zn, and ferric ion reducing antioxidant power in the dry phase and BHB, Ca, myeloperoxidase, haptoglobin, reactive oxygen metabolites and advanced oxidation of protein product in postpartum differed compared with other physiological phases. During the dry phase, Packed cell volume, Cl, and urea concentrations were similar to during the postpartum phase. Similarly, Na, γ-glutamyl transferase and β-carotene concentrations were similar to during the early lactation phase; fructosamine and bilirubin concentrations were similar to during the late lactation phase. During the postpartum phase, fructosamine and P concentrations were similar to during the early lactation phase, and the aspartate transaminase concentration was similar to during the late lactation phase. During the early lactation phase, Mg, creatinine, total protein, globulin and ceruloplasmin concentrations were similar to during the postpartum phase, while the urea concentration was similar to during the late lactation phase. All these plasma analytes differed among the other phases. This study identifies physiological trends affecting plasma analytes concentrations during the different stages of the lactation cycle and provides a guideline for the duration and magnitude of their changes when animals are healthy and raised in optimal welfare conditions.
Collapse
|
32
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
33
|
Cattaneo L, Lopreiato V, Piccioli-Cappelli F, Trevisi E, Minuti A. Plasma albumin-to-globulin ratio before dry-off as a possible index of inflammatory status and performance in the subsequent lactation in dairy cows. J Dairy Sci 2021; 104:8228-8242. [PMID: 33865585 DOI: 10.3168/jds.2020-19944] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/05/2021] [Indexed: 01/27/2023]
Abstract
The dry-off of dairy cows represents an important phase of the lactation cycle, influencing the outcome of the next lactation. Among the physiological changes, the severity of the inflammatory response can vary after the dry-off, and this response might have consequences on cow adaptation in the transition period. The plasma protein profile is a diagnostic tool widely used in humans and animals to assess the inflammatory status and predict the outcome of severe diseases. The albumin-to-globulin ratio (AG) can represent a simple and useful proxy for the inflammatory condition. In this study, we investigated the relationship between AG before dry-off and inflammation, metabolic profile, and performance of 75 Holstein dairy cows. Blood samples were collected from -62 (7 d before dry-off) to 28 d relative to calving (DFC) to measure metabolic profile biomarkers, inflammatory variables, and liver function. Daily milk yield in the first month of lactation was recorded. Milk composition, body condition score, fertility, and health status were also assessed. The AG calculated 1 wk before dry-off (-62 DFC) was used to retrospectively group cows into tertiles (1.06 ± 0.09 for HI, 0.88 ± 0.04 for IN, and 0.72 ± 0.08 for LO). Data were subjected to ANOVA using the PROC MIXED program in SAS software. Differences among groups observed at -62 DFC were almost maintained throughout the period of interest, but AG peaked before calving. According to the level of acute-phase proteins (haptoglobin, ceruloplasmin, albumin, cholesterol, retinol-binding protein), bilirubin, and paraoxonase, a generally overall lower inflammatory condition was found in HI and IN than in the LO group immediately after the dry-off but also after calving. The HI cows had greater milk yield than LO cows, but no differences were observed in milk composition. The somatic cell count reflected the AG ratio trend, with higher values in LO than IN and HI either before dry-off or after calving. Fertility was better in HI cows, with fewer days open and services per pregnancy than IN and LO cows. Overall, cows with high AG before dry-off showed an improved adaptation to the new lactation, as demonstrated by a reduced systemic inflammatory response and increased milk yield than cows with low AG. In conclusion, the AG ratio before dry-off might represent a rapid and useful proxy to evaluate the innate immune status and likely the ability to adapt while switching from the late lactation to the nonlactating phase and during the transition period with emphasis on early lactation.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production of the Università Cattolica del Sacro Cuore (CREI), 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
34
|
Martins LF, Menta PR, Fernandes L, Machado VS, Neves RC. Prolonged, low-grade inflammation in the first week of lactation: Associations with mineral, protein, and energy balance markers, and milk yield, in a clinically healthy Jersey cow cohort. J Dairy Sci 2021; 104:6113-6123. [PMID: 33663834 DOI: 10.3168/jds.2020-19538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
Our objectives were to perform a proof-of-concept study to assess the association of a prolonged inflammatory state (based on a continually elevated haptoglobin concentration at the end of the first week after parturition) with mineral, protein, and energy balance markers in the first 2 wk after parturition, and milk production in the first 60 d of lactation in clinically healthy cows. We conducted a cohort study in 1 herd in west Texas that was milking Jersey and Jersey-Holstein crosses. Only multiparous Jersey cows were eligible for enrollment. Cows were classified as having or not having elevated haptoglobin concentrations based on plasma concentrations evaluated on d 4 and 7 postpartum. We used median concentrations of haptoglobin in the reference population (i.e., before the exclusion of cows diagnosed with clinical diseases) as the limits for categorizing cows into 2 groups: cows with plasma haptoglobin concentrations greater than the median values on both d 4 (0.49 g/L) and 7 (0.35 g/L) had continually elevated haptoglobin (with eHp); and cows with plasma haptoglobin concentrations lower than or equal to the median values of the reference population on d 4 or 7 did not have continually elevated haptoglobin (without eHp). Next, cows with clinical diseases in the first 2 wk of the postpartum period were excluded, so that 233 cows remained for the final analyses. Evaluated outcomes were average daily milk production across the first 60 d of lactation, plasma Ca, Mg, and glucose concentrations on d 1, 2, 3, 4, 5, 7, 10, and 14 postpartum, and β-hydroxybutyrate (BHB), nonesterified fatty acids (NEFA), fructosamine, albumin, urea, and creatinine concentrations on d 3, 5, 7, 10, and 14 postpartum. Rectal temperatures measured on d 4, 7, and 10 postpartum were also analyzed. We performed statistical analyses using linear mixed models while accounting for the repeated effect of sampling time (plasma analytes and rectal temperature models) and weekly milk test (milk production model). Cows with eHp had lower plasma Ca concentrations in the first 2 wk after calving, but no differences in Mg, BHB, NEFA, glucose, or rectal temperatures compared to cows without eHp. Cows with eHp had lower plasma fructosamine, albumin, and urea concentrations in a time-dependent manner. They also had lower milk production (2.3 kg/d less than cows without eHp in the first 60 DIM). Our study demonstrated that 25% of cows without clinical disorders in the first 2 wk after parturition had continually elevated haptoglobin concentrations at d 7 after parturition relative to d 4, suggestive of a prolonged, low-grade systemic inflammatory state. More observational studies are needed to more fully characterize the duration of prolonged postpartum subclinical inflammation in cows without clinical diseases, as well as its long-term effects, and to evaluate the use of other potential markers of systemic inflammation to describe this disorder.
Collapse
Affiliation(s)
- L F Martins
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907
| | - P R Menta
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - L Fernandes
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - V S Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - R C Neves
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
35
|
Amadori M, Spelta C. The Autumn Low Milk Yield Syndrome in High Genetic Merit Dairy Cattle: The Possible Role of a Dysregulated Innate Immune Response. Animals (Basel) 2021; 11:ani11020388. [PMID: 33546430 PMCID: PMC7913622 DOI: 10.3390/ani11020388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Milk yield worldwide is dominated by few cosmopolitan dairy cattle breeds producing high production levels in the framework of hygiene standards that have dramatically improved over the years. Yet, there is evidence that such achievements have gone along with substantial animal health and welfare problems for many years, exemplified by reduced life expectancy and high herd replacement rates. Also, these animals are very susceptible to diverse environmental stressors, among which hot summer climate plays a central role in the occurrence of diverse disease cases underlying early cull from the herd. Milk production is also affected by heat stress, both directly and indirectly, as shown by low milk yield in the following autumn period. This article highlights the low milk yield syndrome and sets it into a conceptual framework, based on the crucial role of the innate immune system in the response to non-infectious stressors and in adaptation physiology at large. Abstract The analysis of milk yield data shows that high genetic merit dairy cows do not express their full production potential in autumn. Therefore, we focused on metabolic stress and inflammatory response in the dry and peripartum periods as possible causes thereof. It was our understanding that some cows could not cope with the stress imposed by their physiological and productive status by means of adequate adaptation strategies. Accordingly, this study highlights the noxious factors with a potential to affect cows in the above transition period: hot summer climate, adverse genetic traits, poor coping with unfavorable environmental conditions, outright production diseases and consequences thereof. In particular, the detrimental effects in the dry period of overcrowding, photoperiod change and heat stress on mammary gland development and milk production are highlighted in the context of the autumn low milk yield syndrome. The latter could be largely accounted for by a “memory” effect on the innate immune system induced in summer by diverse stressors after dry-off, according to strong circumstantial and indirect experimental evidence. The “memory” effect is based on distinct epigenetic changes of innate immunity genes, as already shown in cases of bovine mastitis. Following a primary stimulation, the innate immune system would be able to achieve a state known as “trained immunity”, a sort of “education” which modifies the response to the same or similar stressors upon a subsequent exposure. In our scenario, the “education” of the innate immune system would induce a major shift in the metabolism of inflammatory cells following their reprogramming. This would entail a higher basal consumption of glucose, in competition with the need for the synthesis of milk. Also, there is strong evidence that the inflammatory response generated in the dry period leads to a notable reduction of dry matter intake after calving, and to a reduced efficiency of oxidative phosphorylation in mitochondria. On the whole, an effective control of the stressors in the dry period is badly needed for better disease control and optimal production levels in dairy cattle.
Collapse
Affiliation(s)
- Massimo Amadori
- RNIV, Italian Society of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Chiara Spelta
- Private Veterinary Practitioner, 27100 Pavia, Italy;
| |
Collapse
|
36
|
Orellana Rivas RM, Gutierrez-Oviedo FA, Komori GH, Beihling VV, Marins TN, Azzone J, Bernard JK, Tao S. Effect of supplementation of a mixture of gluconeogenic precursors during the transition period on performance, blood metabolites and insulin concentrations and hepatic gene expression of dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Sanz-Fernandez MV, Daniel JB, Seymour DJ, Kvidera SK, Bester Z, Doelman J, Martín-Tereso J. Targeting the Hindgut to Improve Health and Performance in Cattle. Animals (Basel) 2020; 10:E1817. [PMID: 33036177 PMCID: PMC7600859 DOI: 10.3390/ani10101817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
An adequate gastrointestinal barrier function is essential to preserve animal health and well-being. Suboptimal gut health results in the translocation of contents from the gastrointestinal lumen across the epithelium, inducing local and systemic inflammatory responses. Inflammation is characterized by high energetic and nutrient requirements, which diverts resources away from production. Further, barrier function defects and inflammation have been both associated with several metabolic diseases in dairy cattle and liver abscesses in feedlots. The gastrointestinal tract is sensitive to several factors intrinsic to the productive cycles of dairy and beef cattle. Among them, high grain diets, commonly fed to support lactation and growth, are potentially detrimental for rumen health due to their increased fermentability, representing the main risk factor for the development of acidosis. Furthermore, the increase in dietary starch associated with such rations frequently results in an increase in the bypass fraction reaching distal sections of the intestine. The effects of high grain diets in the hindgut are comparable to those in the rumen and, thus, hindgut acidosis likely plays a role in grain overload syndrome. However, the relative contribution of the hindgut to this syndrome remains unknown. Nutritional strategies designed to support hindgut health might represent an opportunity to sustain health and performance in bovines.
Collapse
Affiliation(s)
- M. Victoria Sanz-Fernandez
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Jean-Baptiste Daniel
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Dave J. Seymour
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | | | - Zeno Bester
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - John Doelman
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| | - Javier Martín-Tereso
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG Amersfoort, The Netherlands; (J.-B.D.); (D.J.S.); (Z.B.); (J.D.); (J.M.-T.)
| |
Collapse
|
38
|
Zhao C, Bai Y, Fu S, Wu L, Xia C, Xu C. Metabolic alterations in dairy cows with subclinical ketosis after treatment with carboxymethyl chitosan-loaded, reduced glutathione nanoparticles. J Vet Intern Med 2020; 34:2787-2799. [PMID: 32964552 PMCID: PMC7694824 DOI: 10.1111/jvim.15894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/03/2023] Open
Abstract
Background Subclinical ketosis (SCK) causes economic losses in the dairy industry because it reduces the milk production and reproductive performance of cows. Hypothesis/Objectives To evaluate whether carboxymethyl chitosan‐loaded reduced glutathione (CMC‐rGSH) nanoparticles can alleviate the incidence or degree of SCK in a herd. Animals Holstein dairy cows 21 days postpartum (n = 15). Methods The trial uses a prospective study. Five cows with serum β‐hydroxybutyric acid (BHBA) ≥1.20 mmol/L and aspartate aminotransferase (AST) <100 IU/L were assigned to group T1, 5 cows with BHBA ≥1.20 mmol/L and AST >100 IU/L to group T2, and 5 cows with BHBA <1.00 mmol/L and AST <100 IU/L to group C. Carboxymethyl chitosan‐loaded reduced glutathione (0.012 mg/kg body weight per cow) was administered to cows in T1 and T2 once daily via jugular vein for 6 days after diagnosis. Serum from all groups were collected 1 day before administration, then on days 1, 3, 5, 7, 10, and 15 after administration to determine the changes in biochemical index and 1H‐NMR. Results The difference in liver function or energy metabolism indices in T1, T2, and C disappeared at day 7 and day 10 after the administration (P > .05). Valine, lactate, alanine, lysine, creatinine, glucose, tyrosine, phenylalanine, formate, and oxalacetic acid levels, and decrease in isoleucine, leucine, proline, acetate, trimethylamine N‐oxide, glycine, and BHBA levels were greater (P < .05) at day 7 than day 0 for cows in T2. Conclusions and Clinical Importance Carboxymethyl chitosan‐loaded reduced glutathione treatment might alleviate SCK by enhancing gluconeogenesis and reducing ketogenesis in amino acids.
Collapse
Affiliation(s)
- Chang Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ling Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
39
|
Cattaneo L, Lopreiato V, Trevisi E, Minuti A. Association of postpartum uterine diseases with lying time and metabolic profiles of multiparous Holstein dairy cows in the transition period. Vet J 2020; 263:105533. [PMID: 32928490 DOI: 10.1016/j.tvjl.2020.105533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to assess how uterine disorders alter the lying behaviour and plasma biomarkers in dairy cows. 34 multiparous cows were retrospectively classified into three groups according to the first uterine disorder that cows were diagnosed with: retained placenta (RP), metritis (MET), or healthy (H; cows without any clinical disease). Lying time (LT) and duration of lying bouts (LB) were monitored between 6 weeks prior to and 8 weeks after calving via the AfiAct II pedometer. Blood samples were collected routinely between 14 days before and 28 days after calving. Data was analysed using Proc MIXED of SAS ver. 9.4. Regardless of grouping, both LT and LB were longer (P < 0.01) in the prepartum period (774 ± 16.6 min/day and 89.9 ± 2.1 min/bout) than in the first 28 days after calving (DFC; 653 ± 16.7 min/day and 63.7 ± 2.1 min/bout). Cows with RP had longer LT than healthy cows during the last 3 weeks before calving (837 ± 30.9 vs. 735 ± 27.1 min/day; P < 0.05). LT in cows with MET and healthy cows were not significantly different. The LB was similar among groups, averaging 76.1 ± 3.4 min/bout in healthy cows, 73.2 ± 3.8 min/bout in cows with RP, and 75.2 ± 3.7 min/bout in cows with MET (P > 0.05). Compared with healthy cows, cows with RP laid down longer and stood up for shorter times (P < 0.05), particularly before calving. In addition, cows with RP had increased mobilization of body stores and more pronounced inflammatory status, as demonstrated by plasma haptoglobin (P = 0.04) and albumin (P < 0.01) concentrations. Our data suggest that automatic monitoring of lying behaviour could help identify cows at increased risk of developing certain disorders, such as RP.
Collapse
Affiliation(s)
- L Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
40
|
Mezzetti M, Bionaz M, Trevisi E. Interaction between inflammation and metabolism in periparturient dairy cows. J Anim Sci 2020; 98:S155-S174. [PMID: 32810244 DOI: 10.1093/jas/skaa134] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
41
|
Habel J, Sundrum A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals (Basel) 2020; 10:E1028. [PMID: 32545739 PMCID: PMC7341265 DOI: 10.3390/ani10061028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Immune cell functions such as phagocytosis and synthesis of immunometabolites, as well as immune cell survival, proliferation and differentiation, largely depend on an adequate availability of glucose by immune cells. During inflammation, the glucose demands of the immune system may increase to amounts similar to those required for high milk yields. Similar metabolic pathways are involved in the adaptation to both lactation and inflammation, including changes in the somatotropic axis and glucocorticoid response, as well as adipokine and cytokine release. They affect (i) cell growth, proliferation and activation, which determines the metabolic activity and thus the glucose demand of the respective cells; (ii) the overall availability of glucose through intake, mobilization and gluconeogenesis; and (iii) glucose uptake and utilization by different tissues. Metabolic adaptation to inflammation and milk synthesis is interconnected. An increased demand of one life function has an impact on the supply and utilization of glucose by competing life functions, including glucose receptor expression, blood flow and oxidation characteristics. In cows with high genetic merits for milk production, changes in the somatotropic axis affecting carbohydrate and lipid metabolism as well as immune functions are profound. The ability to cut down milk synthesis during periods when whole-body demand exceeds the supply is limited. Excessive mobilization and allocation of glucose to the mammary gland are likely to contribute considerably to peripartal immune dysfunction.
Collapse
Affiliation(s)
- Jonas Habel
- Department of Animal Nutrition and Animal Health, Faculty of Organic Agricultural Sciences, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany;
| | | |
Collapse
|
42
|
Changes of milk fatty acid composition in four lipid classes as biomarkers for the diagnosis of bovine ketosis using bioanalytical Thin Layer Chromatography and Gas Chromatographic techniques (TLC-GC). J Pharm Biomed Anal 2020; 188:113372. [PMID: 32502957 DOI: 10.1016/j.jpba.2020.113372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
Abstract
The aim of this study was to extend the limited research available on the association between the concentration of milk fatty acids and the elevated plasmatic value of β-hydroxybutyrate (BHB) in early lactation of dairy cows. Fifty-four Holstein Friesian dairy cows were enrolled in the study. All animals were classified on the basis of their blood BHB concentration: BHB ≥ 1.0 mmol/L (BHB-1, sick group) and BHB ≤ 0.99 mmol/L (BHB-0, healthy group). Using Thin Layer Chromatography (TLC), four lipid classes (cholesterol esters -CE-, phospholipids -PL-, free fatty acids -FFA- and triacylglycerols -TAG-) were separated, and then the fatty acid (FA) composition was determined by High Resolution Gas Chromatography coupled with Flame Ionization Detector/Mass Spectrometer (HRGC-FID/MS). The FA profiles were used to investigate the diagnostic potential value of milk fatty acids for the correct classification of cows with BHB concentration above the established threshold (BHB < 1.0 mmol/L). Boruta Test and Receiver Operating Characteristic curves (ROC) were used to identify which FA and their thresholds of concentration could be used when animals presented hyperketonemia. The research has identified fourteen FA, belonging to CE, FFA, and TAG classes, useful for an association with BHB-1. These compounds, with predictive value for the development of hyperketonemia, could be considered valuable biomarkers. Further studies on a wider sampling, based on clinical and therapeutic approach, will be necessary to confirm, by bioanalytical chromatographic approaches, if these predictive FA will change between healthy and sick animals. New approaches in relation on the administration of different diets or supplements, and administration of drugs might improve the prevention of hyperketonemia.
Collapse
|
43
|
Ghaffari MH, Schuh K, Kuleš J, Guillemin N, Horvatić A, Mrljak V, Eckersall PD, Dusel G, Koch C, Sadri H, Sauerwein H. Plasma proteomic profiling and pathway analysis of normal and overconditioned dairy cows during the transition from late pregnancy to early lactation. J Dairy Sci 2020; 103:4806-4821. [PMID: 32173013 DOI: 10.3168/jds.2019-17897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
This study applied a quantitative proteomics approach along with bioinformatics analyses to investigate changes in the plasma proteome of normal and overconditioned dairy cows during the transition period. Fifteen weeks before their anticipated calving date, 38 multiparous Holstein cows were selected based on their current and previous body condition scores (BCS) and allocated to either a high or a normal BCS group (19 cows each). They received different diets until dry-off to reach targeted differences in BCS and back fat thickness (BFT) until dry-off. At dry-off, normal BCS cows had a BCS <3.5 (minimum, 2.75) and BFT <1.2 cm (minimum, 0.58), and the high BCS cows had a BCS >3.75 (maximum, 4.50) and BFT >1.4 cm (maximum, 2.90). The proteomics study used a subset of 5 animals from each group. These cows were selected based on their circulating concentrations of fatty acids (FA) on d 14 postpartum and β-hydroxybutyrate (BHB) on d 21 postpartum, representing the greater or the lower extreme values within their BCS group, respectively. The high BCS subset (HE-HBCS) had 4.50 < BCS > 3.75, FA = 1.17 ± 0.46 mmol/L, and BHB = 2.15 ± 0.42 mmol/L (means ± SD), and the low BCS subset (LE-NBCS) had 3.50 < BCS > 2.75, FA = 0.51 ± 0.28 mmol/L, and BHB = 0.84 ± 0.17 mmol/L. Plasma samples from d -49, +7, and +21 relative to parturition were used for proteome profiling by applying the quantitative tandem mass tags (TMT) approach. Nondepleted plasma samples were subjected to reduction and digestion and then labeled with TMT 10plex reagents. High-resolution liquid chromatography-tandem mass spectrometry analysis of TMT-labeled peptides was carried out, and the acquired spectra were analyzed for protein identification and quantification. In total, 254 quantifiable proteins (criteria: 2 unique peptides and 5% false discovery rate) were identified in the plasma samples. From these, 24 differentially abundant proteins (14 more abundant, 10 less abundant) were observed in the LE-NBCS cows compared with the HE-HBCS cows during the transition period. Plasma α-2-macroglobulins were more abundant in HE-HBCS versus LE-NBCS cows at d +7 and +21. Gene Ontology enrichment analyses of differentially abundant proteins revealed that the acute inflammatory response, regulation of complement activation, protein activation cascade, and regulation of humoral immune response were the most enriched terms in the LE-NBCS group compared with the HE-HBCS group. In addition, we identified 24 differentially abundant proteins (16 in the LE-NBCS group, and 8 in the HE-HBCS group) during the transition period. The complement components C1q and C5 were less abundant, while C3 and C3d were more abundant in LE-NBCS compared with HE-HBCS cows. Overall, overconditioning around calving was associated with alterations in protein pathways related to acute inflammatory response and regulation of complement and coagulation cascades in transition cows.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition, and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Josipa Kuleš
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Nicolas Guillemin
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Anita Horvatić
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Vladimir Mrljak
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Peter David Eckersall
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Georg Dusel
- VetMedZg Laboratory, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, 10000, Croatia
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology & Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
44
|
Mezzetti M, Minuti A, Piccioli-Cappelli F, Trevisi E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1691472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|