1
|
Zhang Y, Zhao M, Li Y, Liang S, Li X, Wu Y, Li G. Potential Probiotic Properties and Complete Genome Analysis of Limosilactobacillus reuteri LRA7 from Dogs. Microorganisms 2024; 12:1811. [PMID: 39338485 PMCID: PMC11605243 DOI: 10.3390/microorganisms12091811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to isolate and screen canine-derived probiotics with excellent probiotic properties. Strain characterization was conducted using a combination of in vitro and in vivo probiotic characterization and safety assessments, as well as complete genome analysis. The results showed that Limosilactobacillus reuteri LRA7 exhibited excellent bacteriostatic and antioxidant activities. The survival rate at pH 2.5 was 79.98%, and the viable counts after exposure to gastrointestinal fluid and 0.5% bile salts were 7.77 log CFU/mL and 5.29 log CFU/mL, respectively. The bacterium also exhibited high hydrophobicity, self-coagulation, and high temperature tolerance, was negative for hemolysis, and was sensitive to clindamycin. In vivo studies in mice showed that the serum superoxide dismutase activity level was 53.69 U/mL higher in the MR group of mice compared to that of the control group, the malondialdehyde content was 0.53 nmol/mL lower in the HR group, and the highest jejunal V/C value was 4.11 ± 1.05 in the HR group (p < 0.05). The L. reuteri LRA7 gene is 2.021 megabases in size, contains one chromosome and one plasmid, and is annotated with 1978 functional genes. In conclusion, L. reuteri LRA7 has good probiotic potential and is safe. It can be used as an ideal probiotic candidate strain of canine origin.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| | - Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| | - Shuang Liang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| | - Xinkang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| | - Yi Wu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (M.Z.); (Y.L.); (S.L.); (X.L.); (Y.W.)
| |
Collapse
|
2
|
Surve SV, Shinde DB, Fernandes JM, Sharma S, Vijayvargiya M, Kadam K, Kulkarni R. Laboratory domestication of Lactiplantibacillus plantarum alters some phenotypic traits but causes non-novel genomic impact. J Appl Microbiol 2024; 135:lxae035. [PMID: 38341274 DOI: 10.1093/jambio/lxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
AIMS Laboratory domestication has been negligibly examined in lactic acid bacteria (LAB). Lactiplantibacillus plantarum is a highly studied and industrially relevant LAB. Here, we passaged L. plantarum JGR2 in a complex medium to study the effects of domestication on the phenotypic properties and the acquisition of mutations. METHODS AND RESULTS Lactiplantibacillus plantarum JGR2 was passaged in mMRS medium (deMan Rogossa Sharpe supplemented with 0.05% w/v L-cysteine) in three parallel populations for 70 days. One pure culture from each population was studied for various phenotypic properties and genomic alterations. Auto-aggregation of the evolved strains was significantly reduced, and lactic acid production and ethanol tolerance were increased. Other probiotic properties and antibiotic sensitivity were not altered. Conserved synonymous and non-synonymous mutations were observed in mobile element proteins (transposases), β-galactosidase, and phosphoketolases in all three isolates. The evolved strains lost all the repeat regions and some of the functions associated with them. Most of the conserved mutations were found in the genomes of other wild-type strains available in a public database, indicating the non-novel genomic impact of laboratory passaging. CONCLUSIONS Laboratory domestication can affect the phenotypic and genotypic traits of L. plantarum and similar studies are necessary for other important species of LAB.
Collapse
Affiliation(s)
- Sarvesh V Surve
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Dasharath B Shinde
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Joyleen M Fernandes
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Sharoni Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Monty Vijayvargiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Komal Kadam
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412115, India
| |
Collapse
|
3
|
Liu Y, Zhang R, Wang B, Song S, Zhang F. Evaluation of penicillin-resistance and probiotic traits in Lactobacillus plantarum during laboratory evolution. Gene 2024; 891:147823. [PMID: 37741594 DOI: 10.1016/j.gene.2023.147823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The aim of this study was to obtain the Lactobacillus plantarum ATCC14917 with high-level resistance to penicillin and evaluate their probiotic traits using laboratory evolution assay and whole-genome sequencing. In penicillin environment, the minimum inhibitory concentration (MIC) of L. plantarum to penicillin increased from 1 μg/mL to 16 μg/mL and remained stable after the removal of antibiotic pressure, suggesting that the resistance acquisition to penicillin was an irreversible process. Subsequently, change of probiotic characteristics was further evaluated, and the results showed that the acid tolerance, bile tolerance and adhesion ability were significantly declined in the highly resistant strains. Whole-genome sequencing indicated that genes encoding hypothetical protein, LPXTG-motif cell wall anchor domain protein and acetyltransferase were detected in highly resistant L. plantarum, and these genes were still present after the following subculture in the absence of penicillin, suggesting that these three mutants might be the main reason for the development of penicillin resistance. The homology-based analysis of surrounding DNA regions of mutant genes was further performed and indicated that no resistant genes were located on mobile elements in evolved L. plantarum strains, signifying that the spread of antibiotic resistance genes in the gut would not occur for these mutant genes. This study provided a basis for the combined use of highly resistant L. plantarum and penicillin in the treatment of pathogen induced gut diseases.
Collapse
Affiliation(s)
- Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an City, Shaanxi Province, China
| | - Rueyue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an City, Shaanxi Province, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an City, Shaanxi Province, China
| | - Shuanghong Song
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an City, Shaanxi Province, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
4
|
Plessas S, Mantzourani I, Terpou A, Bekatorou A. Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods 2023; 13:111. [PMID: 38201137 PMCID: PMC10778934 DOI: 10.3390/foods13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The aim() of this study was to create() various formulations of yogurt enriched with freeze()-dried adjuncts, namely() (i) probiotic Lactobacillus plantarum ATCC 14917 culture(), and (ii) L. plantarum ATCC 14917 fermented black chokeberry juice, along with a commercial() starter culture(). The goal was to enhance() functionality and optimize the nutritional() value() of the products. These new yogurt-style() formulations were subsequently() compared with commercially produced yogurt. All products demonstrated() favorable() physicochemical properties, and the probiotic strain() consistently() maintained viable() levels exceeding 7 log() cfu/g throughout() the entire() storage() period(). The fermented milk produced with the adjunct-free L. plantarum cells, as well as the yogurt produced with the proposed() lactobacilli-fermented chokeberry juice, exhibited the highest lactic acid() production() (1.44 g/100 g yogurt by the end of storage()). Levels of syneresis were observed at lower() values() in yogurt produced with freeze()-dried fermented chokeberry juice. Yogurts prepared() with the lactobacilli-fermented freeze()-dried chokeberry juice displayed elevated total() phenolic content() and antioxidant capacity() (25.74 µg GAE/g and 69.05 µmol TE/100 g, respectively()). Furthermore, sensory tests revealed a distinctive() fruity flavor() in samples incorporating fermented juice. The results demonstrate() that probiotic L. plantarum-fermented chokeberry juice enhances() both the antioxidant capacity() and the viability of beneficial() bacteria() in yogurt while it can be readily() applied and commercialized, especially in the form of a freeze()-dried formulation.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 193 Pantazidou Str., 68200 Orestiada, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 193 Pantazidou Str., 68200 Orestiada, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agri-Food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, Evripos Campus, 34400 Evia, Greece
| | - Argyro Bekatorou
- Department of Chemistry, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
5
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
6
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|
7
|
Duan Y, Li M, Zhang S, Wang Y, Deng J, Wang Q, Yi T, Dong X, Cheng S, He Y, Gao C, Wang Z. Highly Efficient Biotransformation and Production of Selenium Nanoparticles and Polysaccharides Using Potential Probiotic Bacillus subtilis T5. Metabolites 2022; 12:metabo12121204. [PMID: 36557242 PMCID: PMC9784637 DOI: 10.3390/metabo12121204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Selenium is an essential microelement required for human health. The biotransformation of selenium nanoparticles has attracted increasing attention in recent years. However, little of the literature has investigated the comprehensive evaluation of the strains for practical application and the effect on the functional properties in the existence of Se. The present study showed the selenite reduction strain Bacillus subtilis T5 (up to 200 mM), which could produce high yields of selenium polysaccharides and selenium nanoparticles in an economical and feasible manner. Biosynthesized selenium nanoparticles by B. subtilis T5 were characterized systematically using UV-vis spectroscopy, FTIR, Zeta Potential, DLS, and SEM techniques. The biosynthesized SeNPs exhibited high stability with small particle sizes. B. subtilis T5 also possessed a tolerance to acidic pH and bile salts, high aggregation, negative hemolytic, and superior antioxidant activity, which showed excellent probiotic potential and can be recommended as a potential candidate for the selenium biopharmaceuticals industry. Remarkably, B. subtilis T5 showed that the activity of α-amylase was enhanced with selenite treatment to 8.12 U/mL, 2.72-fold more than the control. The genus Bacillus was first reported to produce both selenium polysaccharides with extremely high Se-content (2.302 g/kg) and significantly enhance the activity to promote α-amylase with selenium treatment. Overall, B. subtilis T5 showed potential as a bio-factory for the biosynthesized SeNPs and organ selenium (selenium polysaccharide), providing an appealing perspective for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Yuhua Duan
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mengjun Li
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Sishang Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yidan Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tian Yi
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Gao
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (C.G.); (Z.W.)
| | - Zhangqian Wang
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (C.G.); (Z.W.)
| |
Collapse
|