1
|
Liu Y, Wang S, Wang L, Lu H, Zhang T, Zeng W. Characterization of Genomic, Physiological, and Probiotic Features of Lactiplantibacillus plantarum JS21 Strain Isolated from Traditional Fermented Jiangshui. Foods 2024; 13:1082. [PMID: 38611386 PMCID: PMC11011416 DOI: 10.3390/foods13071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
2
|
Yetiman A, Horzum M, Bahar D, Akbulut M. Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on "In Silico" and "In Vitro" Approaches. Probiotics Antimicrob Proteins 2024; 16:334-351. [PMID: 36735220 DOI: 10.1007/s12602-022-10038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to characterize the genomic and metabolic properties of a novel Lb. fermentum strain AGA52 which was isolated from a lactic acid fermented beverage called "shalgam." The genome size of AGA52 was 2,001,184 bp, which is predicted to carry 2024 genes, including 50 tRNAs, 3 rRNAs, 3 ncRNAs, 15 CRISPR repeats, 14 CRISPR spacers, and 1 CRISPR array. The genome has a GC content of 51.82% including 95 predicted pseudogenes, 56 complete or partial transposases, and 2 intact prophages. The similarity of the clusters of orthologous groups (COG) was analyzed by comparison with the other Lb. fermentum strains. The detected resistome on the genome of AGA52 was found to be intrinsic originated. Besides, it has been determined that AGA52 has an obligate heterofermentative carbohydrate metabolism due to the absence of the 1-phosphofructokinase (pfK) enzyme. Furthermore, the strain is found to have a better antioxidant capacity and to be tolerant to gastrointestinal simulated conditions. It was also observed that the AGA52 has antimicrobial activity against Yersinia enterocolitica ATCC9610, Bacillus cereus ATCC33019, Salmonella enterica sv. Typhimurium, Escherichia coli O157:h7 ATCC43897, Listeria monocytogenes ATCC7644, Klebsiella pneumoniae ATCC13883, and Proteus vulgaris ATCC8427. Additionally, AGA52 exhibited 42.74 ± 4.82% adherence to HT29 cells. Cholesterol assimilation (33.9 ± 0.005%) and GABA production capacities were also confirmed by "in silico" and "in vitro." Overall, the investigation of genomic and metabolic features of the AGA52 revealed that is a potential psychobiotic and probiotic dietary supplement candidate and can bring functional benefits to the host.
Collapse
Affiliation(s)
- Ahmet Yetiman
- Food Engineering Department, Faculty of Engineering, Erciyes University, 38030, Kayseri, Turkey.
| | - Mehmet Horzum
- Food Engineering Department, Graduate School of Natural and Applied Sciences, Erciyes University, 38030, Kayseri, Turkey
| | - Dilek Bahar
- Genkök Genome and Stem Cell Center, Erciyes University, 38030, Kayseri, Turkey
| | - Mikail Akbulut
- Department of Biology, Faculty of Science, Erciyes University, 38030, Kayseri, Turkey
| |
Collapse
|
3
|
Harlé O, Niay J, Parayre S, Nicolas A, Henry G, Maillard MB, Valence F, Thierry A, Guédon É, Falentin H, Deutsch SM. Deciphering the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice fermentation using phenotypic and transcriptional analysis. Appl Environ Microbiol 2024; 90:e0193623. [PMID: 38376234 PMCID: PMC10952386 DOI: 10.1128/aem.01936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.
Collapse
Affiliation(s)
- Olivier Harlé
- INRAE, Institut Agro, STLO, Rennes, France
- Olga-Triballat Noyal, R&D UF, Noyal-sur-Vilaine, France
| | - Jérôme Niay
- Olga-Triballat Noyal, R&D UF, Noyal-sur-Vilaine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ariute JC, Coelho-Rocha ND, Dantas CWD, de Vasconcelos LAT, Profeta R, de Jesus Sousa T, de Souza Novaes A, Galotti B, Gomes LG, Gimenez EGT, Diniz C, Dias MV, de Jesus LCL, Jaiswal AK, Tiwari S, Carvalho R, Benko-Iseppon AM, Brenig B, Azevedo V, Barh D, Martins FS, Aburjaile F. Probiogenomics of Leuconostoc Mesenteroides Strains F-21 and F-22 Isolated from Human Breast Milk Reveal Beneficial Properties. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10170-7. [PMID: 37804433 DOI: 10.1007/s12602-023-10170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Bacteria of the Leuconostoc genus are Gram-positive bacteria that are commonly found in raw milk and persist in fermented dairy products and plant food. Studies have already explored the probiotic potential of L. mesenteroides, but not from a probiogenomic perspective, which aims to explore the molecular features responsible for their phenotypes. In the present work, probiogenomic approaches were applied in strains F-21 and F-22 of L. mesenteroides isolated from human milk to assess their biosafety at the molecular level and to correlate molecular features with their potential probiotic characteristics. The complete genome of strain F-22 is 1.99 Mb and presents one plasmid, while the draft genome of strain F-21 is 1.89 Mb and presents four plasmids. A high percentage of average nucleotide identity among other genomes of L. mesenteroides (≥ 96%) corroborated the previous taxonomic classification of these isolates. Genomic regions that influence the probiotic properties were identified and annotated. Both strains exhibited wide genome plasticity, cell adhesion ability, proteolytic activity, proinflammatory and immunomodulation capacity through interaction with TLR-NF-κB and TLR-MAPK pathway components, and no antimicrobial resistance, denoting their potential to be candidate probiotics. Further, the strains showed bacteriocin production potential and the presence of acid, thermal, osmotic, and bile salt resistance genes, indicating their ability to survive under gastrointestinal stress. Taken together, our results suggest that L. mesenteroides F-21 and F-22 are promising candidates for probiotics in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Juan Carlos Ariute
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Nina Dias Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carlos Willian Dias Dantas
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Larissa Amorim Tourinho de Vasconcelos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rodrigo Profeta
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Thiago de Jesus Sousa
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ane de Souza Novaes
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruno Galotti
- Laboratory of Biotherapeutic Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Lucas Gabriel Gomes
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Enrico Giovanelli Toccani Gimenez
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carlos Diniz
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana Vieira Dias
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luís Cláudio Lima de Jesus
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Sandeep Tiwari
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40231-300, Brazil
| | - Rodrigo Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40231-300, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratory of Plants Genetics and Biotechnology, Genetics Department, Biosciences Center, Federal University of Pernambuco, Recife, Pernambuco, 50740-600, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172, India
| | - Flaviano S Martins
- Laboratory of Biotherapeutic Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Flavia Aburjaile
- Laboratory of Integrative Bioinformatics, Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
5
|
Shamsuzzaman M, Dahal RH, Kim S, Kim J. Genome insight and probiotic potential of three novel species of the genus Corynebacterium. Front Microbiol 2023; 14:1225282. [PMID: 37485528 PMCID: PMC10358988 DOI: 10.3389/fmicb.2023.1225282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Three bacterial strains, B5-R-101T, TA-R-1T, and BL-R-1T, were isolated from the feces of a healthy Korean individual. Cells of these strains were Gram-stain-positive, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped, and non-motile. They were able to grow within a temperature range of 10-42°C (optimum, 32-37°C), at a pH range of 2.0-10.0 (optimum, pH 5.5-8.0), and at NaCl concentration of 0.5-10.5% (w/v). All the three strains exhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities ranging from 58 ± 1.62 to 79 ± 1.46% (% inhibition). These strains survived in lower pH (2.0) and in 0.3% bile salt concentration for 4 h. They did not show hemolytic activity and exhibited antimicrobial activity against pathogenic bacteria, such as Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Salmonella enterica. The genomic analysis presented no significant concerns regarding antibiotic resistance or virulence gene content, indicating these strains could be potential probiotic candidates. Phylogenetic analysis showed that they belonged to the genus Corynebacterium, with 98.5-99.0% 16S rRNA gene sequence similarities to other members of the genus. Their major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The abundant cellular fatty acids were C16:0, C18:1ω9c, and anteiso-C19:0. Genomic analysis of these isolates revealed the presence of genes necessary for their survival and growth in the gut environment, such as multi-subunit ATPases, stress response genes, extracellular polymeric substance biosynthesis genes, and antibacterial genes. Furthermore, the genome of each strain possessed biosynthetic gene clusters with antioxidant and antimicrobial potentials, including terpenes, saccharides, polyketides, post-translationally modified peptides (RIPPs), and non-ribosomal peptides (NRPs). In silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were lower than the thresholds to distinguish novel species. Based on phenotypic, genomic, phylogenomic, and phylogenetic analysis, these potential probiotic strains represent novel species within the genus Corynebacterium, for which the names Corynebacterium intestinale sp. nov. (type strain B5-R-101T = CGMCC 1.19408T = KCTC 49761T), Corynebacterium stercoris sp. nov. (type strain TA-R-1T = CGMCC 1.60014T = KCTC 49742T), and Corynebacterium faecium sp. nov. (type strain BL-R-1T = KCTC 49735T = TBRC 17331T) are proposed.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Tenea GN. Metabiotics Signature through Genome Sequencing and In Vitro Inhibitory Assessment of a Novel Lactococcus lactis Strain UTNCys6-1 Isolated from Amazonian Camu-Camu Fruits. Int J Mol Sci 2023; 24:ijms24076127. [PMID: 37047101 PMCID: PMC10094308 DOI: 10.3390/ijms24076127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Metabiotics are the structural components of probiotic bacteria, functional metabolites, and/or signaling molecules with numerous beneficial properties. A novel Lactococcus lactis strain, UTNCys6-1, was isolated from wild Amazonian camu-camu fruits (Myrciaria dubia), and various functional metabolites with antibacterial capacity were found. The genome size is 2,226,248 base pairs, and it contains 2248 genes, 2191 protein-coding genes (CDSs), 50 tRNAs, 6 rRNAs, 1 16S rRNA, 1 23S rRNA, and 1 tmRNA. The average GC content is 34.88%. In total, 2148 proteins have been mapped to the EggNOG database. The specific annotation consisted of four incomplete prophage regions, one CRISPR-Cas array, six genomic islands (GIs), four insertion sequences (ISs), and four regions of interest (AOI regions) spanning three classes of bacteriocins (enterolysin_A, nisin_Z, and sactipeptides). Based on pangenome analysis, there were 6932 gene clusters, of which 751 (core genes) were commonly observed within the 11 lactococcal strains. Among them, 3883 were sample-specific genes (cloud genes) and 2298 were shell genes, indicating high genetic diversity. A sucrose transporter of the SemiSWEET family (PTS system: phosphoenolpyruvate-dependent transport system) was detected in the genome of UTNCys6-1 but not the other 11 lactococcal strains. In addition, the metabolic profile, antimicrobial susceptibility, and inhibitory activity of both protein–peptide extract (PPE) and exopolysaccharides (EPSs) against several foodborne pathogens were assessed in vitro. Furthermore, UTNCys6-1 was predicted to be a non-human pathogen that was unable to tolerate all tested antibiotics except gentamicin; metabolized several substrates; and lacks virulence factors (VFs), genes related to the production of biogenic amines, and acquired antibiotic resistance genes (ARGs). Overall, this study highlighted the potential of this strain for producing bioactive metabolites (PPE and EPSs) for agri-food and pharmaceutical industry use.
Collapse
|
7
|
Yan XT, Zhang Z, Wang Y, Zhang W, Zhang L, Liu Y, Chen D, Wang W, Ma W, Qian JY, Gu R. Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:7. [PMID: 36742290 PMCID: PMC9883607 DOI: 10.1186/s13765-022-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED The ability of natural plants to treat chronic diseases is closely related to their antioxidant function. Lactic acid bacteria (LAB) fermentation is an effective way to improve the nutritional value, biological activity and flavor of food. This study investigated the pH, titratable acidity, total polysaccharide, total flavone, total saponin, total polyphenol, and antioxidant activity of the FH06 beverage before and after probiotic fermentation. Results: After fermentation, FH06 had lower contents of total polysaccharides, total flavonoids, total saponins and total polyphenols but higher titratable acidity. The antioxidant activity was tested by total antioxidant capacity (FRAP method) and DPPH· scavenging ability. The FRAP value significantly increased after fermentation (P < 0.05), and the maximum increase was observed for Lactobacillus fermentum grx08 at 25.87%. For DPPH· scavenging ability, the value of all fermentations decreased, and L. fermentum grx08 had the smallest reduction at 2.21% (P < 0.05). The results of GC-MS and sensory analysis showed that fermentation eliminated bad flavors, such as grass, cassia and bitterness, and highlighted the fruit aroma and soft sour taste. Conclusion: The FRAP value and sensory flavor of FH06 fermentation by L. fermentum grx08 were significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13765-022-00762-2.
Collapse
Affiliation(s)
- Xian-Tao Yan
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
- Department of Cuisine and Nutrition, Hanshan Normal University, Chaozhou, People’s Republic of China
| | - Ziqi Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yubao Wang
- Tourism College of Zhejiang, Hangzhou, People’s Republic of China
| | - Wenmiao Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Longfei Zhang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Yang Liu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Dawei Chen
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenqiong Wang
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Wenlong Ma
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Jian-Ya Qian
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| | - Ruixia Gu
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127 People’s Republic of China
| |
Collapse
|
8
|
Wang Y, Yang H, Mu G, Wu X. Safety evaluation and complete genome analysis emphasis on extracellular polysaccharide of two strains of Limosilactobacillus fermentum MWLf-4 and Lactipiantibacillus plantarum MWLp-12 from human milk. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Kandasamy S, Yoo J, Yun J, Lee KH, Kang HB, Kim JE, Oh MH, Ham JS. Probiogenomic In-Silico Analysis and Safety Assessment of Lactiplantibacillus plantarum DJF10 Strain Isolated from Korean Raw Milk. Int J Mol Sci 2022; 23:ijms232214494. [PMID: 36430971 PMCID: PMC9699202 DOI: 10.3390/ijms232214494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The whole genome sequence of Lactiplantibacillus plantarum DJF10, isolated from Korean raw milk, is reported, along with its genomic analysis of probiotics and safety features. The genome consists of 29 contigs with a total length of 3,385,113 bp and a GC content of 44.3%. The average nucleotide identity and whole genome phylogenetic analysis showed the strain belongs to Lactiplantibacillus plantarum with 99% identity. Genome annotation using Prokka predicted a total of 3235 genes, including 3168 protein-coding sequences (CDS), 59 tRNAs, 7 rRNAs and 1 tmRNA. The functional annotation results by EggNOG and KEGG showed a high number of genes associated with genetic information and processing, transport and metabolism, suggesting the strain's ability to adapt to several environments. Various genes conferring probiotic characteristics, including genes related to stress adaptation to the gastrointestinal tract, biosynthesis of vitamins, cell adhesion and production of bacteriocins, were identified. The CAZyme analysis detected 98 genes distributed under five CAZymes classes. In addition, several genes encoding carbohydrate transport and metabolism were identified. The genome also revealed the presence of insertion sequences, genomic islands, phage regions, CRISPR-cas regions, and the absence of virulence and toxin genes. However, the presence of hemolysin and antibiotic-resistance-related genes detected in the KEGG search needs further experimental validation to confirm the safety of the strain. The presence of two bacteriocin clusters, sactipeptide and plantaricin J, as detected by the BAGEL 4 webserver, confer the higher antimicrobial potential of DJF10. Altogether, the analyses in this study performed highlight this strain's functional characteristics. However, further in vitro and in vivo studies are required on the safety assurance and potential application of L. plantarum DJF10 as a probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun-Sang Ham
- Correspondence: ; Tel.: +82-63-238-7366; Fax: +82-63-238-7397
| |
Collapse
|
10
|
Mechanism of gastrointestinal adaptability and antioxidant function of infant-derived Lactobacillus plantarum BF_15 through genomics. Food Sci Biotechnol 2022; 31:1451-1462. [PMID: 36060571 PMCID: PMC9433590 DOI: 10.1007/s10068-022-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Lactobacillus plantarum is an essential probiotic in the human gastrointestinal tract. L. plantarum BF_15, a functional probiotic isolated from the feces of breast-fed infants, has been reported in many in vitro and in vivo studies with strong gastrointestinal adaptability and outstanding anti-oxidative activities. Therefore, the whole genome of L. plantarum BF_15 was sequenced. Several genes, encoding the gastrointestinal adaptability-related proteins, were identified, including genes related to gastrointestinal environment-induced stress resistance, adhesive performance, and ability to transport and metabolize resistant starch and oligosaccharides. Genes related to alleviating oxidative stress were also found. Further functional verification was carried out by RT-qPCR on the 10 and 12 key adhesion and antioxidant genes. Overall, this study might provide a critical basis for L. plantarum BF_15 as a potential candidate for probiotics. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01132-w.
Collapse
|
11
|
Proteomics analysis of the hypothalamus of high-fat diet fed mice after Lactiplantibacillus plantarum Y44 administration. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Tenea GN, Ascanta P. Bioprospecting of Ribosomally Synthesized and Post-translationally Modified Peptides Through Genome Characterization of a Novel Probiotic Lactiplantibacillus plantarum UTNGt21A Strain: A Promising Natural Antimicrobials Factory. Front Microbiol 2022; 13:868025. [PMID: 35464932 PMCID: PMC9020862 DOI: 10.3389/fmicb.2022.868025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The present work describes the genome sequencing and characterization of a novel Lactiplantibacillus plantarum strain assigned UTNGt21A isolated from wild Solanum quitoense (L.) fruits. In silico analysis has led to identifying a wide range of biosynthetic gene clusters (BGCs) and metabolic compounds. The genome had a total of 3,558,611 bp with GC of 43.96%, harboring 3,449 protein-coding genes, among which 3,209 were assigned by the EggNOG database, and 240 hypothetical proteins have no match in the BLASTN database. It also contains 68 tRNAs, 1 23S rRNA, 1 16S rRNA, 6 5S rRNA, and 1 tmRNA. In addition, no acquired resistance genes nor virulence and pathogenic factors were predicted, indicating that UTNGt21A is a safe strain. Three areas of interest (AOI) consisting of multiple genes encoding for bacteriocins and ABC transporters were predicted with BAGEL4, while eight secondary metabolite regions were predicted with the antiSMASH web tool. GutSMASH analysis predicted one metabolic gene cluster (MGC) type pyruvate to acetate-formate, a primary metabolite region essential for anaerobe growth. Several lanthipeptides and non-ribosomal peptide synthetase (NRPS) clusters were detected in the UTNGt21A but not the reference genomes, suggesting that their genome diversity might be linked to its niche-specific lineage and adaptation to a specific environment. Moreover, the application of a targeted genome mining tool (RiPPMiner) uncovered a diverse arsenal of important antimicrobial molecules such as lanthipeptides. Furthermore, in vitro analysis indicated that the crude extract (CE) of UTNGt21A exerted a wide spectrum of inhibition against several pathogens. The results indicated that the possible peptide-protein extract (PC) from UTNGt21A induces morphological and ultrastructural changes of Salmonella enterica subsp. enterica ATCC51741, compatible with its inhibitory potential. Genome characterization is the basis for further in vitro and in vivo studies to explore their use as antimicrobial producers or probiotic strains.
Collapse
Affiliation(s)
- Gabriela N Tenea
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| | - Pamela Ascanta
- Biofood and Nutraceutics Research and Development Group, Faculty of Engineering in Agricultural and Environmental Sciences, Technical University of the North, Ibarra, Ecuador
| |
Collapse
|
13
|
Yetiman AE, Keskin A, Darendeli BN, Kotil SE, Ortakci F, Dogan M. Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Liu G, Chang H, Qiao Y, Huang K, Zhang A, Zhao Y, Feng Z. Profiles of Small Regulatory RNAs at Different Growth Phases of Streptococcus thermophilus During pH-Controlled Batch Fermentation. Front Microbiol 2021; 12:765144. [PMID: 35035386 PMCID: PMC8753986 DOI: 10.3389/fmicb.2021.765144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNA (sRNA) has been shown to play an important role under various stress conditions in bacteria, and it plays a vital role in regulating growth, adaptation and survival through posttranscriptional control of gene expression in bacterial cells. Streptococcus thermophilus is widely used as a starter culture in the manufacture of fermented dairy products. However, the lack of reliable information on the expression profiles and potential physiological functions of sRNAs in this species hinders our understanding of the importance of sRNAs in S. thermophilus. The present study was conducted to assess the expression profiles of sRNAs in S. thermophilus and to identify sRNAs that exhibited significant changes. A total of 530 potential sRNAs were identified, including 198 asRNAs, 135 sRNAs from intergenic regions, and 197 sRNAs from untranslated regions (UTRs). Significant changes occurred in the expression of 238, 83, 194, and 139 sRNA genes during the lag, early exponential growth, late exponential growth, and stationary phases, respectively. The expression of 14 of the identified sRNAs was verified by qRT-PCR. Predictions of the target genes of these candidate sRNAs showed that the primary metabolic pathways targeted were involved in carbon metabolism, biosynthesis of amino acids, ABC transporters, the metabolism of amino and nucleotide sugars, purine metabolism, and the phosphotransferase system. The expression of the predicted target genes was further analyzed to better understand the roles of sRNAs during different growth stages. The results suggested that these sRNAs play crucial roles by regulating biological pathways during different growth phases of S. thermophilus. According to the results, sRNAs sts141, sts392, sts318, and sts014 are involved in the regulation of osmotic stress. sRNAs sts508, sts087, sts372, sts141, sts375, and sts119 are involved in the regulation of starvation stress. sRNAs sts129, sts226, sts166, sts231, sts204, sts145, and sts236 are involved in arginine synthesis. sRNAs sts033, sts341, sts492, sts140, sts230, sts172, and sts377 are involved in the ADI pathway. The present study provided valuable information for the functional study of sRNAs in S. thermophilus and indicated a future research direction for sRNA in S. thermophilus. Overall, our results provided new insights for understanding the complex regulatory network of sRNAs in S. thermophilus.
Collapse
Affiliation(s)
- Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Haode Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Kai Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
| | - Yu Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
- Yu Zhao,
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Chanjiang Road,150030, Harbin, Heilongjiang, China
- College of Food and Biological Engineering, Qiqihar University, 42 Wenhua Road, 160006, Qiqihar, China
- *Correspondence: Zhen Feng,
| |
Collapse
|
15
|
Tegopoulos K, Stergiou OS, Kiousi DE, Tsifintaris M, Koletsou E, Papageorgiou AC, Argyri AA, Chorianopoulos N, Galanis A, Kolovos P. Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells. Biomedicines 2021; 9:biomedicines9111718. [PMID: 34829947 PMCID: PMC8615743 DOI: 10.3390/biomedicines9111718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023] Open
Abstract
Lactiplantibacillus plantarum is a diverse species that includes nomadic strains isolated from a variety of environmental niches. Several L. plantarum strains are being incorporated in fermented foodstuffs as starter cultures, while some of them have also been characterized as probiotics. In this study, we present the draft genome sequence of L. plantarum L125, a potential probiotic strain presenting biotechnological interest, originally isolated from a traditional fermented meat product. Phylogenetic and comparative genomic analysis with other potential probiotic L. plantarum strains were performed to determine its evolutionary relationships. Furthermore, we located genes involved in the probiotic phenotype by whole genome annotation. Indeed, genes coding for proteins mediating host–microbe interactions and bile salt, heat and cold stress tolerance were identified. Concerning the potential health-promoting attributes of the novel strain, we determined that L. plantarum L125 carries an incomplete plantaricin gene cluster, in agreement with previous in vitro findings, where no bacteriocin-like activity was detected. Moreover, we showed that cell-free culture supernatant (CFCS) of L. plantarum L125 exerts anti-proliferative, anti-clonogenic and anti-migration activity against the human colon adenocarcinoma cell line, HT-29. Conclusively, L. plantarum L125 presents desirable probiotic traits. Future studies will elucidate further its biological and health-related properties.
Collapse
Affiliation(s)
- Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Odysseas Sotirios Stergiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Ellie Koletsou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Aristotelis C. Papageorgiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| |
Collapse
|
16
|
Kwon YJ, Chun BH, Jung HS, Chu J, Joung H, Park SY, Kim BK, Jeon CO. Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180. J Microbiol Biotechnol 2021; 31:1420-1429. [PMID: 34373437 PMCID: PMC9705903 DOI: 10.4014/jmb.2106.06066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The safety of the probiotic strain Q180, which exerts postprandial lipid-lowering effects, was bioinformatically and phenotypically evaluated. The genome of strain Q180 was completely sequenced, and single circular chromosome of 3,197,263 bp without any plasmid was generated. Phylogenetic and related analyses using16S rRNA gene and whole-genome sequences revealed that strain Q180 is a member of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum. Antimicrobial resistance (AMR) genes were bioinformatically analyzed using all Lp. plantarum genomes available in GenBank, which showed that AMR genes are present differently depending on Lp. plantarum strains. Bioinformatic analysis demonstrated that some mobile genetic elements such as prophages and insertion sequences were identified in the genome of strain Q180, but because they did not contain harmful genes such as AMR genes and virulence factor (VF)- and toxin-related genes, it was suggested that there is no transferability of harmful genes. The minimum inhibition concentrations of seven tested antibiotics suggested by the European Food Safety Authority guidelines were slightly lower than or equal to the microbiological cut-off values for Lp. plantarum. Strain Q180 did not show hemolytic and gelatinase activities and biogenic amine-producing ability. Taken together, this study demonstrated the safety of strain Q180 in terms of absence of AMR genes and VF- and toxin-related genes as a probiotic strain.
Collapse
Affiliation(s)
- Yoo Jin Kwon
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hye Su Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaeryang Chu
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Hyunchae Joung
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Sung Yurb Park
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Byoung Kook Kim
- Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO), Gyeonggi 15064, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea,Corresponding author Phone: +82-2-820-5864 E-mail:
| |
Collapse
|
17
|
Zhang L, Ma H, Kulyar MFEA, Pan H, Li K, Li A, Mo Q, Wang Y, Dong H, Bao Y, Li J. Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics. Microb Pathog 2021; 162:105212. [PMID: 34597776 DOI: 10.1016/j.micpath.2021.105212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
Lactobacillus fermentum (L. fermentum) YLF016 is a well-characterized probiotic with several favorable characteristics. This study aimed to analyze the probiotic characteristics of L. fermentum and uncover the genes implicated in its potential probiotic ability on the base of its genomics features. The complete genome of L. fermentum YLF016 was found to have a circular chromosome of 2,094,354 bp, and 51.46% G + C content without any plasmid. Its chromosome contained 2,130 predicted protein-encoding genes, 58 tRNA, and 15 rRNA-encoding genes. Also, it was found to have many other probiotic properties, such as a high survival rate in the gastrointestinal tract with strong adherence to intestinal cells, antibacterial activity against pathogens, and antioxidant activity. Moreover, the genome sequence analysis demonstrated specific genes coding for carbon metabolism pathway, genetic adaption, stress resistance, and adhesive ability. Further analysis revealed its non-hemolytic activity and its non-functional ability of virulence factors. In conclusion, L. fermentum YLF016 possesses many valuable probiotic properties that refer to its potential probiotic ability.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongcai Ma
- Tibet Livestock Research Institute, Tibet Academy of Agriculture And Animal Science, Lhasa 850009, Tibet, People's Republic of China
| | | | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hailong Dong
- Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China
| | - Yuhua Bao
- Tibet Biological Pharmaceutical Factory, Lhasa 850009, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Detection and Monitoring of Highland Animal Disease, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, People's Republic of China.
| |
Collapse
|
18
|
Barbosa J, Albano H, Silva B, Almeida MH, Nogueira T, Teixeira P. Characterization of a Lactiplantibacillus plantarum R23 Isolated from Arugula by Whole-Genome Sequencing and Its Bacteriocin Production Ability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5515. [PMID: 34063896 PMCID: PMC8196627 DOI: 10.3390/ijerph18115515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
Lactiplantibacillus plantarum is one of the lactic acid bacteria species most used as probiotics and starter cultures in food production. Bacteriocin-producers Lpb. plantarum are also promising natural food preservatives. This study aimed to characterize Lpb. plantarum R23 and its bacteriocins (R23 bacteriocins). The genome sequence of Lpb. plantarum R23 was obtained by whole-genome sequencing (WGS) in an Illumina NovaSeq platform. The activity of Lpb. plantarum R23-produced bacteriocin against two Listeria monocytogenes strains (L7946 and L7947) was evaluated, and its molecular size was determined by tricine-SDS-PAGE. No virulence or antibiotic resistance genes were detected. Four 100% identical proteins to the class II bacteriocins (Plantaricin E, Plantaricin F, Pediocin PA-1 (Pediocin AcH), and Coagulin A) were found by WGS analysis. The small (<6.5 kDa) R23 bacteriocins were stable at different pH values (ranging from 2 to 8), temperatures (between 4 and 100 °C), detergents (all, except Triton X-100 and Triton X-114 at 0.01 g/mL), and enzymes (catalase and α-amylase), did not adsorb to the producer cells, had a bacteriostatic mode of action and their maximum activity (AU/mL = 12,800) against two L. monocytogenes strains occurred between 15 and 21 h of Lpb. plantarum R23 growth. Lactiplantibacillus plantarum R23 showed to be a promising bio-preservative culture because, besides being safe, it produces a stable bacteriocin or bacteriocins (harbors genes encoding for the production of four) inhibiting pathogens as L. monocytogenes. Further studies in different food matrices are required to confirm this hypothesis and its suitability as a future starter culture.
Collapse
Affiliation(s)
- Joana Barbosa
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Helena Albano
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Beatriz Silva
- Colégio de São Gonçalo, 4600-014 Amarante, Portugal;
| | | | - Teresa Nogueira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., 2780-157 Oeiras and 4485-655 Vairão, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paula Teixeira
- CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| |
Collapse
|
19
|
Gao Y, Liu Y, Ma F, Sun M, Song Y, Xu D, Mu G, Tuo Y. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct 2020; 12:373-386. [PMID: 33325942 DOI: 10.1039/d0fo02794d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Probiotics have been proved to ameliorate the symptoms of the host induced by oxidative stress. In this study, the protective effects of Lactobacillus plantarum Y44 on Balb/C mice injured by d-galactose (d-gal)-injection were examined. Six weeks of continuous subcutaneous d-gal injection caused liver and colon injury of the Balb/C mice. L. plantarum Y44 administration significantly reversed the injury by modulating hepatic protein expressions related to the Nrf-2/Keap-1 pathway, and enhancing expressions of colonic tight junction proteins. L. plantarum Y44 administration restored the d-gal injection-induced gut microbiota imbalance by manipulating the ratio of Firmicutes/Bacteroidetes (F/B) and Proteobacteria relative abundance at the phylum level, and manipulating relative abundances of Lactobacillaceae, Muribaculaceae, Ruminococcaceae, Desulfovibrionaceae, and Prevotellaceae at the family level. Moreover, the d-gal injection-induced glycerophospholipid metabolism disorder was ameliorated, evidenced by the decline of phosphatidyl ethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the mice after the L. plantarum Y44 administration. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition, glycerophospholipid levels, and oxidative stress-related indicators. In summary, L. plantarum Y44 administration ameliorated d-gal injection-induced oxidative stress in Balb/C mice by manipulating gut microbiota and intestinal barrier function, and further influenced the glycerophospholipid metabolism and hepatic Nrf-2/Keap-1 pathway-related protein expressions.
Collapse
Affiliation(s)
- Yuan Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yujun Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Dongxue Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Gao Y, Liu Y, Ma F, Sun M, Mu G, Tuo Y. Global transcriptomic and proteomics analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. J Proteomics 2020; 226:103903. [PMID: 32682107 DOI: 10.1016/j.jprot.2020.103903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Our previous study demonstrated that Lactobacillus plantarum Y44 exhibited antioxidant activity. However, the physiological characteristics of L. plantarum Y44 exposure to oxidative stress was not clear. In this research, the differentially expressed proteins and genes in L. plantarum Y44 under 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress at different concentrations were studied by using integrated transcriptomic and proteomic methods. Under 100 mM AAPH stress condition, 1139 differentially expressed genes (DEGs, 546 up-regulated and 593 down-regulated) and 329 differentially expressed proteins (DEPs, 127 up-regulated and 202 down-regulated) were observed. Under 200 mM AAPH stress condition, 1526 DEGs (751 up-regulated and 775 down-regulated) and 382 DEPs (139 up-regulated and 243 down-regulated) were observed. Overall, we found that L. plantarum Y44 fought against AAPH induced oxidative stress by up-regulating antioxidant enzymes and DNA repair proteins, such as ATP-dependent DNA helicase RuvA, adenine DNA glycosylase, single-strand DNA-binding protein SSB, DNA-binding ferritin-like protein DPS, thioredoxin reductase, protein-methionine-S-oxide reductase and glutathione peroxidase. Additionally, cell envelope composition of L. plantarum Y44 was highly remodeled by accelerating peptidoglycan and teichoic-acid (LTA) biosynthesis and modulating the fatty acids (FA) composition to achieve a higher ratio of unsaturated/saturated fatty acids (UFAs/SFAs) against AAPH stress. Moreover, metabolism processes including carbohydrate metabolism, amino acid biosynthesis, and nucleotide metabolism altered to respond to AAPH-induced damage. Altogether, our findings allow us to facilitate a better understanding of L. plantarum Y44 against oxidative stress. SIGNIFICANCE: This study represents an integrated proteomic and transcriptomic analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress. Differentially expressed proteins and genes were identified between the proteome and transcriptome of L. plantarum Y44 under different AAPH stress. AAPH-induced response of L. plantarum Y44 appears to be primarily based on ROS scavenging, DNA repair, highly remodeled cell surface and specific metabolic processes. The knowledge about these proteomes and transcriptomes provides significant insights into the oxidative stress response of Lactobacillus plantarum.
Collapse
Affiliation(s)
- Yuan Gao
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yujun Liu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fenglian Ma
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Mengying Sun
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanfeng Tuo
- School of food science and technology, Dalian Polytechnic University, Dalian 116034, China; Dalian probiotics function research key laboratory, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|