1
|
Wang H, Liu H, Pan S, Ma Z, Wang Y, Liu J, Wang C, An Z. Effects of lipopolysaccharide infusion on feed intake, apparent digestibility, rumen fermentation and microorganisms of young Holstein bulls fed diets with different ratios of lysine and methionine. Front Vet Sci 2025; 11:1523062. [PMID: 39834924 PMCID: PMC11743472 DOI: 10.3389/fvets.2024.1523062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The aim of this experiment was to investigate the effects of intravenous infusion of lipopolysaccharide (LPS) and feeding different ratios of lysine (Lys) and methionine (Met) on feed intake, apparent digestibility, rumen fermentation and microorganisms in young Holstein bulls. Five seven-month-old Holstein bulls with similar body weights (279 ± 42 kg) were selected and subjected to a 5 × 5 Latin square experiment. The control group (CON) was fed with basal diet and the ratio of Lys to Met in the diet was adjusted to 3.0: 1. The experimental groups were received LPS infusion while being fed the basal diet (TRT1), along with LPS infusion and the addition of rumen-protected lysine (RPL) and rumen-protected methionine (RPM) to make the ratio of Lys to Met to 2.5:1 (TRT2), 3.0:1 (TRT3) and 3.5: 1 (TRT4), respectively. The LPS jugular infusion dose was set at 0.01 μg/kg body weight on days 1-3 and 0.05 μg/kg body weight on days 4-7. The trial was conducted over five periods, consisting of a 7-day trial period and a 6-day interval. The results indicated that there were no significant effects of LPS infusion on feed intake and apparent digestibility in young Holstein bulls fed different ratios of Lys and Met (p > 0.05). The treatment had no significant effects on the pH and total volatile fatty acids (p > 0.05). Compared with CON, the acetate content in the experimental groups exhibited an increasing trend (p = 0.066), while the content of NH3-N decreased significantly (p < 0.05). LPS infusion had no significant effect on rumen microorganisms at either the species or phylum level (p > 0.05). However, feeding different ratios of Lys and Met could significantly increasing the abundance of Oribacterium (p < 0.05) and tended to increase the abundance of norank_f__norank_o__RF_39 at the genus level (p = 0.087). These findings suggest that adding RPL and RPM into the diet may enhance the rumen environment in young Holstein bulls. Under the conditions of this experiment, adding RPL and RPM can mitigate the negative effects associated with LPS infusion, with an optimal ratio of Lys and Met is 3.0:1.
Collapse
Affiliation(s)
- Huiyao Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shijia Pan
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhicong Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yanming Wang
- Kemin (China) Technologies Co. Ltd., Zhuhai, China
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhigao An
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Feng S, Zeng J, Li J, Yuan S, Wu B. Alleviating effect of methionine on intestinal mucosal injury induced by heat stress. J Therm Biol 2024; 123:103935. [PMID: 39098059 DOI: 10.1016/j.jtherbio.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Climate change is an increasing concern of stakeholders worldwide. The intestine is severely impacted by the heat stress. This study aimed to investigate the alleviating effects of methionine on the intestinal damage induced by heat stress in mice. The mice were divided into four groups: control group (C), methionine deficiency group (MD), methionine + heat stress group (MH), and methionine deficiency + heat stress group (MDH). Histopathological techniques, PAS-Alcian blue staining, immunohistochemistry method, biochemical quantification method, ELISA, and micro method were used to study the changes in the intestinal mucosal morphology, the number of goblet cells, the expression of tight junction proteins, the peroxide product contents and antioxidant enzyme activities, the intestinal mucosal damage, the content of immunoglobulins and HSP70, the activity of Na+/K+-ATPase. The results showed that methionine can improve intestinal mucosal morphology (increase the villi height, V/C value, and muscle layer thickness, decrease crypt depth), increase the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) and the content of DAO, decrease the content of intestinal mucosa damage markers (ET, FABP2) and peroxidation products (MDA), increase the activity of antioxidant enzymes (GR, GSH-Px, SOD), the number of goblet cells, the contents of immunoglobulins (sIgA, IgA, IgG, IgM) and stress protein (HSP70), and the activity of Na+/K+-ATPase. It is suggested that methionine can alleviate intestinal damage in heat-stressed mice.
Collapse
Affiliation(s)
- Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Jie Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Jia Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Shibin Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China; Nanchong Key Laboratory of Wildlife Nutritional Ecology and Disease Prevention and Control, Nanchong, 637000, Sichuan, China.
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China; Nanchong Key Laboratory of Wildlife Nutritional Ecology and Disease Prevention and Control, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
3
|
Gai Z, Hu S, He Y, Yan S, Wang R, Gong G, Zhao J. L-arginine alleviates heat stress-induced mammary gland injury through modulating CASTOR1-mTORC1 axis mediated mitochondrial homeostasis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172017. [PMID: 38552976 DOI: 10.1016/j.scitotenv.2024.172017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
As global warming intensifies, extreme heat is becoming increasingly frequent. These extreme heatwaves have decreased the milk production of dairy animals such as cows and goats and have caused significant damage to the entire dairy industry. It is known that heat stress (HS) can induce the apoptosis and autophagy of mammary epithelial cells (MECs), leading to a decrease in lactating MECs. L-arginine can effectively attenuate HS-induced decreases in milk yield, but the exact mechanisms are not fully understood. In this study, we found that HS upregulated the arginine sensor CASTOR1 in mouse MECs. Arginine activated mTORC1 activity through CASTOR1 and promoted mitochondrial biogenesis through the mTORC1/PGC-1α/NRF1 pathway. Moreover, arginine inhibited mitophagy through the CASTOR1/PINK1/Parkin pathway. Mitochondrial homeostasis ensures ATP synthesis and a stable cellular redox state for MECs under HS, further alleviating HS-induced damage and improving the lactation performance of MECs. In conclusion, these findings reveal the molecular mechanisms by which L-arginine relieves HS-induced mammary gland injury, and suggest that the intake of arginine-based feeds or feed additives is a promising method to increase the milk yield of dairy animals in extreme heat conditions.
Collapse
Affiliation(s)
- Zhongchao Gai
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Songhao Hu
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yujiao He
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sijia Yan
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ranran Wang
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
4
|
Gu LH, Wu RR, Zheng XL, Fu A, Xing ZY, Chen YY, He ZC, Lu LZ, Qi YT, Chen AH, Zhang YP, Xu TS, Peng MS, Ma C. Genomic insights into local adaptation and phenotypic diversity of Wenchang chickens. Poult Sci 2024; 103:103376. [PMID: 38228059 PMCID: PMC10823079 DOI: 10.1016/j.psj.2023.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.
Collapse
Affiliation(s)
- Li-Hong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ran-Ran Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An Fu
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China
| | - Zeng-Yang Xing
- Wenchang Long-quan Wenchang Chicken Industrial Co., Ltd., Wenchang 571346, China
| | - Yi-Yong Chen
- Hainan Chuang Wen Wenchang Chicken Industry Co., Ltd., Wenchang 571321, China
| | - Zhong-Chun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan-Tao Qi
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An-Hong Chen
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min-Sheng Peng
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Ma
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China.
| |
Collapse
|
5
|
Hillman TC, Idnani R, Wilson CG. An Inexpensive Open-Source Chamber for Controlled Hypoxia/Hyperoxia Exposure. Front Physiol 2022; 13:891005. [PMID: 35903067 PMCID: PMC9315218 DOI: 10.3389/fphys.2022.891005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding hypoxia/hyperoxia exposure requires either a high-altitude research facility or a chamber in which gas concentrations are precisely and reproducibly controlled. Hypoxia-induced conditions such as hypoxic-ischemic encephalopathy (HIE), obstructive or central apneas, and ischemic stroke present unique challenges for the development of models with acute or chronic hypoxia exposure. Many murine models exist to study these conditions; however, there are a variety of different hypoxia exposure protocols used across laboratories. Experimental equipment for hypoxia exposure typically includes flow regulators, nitrogen concentrators, and premix oxygen/nitrogen tanks. Commercial hypoxia/hyperoxia chambers with environmental monitoring are incredibly expensive and require proprietary software with subscription fees or highly expensive software licenses. Limitations exist in these systems as most are single animal systems and not designed for extended or intermittent hypoxia exposure. We have developed a simple hypoxia chamber with off-the-shelf components, and controlled by open-source software for continuous data acquisition of oxygen levels and other environmental factors (temperature, humidity, pressure, light, sound, etc.). Our chamber can accommodate up to two mouse cages and one rat cage at any oxygen level needed, when using a nitrogen concentrator or premixed oxygen/nitrogen tank with a flow regulator, but is also scalable. Our system uses a Python-based script to save data in a text file using modules from the sensor vendor. We utilized Python or R scripts for data analysis, and we have provided examples of data analysis scripts and acquired data for extended exposure periods (≤7 days). By using FLOS (Free-Libre and open-source) software and hardware, we have developed a low-cost and customizable system that can be used for a variety of exposure protocols. This hypoxia/hyperoxia exposure chamber allows for reproducible and transparent data acquisition and increased consistency with a high degree of customization for each experimenter’s needs.
Collapse
Affiliation(s)
- Tyler C. Hillman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | - Ryan Idnani
- Department of Bioengineering, College of Engineering, University of California, Berkeley, CA, United States
| | - Christopher G. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
- Department of Pediatrics, School of Medicine, Loma Linda University Medical Center Loma Linda University, Loma Linda, CA, United States
- *Correspondence: Christopher G. Wilson,
| |
Collapse
|
6
|
Chen L, Wu H, Li Y, Feng X, Zhu S, Xie K, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Zhu C, Jiang Q, Wang L. Corticotropin-releasing factor receptor type 2 in the midbrain critically contributes to the hedonic feeding behavior of mice under heat stress. Biochem Biophys Res Commun 2022; 602:77-83. [DOI: 10.1016/j.bbrc.2022.02.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
|
7
|
Inflammatory Mediation of Heat Stress-Induced Growth Deficits in Livestock and Its Potential Role as a Target for Nutritional Interventions: A Review. Animals (Basel) 2021; 11:ani11123539. [PMID: 34944316 PMCID: PMC8698153 DOI: 10.3390/ani11123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Heat stress is a persistent challenge for livestock producers. Molecular changes throughout the body that result from sustained heat stress slow muscle growth and thus are detrimental to carcass yield and value. Feedlot animals are at particularly high risk for heat stress because their confinement limits their ability to pursue shade and other natural cooling behaviors. Changes in infrastructure to reduce the impact of heat stress are often cost-prohibitive, but recent studies have revealed that anti-inflammatory therapies may help to improve growth deficits in heat-stressed animals. This review describes the conditions that cause heat stress and explains the role of inflammation in muscle growth impairment. Additionally, it discusses the potential for several natural anti-inflammatory dietary additives to improve muscle growth outcomes in heat-stressed livestock. Abstract Heat stress is detrimental to well-being and growth performance in livestock, and systemic inflammation arising during chronic heat stress contributes to these poor outcomes. Sustained exposure of muscle and other tissues to inflammation can impair the cellular processes that facilitate muscle growth and intramuscular fat deposition, thus reducing carcass quality and yield. Climate change is expected to produce more frequent extreme heat events, increasing the potential impact of heat stress on sustainable livestock production. Feedlot animals are at particularly high risk for heat stress, as confinement limits their ability to seek cooling from the shade, water, or breeze. Economically practical options to circumvent heat stress in feedlot animals are limited, but understanding the mechanistic role of inflammation in heat stress outcomes may provide the basis for treatment strategies to improve well-being and performance. Feedlot animals receive formulated diets daily, which provides an opportunity to administer oral nutraceuticals and other bioactive products to mitigate heat stress-induced inflammation. In this review, we examine the complex associations between heat stress, systemic inflammation, and dysregulated muscle growth in meat animals. We also present evidence for potential nutraceutical and dietary moderators of inflammation and how they might improve the unique pathophysiology of heat stress.
Collapse
|
8
|
Dado-Senn B, Field SL, Davidson BD, Casarotto LT, Marrero MG, Ouellet V, Cunha F, Sacher MA, Rice CL, Maunsell FP, Dahl GE, Laporta J. Late-Gestation in utero Heat Stress Limits Dairy Heifer Early-Life Growth and Organ Development. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.750390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dairy calves exposed to late-gestation heat stress weigh less, have impaired immunity, produce less milk across multiple lactations, and have reduced productive life. However, less is known about the relationship between in utero heat stress and organ morphology and development. Herein, we characterized the consequences of late-gestation in utero heat stress on body and organ growth trajectories during early-life development. Holstein heifers were either in utero heat-stressed (IU-HT, n = 36, dams exposed to THI > 68) or cooled (IU-CL, n = 37, dams exposed to THI > 68 with access to active cooling) during late gestation (54 ± 5 d prepartum). All heifers were reared identically from birth to weaning. Upon birth, calves were weighed and fed 3.78 L of colostrum followed by 0.87 kg DM/d milk replacer (MR) over two feedings and ad libitum starter concentrate daily. Weaning began at 49 d and ended at 56 d of age. Feed intake was recorded daily, and body weight (BW) and other growth measures were recorded at 0, 28, 56, and 63 d. Blood was collected at d 1 then weekly. Subsets of heifers were selected for euthanasia at birth and 7 d after complete weaning (n = 8 per group each) to harvest and weigh major organs. Reduced BW and stature measures persisted in IU-HT heifers from 0 to 63 d of age with a 7% lower average daily gain and reduced starter consumption relative to IU-CL heifers. IU-HT heifers had lower hematocrit percentages and reduced apparent efficiency of absorption of IgG relative to IU-CL heifers. Additionally, IU-HT heifers had reduced gross thymus, spleen, thyroid gland, and heart weight at birth and larger adrenal glands and kidneys but smaller ovaries relative to BW at 63 d. The mammary gland of IU-HT heifers was smaller relative to IU-CL heifers at birth and 63 d adjusted for BW, suggesting mechanisms leading to impaired milk yield in mature IU-HT cows are initiated early in development. In summary, in utero heat stress reduces whole-body size and limits development of key organs with potential repercussions on dairy calf metabolic adaptation, immune function, and future productivity.
Collapse
|
9
|
Nakagawa H, Ishiwata T. Effect of short- and long-term heat exposure on brain monoamines and emotional behavior in mice and rats. J Therm Biol 2021; 99:102923. [PMID: 34420602 DOI: 10.1016/j.jtherbio.2021.102923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Heat exposure affects several physiological, neuronal, and emotional functions. Notably, monoaminergic neurotransmitters in the brain such as noradrenaline, dopamine, and serotonin, which regulate several basic physiological functions, such as thermoregulation, food intake, and energy balance, are affected by heat exposure and heat acclimation. Furthermore, cognition and emotional states are also affected by heat exposure and changes in brain monoamine levels. Short-term heat exposure has been reported to increase anxiety in some behavioral tests. In contrast, there is a possibility that long-term heat exposure decreases anxiety due to heat acclimation. These changes might be due to adaptation of the core body temperature and/or brain monoamine levels by heat exposure. In this review, we first outline the changes in brain monoamine levels and thereafter focus on changes in emotional behavior due to heat exposure and heat acclimation. Finally, we describe the relationships between emotional behavior and brain monoamine levels during heat acclimation.
Collapse
Affiliation(s)
- Hikaru Nakagawa
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo, 102-0083, Japan.
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, 1-2-26 Kitano, Niiza, Saitama, 352-8558, Japan
| |
Collapse
|