1
|
Xu X, Zhang Y, Gao L, Yang J, Yang Z. Integrating Bacteriophage onto the Magnetic Nanozyme for Effective Enrichment and Colorimetric Detection of Cronobacter sakazakii in Powdered Infant Formula. Foods 2024; 13:3788. [PMID: 39682860 DOI: 10.3390/foods13233788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cronobacter sakazakii is a dangerous pathogen easily found in powdered infant formula (PIF), causing severe infections and even death in infants. Herein, a bacteriophage-immobilized magnetic nanozyme (Fe3O4@EspYZU13) was prepared for C. sakazakii detection. Bacteriophage EspYZU13 isolated and identified by our group exhibits specific lytic capacity. Fe3O4@EspYZU13 possesses remarkable enrichment capacity towards C. sakazakii, efficiently enriching different concentrations of C. sakazakii from a mixed bacterial solution. Furthermore, Fe3O4@EspYZU13 shows peroxidase-like activity, which can catalyze the 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction in the presence of H2O2. Upon introduction of C. sakazakii, it can be specifically captured by Fe3O4@EspYZU13, inhibiting its peroxidase-like activity. Based on it, C. sakazakii ranging from 3.2 × 101 to 3.2 × 107 CFU mL-1 can be determined, offering a detection limit (LOD) of 26 CFU mL-1. Moreover, this reaction system keeps high specificity towards C. sakazakii, which can resist interferences of other possible coexisting bacteria. C. sakazakii in the artificially contaminated PIF can be detected, offering good recoveries (96.76% to 103.13%). These results indicate that our proposed reaction system demonstrates its practical application potential for efficient enrichment of C. sakazakii from complex samples and accurate determination of C. sakazakii in PIF.
Collapse
Affiliation(s)
- Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuansong Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Juanli Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
2
|
Chen P, Yang Q, Li S, Liu X, Li B, Zhang J, Wang J, Yue X, Wang Y. Nanobody-Induced Aggregation of Gold Nanoparticles: A Mix-and-Read Strategy for the Rapid Detection of Cronobacter sakazakii. Anal Chem 2024; 96:17602-17611. [PMID: 39445484 DOI: 10.1021/acs.analchem.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein-nanoparticle interactions play a crucial role in both biomedical applications and the biosafety assessment of nanomaterials. Here, we found that nanobodies can induce citrate-capped gold nanoparticles (AuNPs) to aggregate into large clusters. Subsequently, we explored the mechanism behind this aggregation and proposed the "gold nucleation mechanism" to explain this phenomenon. Building on this observation, we developed a one-step label-free colorimetric method based on nanobody-induced AuNP aggregation. When nanobodies bind to target bacteria, spatial hindrance occurs, preventing further AuNPs aggregation. This alteration in surface plasmon resonance properties results in visible color changes. As an example, we present a simple and sensitive "mix-and-read" chromogenic immunosensor for Cronobacter sakazakii (C. sakazakii). The experiment can be completed within 20 min, with a visual detection limit of 103 CFU/mL and a quantitative detection limit of 136 CFU/mL. Importantly, our method exhibits no cross-reactivity with other bacterial species. This strategy harnesses the excellent properties of nanobodies and the optical characteristics of AuNPs for direct and rapid detection of foodborne pathogen.
Collapse
Affiliation(s)
- Pengyu Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinkai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shurong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingzhi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiahao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Xie M, Zhu Y, Li Z, Yan Y, Liu Y, Wu W, Zhang T, Li Z, Wang H. Key steps for improving bacterial SERS signals in complex samples: Separation, recognition, detection, and analysis. Talanta 2024; 268:125281. [PMID: 37832450 DOI: 10.1016/j.talanta.2023.125281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Rapid and reliable detection of pathogenic bacteria is absolutely essential for research in environmental science, food quality, and medical diagnostics. Surface-enhanced Raman spectroscopy (SERS), as an emerging spectroscopic technique, has the advantages of high sensitivity, good selectivity, rapid detection speed, and portable operation, which has been broadly used in the detection of pathogenic bacteria in different kinds of complex samples. However, the SERS detection method is also challenging in dealing with the detection difficulties of bacterial samples in complex matrices, such as interference from complex matrices, confusion of similar bacteria, and complexity of data processing. Therefore, researchers have developed some technologies to assist in SERS detection of bacteria, including both the front-end process of obtaining bacterial sample data and the back-end data processing process. The review summarizes the key steps for improving bacterial SERS signals in complex samples: separation, recognition, detection, and analysis, highlighting the principles of each step and the key roles for SERS pathogenic bacteria analysis, and the interconnectivity between each step. In addition, the current challenges in the practical application of SERS technology and the development trends are discussed. The purpose of this review is to deepen researchers' understanding of the various stages of using SERS technology to detect bacteria in complex sample matrices, and help them find new breakthroughs in different stages to facilitate the detection and control of bacteria in complex samples.
Collapse
Affiliation(s)
- Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yiting Zhu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Tong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
4
|
Chen Y, Sha L, Li W, Zhou L, Pei B, Bian X, Ji Y, Liu Y, Wang L, Yang H. Rapid quantitative detection of Klebsiella pneumoniae in infants with severe infection disease by point-of-care immunochromatographic technique based on nanofluorescent microspheres. Front Bioeng Biotechnol 2023; 11:1144463. [PMID: 36845192 PMCID: PMC9945336 DOI: 10.3389/fbioe.2023.1144463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Klebsiella pneumoniae (KP, K. pneumoniae) is one of the most important nosocomial pathogens that cause severe respiratory infections. As evolutionary high-toxic strains with drug resistance genes increase year by year, the infections caused by it are often accompanied by high mortality, which may be fatal to infants and can cause invasive infections in healthy adults. At present, the traditional clinical methods for detecting K. pneumoniae are cumbersome and time-consuming, and the accuracy and sensitivity are not high. In this study, nanofluorescent microsphere (nFM)-based immunochromatographic test strip (ICTS) quantitative testing platform were developed for point-of-care testing (POCT) method of K. pneumoniae. Methods: 19 clinical samples of infants were collected, the genus-specific gene of mdh was screened from K. pneumoniae. Polymerase chain reaction (PCR) combined with nFM-ICTS based on magnetic purification assay (PCR-ICTS) and strand exchange amplification (SEA) combined with nFM-ICTS based on magnetic purification assay (SEA-ICTS) were developed for the quantitative detection of K. pneumoniae. The sensitivity and specificity of SEA-ICTS and PCR-ICTS were demonstrated by the existing used classical microbiological methods, the real-time fluorescent quantitative PCR (RTFQ-PCR) and PCR assay based on agarose gel electrophoresis (PCR-GE). Results: Under optimum working conditions, the detection limits of PCR-GE, RTFQ-PCR, PCR-ICTS and SEA-ICTS are 7.7 × 10-3, 2.5 × 10-6, 7.7 × 10-6, 2.82 × 10-7 ng/μL, respectively. The SEA-ICTS and PCR-ICTS assays can quickly identify K. pneumoniae, and could specifically distinguish K. pneumoniae samples from non-K. pneumoniae samples. Experiments have shown a diagnostic agreement of 100% between immunochromatographic test strip methods and the traditional clinical methods on the detection of clinical samples. During the purification process, the Silicon coated magnetic nanoparticles (Si-MNPs) were used to removed false positive results effectively from the products, which showed of great screening ability. The SEA-ICTS method was developed based on PCR-ICTS, which is a more rapid (20 min), low-costed method compared with PCR-ICTS assay for the detection of K. pneumoniae in infants. Only need a cheap thermostatic water bath and takes a short detection time, this new method can potentially serve as an efficient point-of-care testing method for on-site detection of pathogens and disease outbreaks without fluorescent polymerase chain reaction instruments and professional technicians operation.
Collapse
Affiliation(s)
- Ying Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lulu Sha
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wenqing Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liuyan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Bing Pei
- Department of Clinical Laboratory, Suqian First People’s Hospital, Suqian, China
| | - Xinyu Bian
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yongxin Ji
- Nanjing Nanoeast Biotech Co., Ltd., Nanjing, China
| | - Yiping Liu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Li Wang
- Department of Clinical Laboratory, Xuzhou First People’s Hospital, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China,*Correspondence: Li Wang, ; Huan Yang,
| |
Collapse
|
5
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Xing K, Bao H, Ding N, Xiong Y, Peng J, Lai W. Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
8
|
Xing KY, Bao HH, Ding NS, Xiong YH, Peng J, Lai WH. Two-step aggregation of gold nanoparticles based on charge neutralization for detection of melamine by colorimetric and surface-enhanced Raman spectroscopy platform. J Dairy Sci 2022; 105:7298-7307. [PMID: 35863920 DOI: 10.3168/jds.2022-22037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
A colorimetric and surface-enhanced Raman scattering (SERS) signal amplification platform based on 2-step aggregation of gold nanoparticles (AuNP) was constructed for the sensitive detection of melamine. In this study, the positively charged SYBR Green I was used for the first step of aggregation of AuNP, via charge neutralization, to obtain small-sized AuNP aggregates. The positively charged SYBR Green I decreased the negative charges of the surface of AuNP, which was beneficial to the aggregation of AuNP. In addition, the melamine could aggregate AuNP by decreasing the negative charges of the surface of AuNP and self-assemble with each other on the surface of AuNP by hydrogen bonds. Therefore, the second efficient aggregation of small-sized AuNP aggregates could be achieved with melamine at low concentration, resulting in significant signal changes of color and SERS. The sensitivity of a colorimetric (0.60 mg/L) and SERS (0.089 mg/L) platform, based on 2-step aggregation of AuNP, was 15 and 2.2 times higher than that based on 1-step aggregation of AuNP for detecting melamine.
Collapse
Affiliation(s)
- K Y Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - H H Bao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - N S Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, 361116, China; State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y H Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - J Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - W H Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
9
|
Chen S, Meng L, Wang L, Huang X, Ali S, Chen X, Yu M, Yi M, Li L, Chen X, Yuan L, Shi W, Huang G. SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 348:130706. [PMID: 34493903 PMCID: PMC8413105 DOI: 10.1016/j.snb.2021.130706] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 05/05/2023]
Abstract
The lateral flow immunoassay (LFIA) has played a crucial role in early diagnosis during the current COVID-19 pandemic owing to its simplicity, speed and affordability for coronavirus antibody detection. However, the sensitivity of the commercially available LFIAs needs to be improved to better prevent the spread of the infection. Here, we developed an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of anti-SARS-CoV-2 IgM and IgG by using gap-enhanced Raman nanotags (GERTs). The GERTs with a 1 nm gap between the core and shell were used to produce the "hot spots", which provided about 30-fold enhancement as compared to conventional nanotags. The COVID-19 recombinant antigens were conjugated on GERTs surfaces and replaced the traditional colloidal gold for the Raman sensitive detection of human IgM and IgG. The LODs of IgM and IgG were found to be 1 ng/mL and 0.1 ng/mL (about 100 times decrease was observed as compared to commercially available LFIA strips), respectively. Moreover, under the condition of common nano-surface antigen, precise SERS signals proved the unreliability of quantitation because of the interference effect of IgM on IgG.
Collapse
Affiliation(s)
- Shiliang Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Liuwei Meng
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
- Research and Development Department, Hangzhou Goodhere Biotechnology Co.,Ltd., Hangzhou 311100, PR China
| | - Litong Wang
- Research and Development Department, Hangzhou Goodhere Biotechnology Co.,Ltd., Hangzhou 311100, PR China
| | - Xixi Huang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Mingen Yu
- Research and Development Department, Hangzhou Goodhere Biotechnology Co.,Ltd., Hangzhou 311100, PR China
| | - Ming Yi
- Research and Development Department, Hangzhou Goodhere Biotechnology Co.,Ltd., Hangzhou 311100, PR China
| | - Limin Li
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xi Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Leiming Yuan
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Wen Shi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Guangzao Huang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| |
Collapse
|
10
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|