1
|
Ning HQ, Fan HR, Yang CL, Sun GJ, Li YQ, Mo HZ. The potential of glycinin basic peptide derived from soybean as a promising candidate for the natural food additive and preservative: A review. Food Chem 2024; 457:140141. [PMID: 38917564 DOI: 10.1016/j.foodchem.2024.140141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Glycinin basic peptide (GBP) is the basic polypeptide of soybean glycinin that is isolated using cheap and readily available raw materials (soybean meals). GBP can bear high-temperature processing and has good functional properties, such as emulsification and adhesion properties et al. GBP exhibits broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria as well as fungi. Beyond that, GBP shows enormous application potential to improve the quality and extend the shelf life of food products. This review will systematically provide information on the purification, physicochemical and functional properties of GBP. Moreover, the antimicrobial activities and multi-target antimicrobial mechanism of GBP as well as the applications of GBP in different food products are also reviewed and discussed in detail. This review aims to offer valuable insights for the applications of GBP in the food industry as a promising natural food additive and preservative.
Collapse
Affiliation(s)
- Hou-Qi Ning
- School of Food and Bioengineering, Xihua University, Chengdu, PR China
| | - Hai-Run Fan
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Chun-Ling Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road of Changqing District, Jinan 250353, China.
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 453003, China
| |
Collapse
|
2
|
R B Brown S, Sun L, Gensler CA, D'Amico DJ. The impact of subinhibitory concentrations of Ɛ- polylysine, hydrogen peroxide, and lauric arginate on Listeria monocytogenes virulence. J Food Prot 2024:100385. [PMID: 39427815 DOI: 10.1016/j.jfp.2024.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Recent studies on the use of plant-derived and other bioactive compounds and antimicrobials in food have challenged the idea that exposure to antimicrobials at sub-lethal or subinhibitory concentrations (SIC) increases the virulence potential of bacterial pathogens including Listeria monocytogenes. The objective of this study was to determine the effect of exposure to SICs of Ɛ -polylysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes virulence. For all assays, L. monocytogenes strains Scott A and 2014L-6025 were grown to mid-log phase in the presence of SICs of EPL, HP, or LAE. Motility was determined by spot inoculating cultures on soft brain heart infusion agar (0.3% agar). Cultures grown in SICs of antimicrobials were also inoculated onto Caco-2 cells (10:1 MOI) to determine the effects on subsequent adhesion and invasion. Last, relative expression of key virulence genes (prfA, plcB, hlyA, actA, inlA, inlB, sigB, and virR) following growth in SICs were determined by RT-qPCR. Results indicate that L. monocytogenes growth in the presence of SICs of EPL, HP, or LAE did not affect the motility, adhesion, or invasion capacity of either strain. Changes in gene expression were observed for both L. monocytogenes strains. More specifically, SICs of EPL and LAE reduced hlyA expression in Scott A, whereas SICs of EPL and HP increased expression of virR. The upregulation of sigB and actA in the presence of EPL and LAE, respectively, was observed in strain 2014L-6025. These findings indicate that exposure to SICs of these antimicrobials have varying effects on L. monocytogenes that differ by strain. Although no phenotypic effects were observed in terms of motility, adhesion, and invasion, the observed changes in virulence gene expression warrants further investigation.
Collapse
Affiliation(s)
- Stephanie R B Brown
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Lang Sun
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Catherine A Gensler
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA
| | - Dennis J D'Amico
- Dept. of Animal Science, University of Connecticut, Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs CT, 06269-4163, USA.
| |
Collapse
|
3
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
4
|
Takhar SR, Ibarra-Sánchez LA, Miller MJ. Effect of antimicrobial treatments applied individually and in combination on the growth of Listeria monocytogenes in Queso Fresco at 3 different temperatures. JDS COMMUNICATIONS 2022; 3:307-311. [PMID: 36340902 PMCID: PMC9623663 DOI: 10.3168/jdsc.2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
A combination of antimicrobial treatments provides a more effective approach against L. monocytogenes growth in QF. PlyP100 + NIS was the most effective treatment for L. monocytogenes growth in QF. Listeria monocytogenes can grow up to dangerously high levels regardless of the storage temperature in untreated QF. EPL + LAE are good candidates to further evaluate for improving safety of QF during cold storage. Temperature abuse dramatically reduces the effectiveness of the tested antilisterials in QF.
Queso fresco (QF), a fresh soft cheese, is one of the most popular Hispanic cheeses in the United States and is frequently associated with Listeria monocytogenes outbreaks. Listeria monocytogenes can grow and thrive at room temperature as well as refrigeration temperatures. A combination of antimicrobial agents provides a larger spectrum of listeriostatic and listeriocidal activity resulting in a more effective approach toward the control of L. monocytogenes. In this study, we evaluated the efficacy of 3 Food and Drug Administration-approved generally recognized as safe (GRAS) antimicrobials, nisin (NIS), lauric arginate ethyl ester (LAE), and ε-polylysine (EPL), and the endolysin PlyP100 individually and in combination for control of L. monocytogenes in QF at 4°C, 7°C, and 10°C. Additionally, growth curves of L. monocytogenes were obtained in BHI broth and QF at these temperatures. In order for an antimicrobial to be considered a postlethality treatment for L. monocytogenes, it should not allow an increase of more than 2-log over the product's shelf life. Three treatments, PlyP100, PlyP100 + NIS, and EPL + LAE, effectively kept the pathogen below the 2 log growth threshold at 4°C. However, at 7°C and 10°C, none of the antimicrobial treatments could inhibit L. monocytogenes growth (i.e., <2 log). Overall, our results suggest the importance of considering the effect of cold storage temperatures above 4°C on the antilisterial efficacy of antimicrobial treatments in QF.
Collapse
|
5
|
NISIN and gilaburu (Viburnum opulus L.) combination is a cost-effective way to control foodborne Staphylococcus aureus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Fabrication of zein-modified starch nanoparticle complexes via microfluidic chip and encapsulation of nisin. Curr Res Food Sci 2022; 5:1110-1117. [PMID: 35865806 PMCID: PMC9294254 DOI: 10.1016/j.crfs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
A microfluidic chip is a micro-reactor that precisely manipulates and controls fluids. Zein is a group of prolamines extracted from corn that can form self-assembled nanoparticles in water or a low concentration of ethanol in a microfluidic chip. However, the zein nanoparticles have stability issues, especially in a neutral pH environment due to the proximity of the isoelectric point. This study was designed 1) to evaluate the effect of octenyl succinic anhydride (OSA) modified starch on the stability of zein nanoparticles formed using a microfluidic chip and 2) to apply the zein-OSA starch for encapsulation of nisin and evaluate its anti-microbial activity in a model food matrix. A T-junction configuration of the microfluidic chip was used to fabricate the zein nanoparticles using 1% or 2% zein solution and 0–10% (w/w) of OSA starch solution. The stability of the nanoparticles in various ionic strength environments was assessed. Encapsulation efficiency and anti-microbial activity of nisin in the zein nanoparticles against Listeria monocytogenes in a fresh cheese were measured. As the concentration of OSA starch increased from 0 to 10%, effective diameter increased from 117.8 ± 14.5 to 198.7 ± 13.9 nm without affecting polydispersity indexes and zeta-potential changed toward that of the modified starch indicating the zein surface coverage by the OSA starch. The zein-OSA starch nanoparticle complexes were more stable at various sodium chloride concentrations than the zein nanoparticles without OSA starch. The encapsulation efficiency of nisin was positively correlated with the OSA starch concentration. The anti-microbial activity of nisin in the fresh cheese also increased until 3-days of storage as the concentration of the OSA starch increased, which presented both a potential and challenge toward applications. Microfluidic chip formed zein nanoparticles with OSA-modified starch. Zein nanoparticle size and stability were affected by zein and modified starch concentration. Nisin was encapsulated in the zein nanoparticles via microfluidic chip. Anti-microbial activity of nisin was improved by the encapsulation.
Collapse
|
7
|
Antimicrobial and Antibiofilm Effect of ε-Polylysine against Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli in Tryptic Soy Broth and Chicken Juice. Foods 2021; 10:foods10092211. [PMID: 34574320 PMCID: PMC8466587 DOI: 10.3390/foods10092211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
ε-Polylysine (ε-PL) is a safe food additive that is used in the food industry globally. This study evaluated the antimicrobial and antibiofilm activity of antibacterial peptides (ε-PL) against food poisoning pathogens detected in chicken (Salmonella Enteritidis, Listeria monocytogenes, and Escherichia coli). The results showed that minimum inhibitory concentrations (MICs) ranged between 0.031-1.0 mg/mL, although most bacterial groups (75%) showed MICs of 1.0 mg/mL. The reduction in the cell viability of pathogens due to ε-PL depended on the time and concentration, and 1/2 × MIC of ε-PL killed 99.99% of pathogens after 10 h of incubation. To confirm biofilm inhibition and degradation effects, crystal violet assay and confocal laser scanning microscopy (CLSM) were used. The biofilm formation rates of four bacterial groups (Salmonella, Listeria, E. coli, and multi-species bacteria) were 10.36%, 9.10%, 17.44%, and 21.37% at 1/2 × MIC of ε-PL, respectively. Additionally, when observed under a CLSM, ε-PL was found to induce biofilm destruction and bacterial cytotoxicity. These results demonstrated that ε-PL has the potential to be used as an antibiotic and antibiofilm material for chicken meat processing.
Collapse
|
8
|
Flynn B, deRiancho D, Lawton MR, Alcaine SD. Evaluation of Lactose Oxidase as an Enzyme-Based Antimicrobial for Control of L. monocytogenes in Fresh Cheese. Foods 2021; 10:1471. [PMID: 34201990 PMCID: PMC8307525 DOI: 10.3390/foods10071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in the elderly, immune compromised, and the fetuses of pregnant women. The intrinsic properties of fresh cheese-high water activity (aW), low salt content, and near-neutral pH-make it susceptible to L. monocytogenes contamination and growth at various points in the production process. The aim of this study was to investigate the ability of lactose oxidase (LO), a naturally derived enzyme, to inhibit the growth of L. monocytogenes in fresh cheese during various points of the production process. Lab-scale queso fresco was produced and inoculated with L. monocytogenes at final concentrations of 1 log CFU/mL and 1 CFU/100 mL. LO and LO sodium thiocyanate (TCN) combinations were incorporated into the milk or topically applied to the finished cheese product in varying concentration levels. A positive control and negative control were included for all experiments. When L. monocytogenes was inoculated into the milk used for the cheese-making process, by day 28, the positive control grew to above 7 log CFU/g, while the 0.6 g/L treatment (LO and LO + TCN) fell below the limit of detection (LOD) of 1.3 log CFU/g. In the lower inoculum, the positive control grew to above 7 log CFU/g, and the treatment groups fell below the LOD by day 21 and continued through day 28 of storage. For surface application, outgrowth occurred with the treatments in the higher inoculum, but some inhibition was observed. In the lower inoculum, the higher LO and LO-TCN concentrations (0.6 g/L) reduced L. monocytogenes counts to below the LOD, while the control grew out to above 7 log CFU/g, which is a >5 log difference between the control and the treatment. These results suggest that LO could be leveraged as an effective control for L. monocytogenes in a fresh cheese.
Collapse
Affiliation(s)
| | | | | | - Samuel D. Alcaine
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (B.F.); (D.d.); (M.R.L.)
| |
Collapse
|
9
|
Ibarra-Sánchez LA, Kong W, Lu T, Miller MJ. Efficacy of nisin derivatives with improved biochemical characteristics, alone and in combination with endolysin PlyP100 to control Listeria monocytogenes in laboratory-scale Queso Fresco. Food Microbiol 2020; 94:103668. [PMID: 33279091 DOI: 10.1016/j.fm.2020.103668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Nisin is an antimicrobial peptide that is commonly used as a food preservative and capable of inhibiting the pathogen Listeria monocytogenes. However, nisin is ineffective in controlling L. monocytogenes in Queso Fresco (QF). To address the challenge, in this work, we used synthetic biology strategies to create a series of nisin A derivatives by substituting residues 27, 30, 31 and 32 with positively charged amino acids (H, K and R). Our results showed that nisin derivatives exhibited reduced antilisterial activity in vitro compared to nisin A; however, they were all more stable under QF-like experimental conditions (pH 7 + 22% milk fat), notably H27/31K. Compared to nisin A, the derivatives H31K and V32K exhibited slight antilisterial improvement in QF and H27/31K was able to reduce the initial population of L. monocytogenes by up to 1.5 Log CFU/g. L. monocytogenes isolates exhibited similar susceptibility to nisin A or H27/31K after 7 or 14 days of nisin exposure in QF. Notably, when combined with endolysin PlyP100, the application of H27/31K resulted in non-enumerable levels of L. monocytogenes after 14 days of cold storage. Our results highlight the potential of bioengineered nisin derivatives for stabilized and enhanced control of L. monocytogenes in QF.
Collapse
Affiliation(s)
- Luis A Ibarra-Sánchez
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois, Urbana, IL, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois, Urbana, IL, USA
| | - Michael J Miller
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, USA.
| |
Collapse
|