1
|
Li C, Wang F, Ma Y, Wang W, Guo Y. Investigation of the regulatory mechanisms of Guiqi Yimu Powder on dairy cow fatty liver cells using a multi-omics approach. Front Vet Sci 2024; 11:1475564. [PMID: 39444735 PMCID: PMC11497463 DOI: 10.3389/fvets.2024.1475564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Fatty liver disease in dairy cows is a metabolic disorder that significantly affects their health and productivity, imposing a notable economic burden on the global dairy industry. Traditional Chinese medicine (TCM), characterized by its multi-component and multi-target features, has shown unique advantages in the prevention and treatment of various diseases. Guiqi Yimu Powder, a traditional TCM formula, enhances growth, boosts production efficiency, and strengthens immune function in livestock by regulating antioxidant along with anti-inflammatory pathways. However, its specific regulatory mechanisms on fatty liver in dairy cows remain unclear. This study aims to investigate the molecular-level effects and potential regulatory mechanisms of Guiqi Yimu Powder in a Trimethylamine N-oxide (TMAO) induced fatty liver cell model of dairy cows. Methods We employed a comprehensive analysis integrating transcriptomics, proteomics, metabolomics, and network pharmacology. An in vitro dairy cow fatty liver cell model was established using TMAO to induce lipid accumulation. Cells were treated with the optimal TMAO concentration identified through preliminary experiments, and further divided into a lipid accumulation group and Guiqi Yimu Powder treatment groups. The treatment groups received varying concentrations of Guiqi Yimu Powder (10, 20, 30, 40, or 50 g/L). High-throughput omics sequencing technologies were utilized to perform a comprehensive analysis of the treated cells. Bioinformatics methods were applied to explore the regulatory effects, aiming to elucidate the specific impacts of Guiqi Yimu Powder on lipid metabolism, liver function, and related signaling pathways, thereby providing scientific evidence for its potential application in the prevention and treatment of fatty liver in dairy cows. Results Guiqi Yimu Powder treatment significantly affected 1,536 genes, 152 proteins, and 259 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules are involved in multiple pathways related to the pathology of fatty liver, including metabolic pathways, glutathione metabolism, hepatitis B, and AMPK signaling pathway (p < 0.05). Notably, joint analysis highlighted the regulatory mechanisms of Guiqi Yimu Powder on glutathione cycling, with L-5-Oxoproline identified as an important metabolic compound. These findings indicate its impact on oxidative stress, energy metabolism, and liver function, suggesting potential therapeutic applications for fatty liver in dairy cows. Discussion This study elucidated the regulatory mechanisms of Guiqi Yimu Powder on fatty liver cells in dairy cows, providing new scientific evidence for its potential application in the prevention and treatment of fatty liver disease.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenjia Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Du C, Zhu La ALT, Gao S, Gao W, Ma L, Bu D, Zhang W. Hepatic Transcriptome Reveals Potential Key Genes Contributing to Differential Milk Production. Genes (Basel) 2024; 15:1229. [PMID: 39336820 PMCID: PMC11431119 DOI: 10.3390/genes15091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Despite the widespread adoption of TMR or PMR and the formulas designed to sufficiently cover the cows' requirements, individual dairy cows' milk production varies significantly. The liver is one of the most important organs in cow lactation metabolism and plays an essential role in the initiation of lactation. OBJECTIVES This study aimed to investigate the potential key genes in the liver contributing to the different milk production. METHODS We enrolled 64 cows and assigned them to high or low milk yield (MY) groups according to their first 3 weeks of milk production. We performed RNAseq for 35 liver samples with 18 from prepartum and 17 from postpartum cows. RESULTS The continuous milk yield observation showed a persistently higher milk yield in high MY cows than low MY cows in the first 3 weeks. High MY cows showed better feed conversion efficiency. We identified 795 differentially expressed genes (DGEs) in the liver of high MY cows compared with low MY cows, with up-regulated genes linked to morphogenesis and development pathways. Weighted gene co-expression network analysis (WGCNA) revealed four gene modules positively correlating with milk yield, and protein and lactose yield (p < 0.05). Using the intersected genes between the four gene modules and DEGs, we constructed the linear mixed-effects models and identified six hub genes positively associated and two hub genes negatively associated with milk yield (Coefficients > 0.25, p < 0.05). Random forest machine learning model training based on these eight hub genes could efficiently predict the milk yield (p < 0.001, R2 = 0.946). Interestingly, the expression patterns of these eight hub genes remained remarkably similar before and after parturition. CONCLUSIONS The present study indicated the critical role of liver in milk production. Activated processes involved in morphogenesis and development in liver may contribute to the higher milk production. Eight hub genes identified in this study may provide genetic research materials for dairy cow breeding.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - A La Teng Zhu La
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Shengtao Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Wenshuo Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010018, China; (S.G.); (W.G.)
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 271018, China;
| |
Collapse
|
3
|
Zhang J, Zhang X, Liu H, Wang P, Li L, Bionaz M, Lin P, Yao J. Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status. J Dairy Sci 2024:S0022-0302(24)00959-7. [PMID: 38908707 DOI: 10.3168/jds.2024-24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The transition from pregnancy to lactation is critical in dairy cows. Among others, dairy cows experience a metabolic stress due to a large change in glucose and lipid metabolism. Recent studies revealed that bile acids (BA), besides being involved in both the emulsification and solubilization of fats during intestinal absorption, can also affect the metabolism of glucose and lipids, both directly or indirectly by affecting the gut microbiota. Thus, we used untargeted and targeted metabolomics and 16S rRNA sequencing approaches to investigate the concentration of plasma metabolites and BA, the composition of the rectum microbial community, and assess their interaction in transition dairy cows. In Experiment 1, we investigated BA and other blood parameters and gut microbiota in dairy cows without clinical diseases during the transition period, which can be seen as well adapted to the challenge of changed glucose and lipid metabolism. As expected, we detected an increased plasma concentration of β-hydroxybutyrate (BHBA) and nonesterified fatty acids (NEFA) but decreased concentration of glucose, cholesterol, and triglycerides (TG). Untargeted metabolomic analysis of the plasma revealed primary BA biosynthesis was one of the affected pathways, and was consistent with the increased concentration of BA in the plasma. A correlation approach revealed a complex association between BA and microbiota with the host plasma concentration of glucose and lipid metabolites. Among BA, chenodeoxycholic acid derivates such as glycolithocholic acid, taurolithocholic acid, lithocholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites (such as glucose, TG, and NEFA). In Experiment 2, we investigated early postpartum dairy cows with or without hyperketonemia (HPK). As expected, HPK cows had increased concentration of NEFA and decreased concentrations of glucose and triglycerides. The untargeted metabolomic analysis of the plasma revealed that primary BA biosynthesis was also one of the affected pathways. Even though the BA concentration was similar among the 2 groups, the profiles of taurine conjugated BA changed significantly. A correlation analysis also revealed an association between BA and microbiota with the concentration in plasma of glucose and lipid metabolites (such as BHBA). Among BA, cholic acid and its derivates such as taurocholic acid, tauro α-muricholic acid, and taurodeoxycholic acid were the main hub nodes connecting microbe and blood metabolites. Our results indicated an association between BA, intestinal microbe, and glucose and lipid metabolism in transition dairy cows. These findings provide new insight into the adaptation mechanisms of dairy cows during the transition period.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Ghaffari MH, Sanz-Fernandez MV, Sadri H, Sauerwein H, Schuchardt S, Martín-Tereso J, Doelman J, Daniel JB. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in the liver. J Dairy Sci 2024; 107:4000-4016. [PMID: 38246557 DOI: 10.3168/jds.2023-24432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tiestall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to the dry period and further changes after calving. Changes were observed in several classes of compounds, including AA and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM), and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, as well as lipid digestion and absorption during the observation period. In particular, principal component analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | | | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - J Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | - J-B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
5
|
Cheng Z, Little MW, Ferris C, Takeda H, Ingvartsen KL, Crowe MA, Wathes DC. Influence of the concentrate inclusion level in a grass silage-based diet on hepatic transcriptomic profiles in Holstein-Friesian dairy cows in early lactation. J Dairy Sci 2023; 106:S0022-0302(23)00376-4. [PMID: 37474362 DOI: 10.3168/jds.2022-22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/15/2023] [Indexed: 07/22/2023]
Abstract
Excessive negative energy balance in early lactation is linked to an increased disease risk but may be mitigated by appropriate nutrition. The liver plays central roles in both metabolism and immunity. Hepatic transcriptomic profiles were compared between 3 dietary groups in each of 40 multiparous and 18 primiparous Holstein-Friesian cows offered isonitrogenous grass silage-based diets with different proportions of concentrates: (1) low concentrate (LC, 30% concentrate + 70% grass silage); (2) medium concentrate (MC, 50% concentrate + 50% grass silage), or (3) high concentrate (HC, 70% concentrate + 30% grass silage). Liver biopsies were taken from all cows at around 14 d in milk for RNA sequencing, and blood metabolites were measured. The sequencing data were analyzed separately for primiparous and multiparous cows using CLC Genomics Workbench V21 (Qiagen Digital Insights), focusing on comparisons between HC and LC groups. More differentially expressed genes (DEG) were seen between the primiparous cows receiving HC versus LC diets than for multiparous cows (597 vs. 497), with only 73 in common, indicating differential dietary responses. Multiparous cows receiving the HC diet had significantly higher circulating glucose and insulin-like growth factor-1 and lower urea than those receiving the LC diet. In response to HC, only the multiparous cows produced more milk. In these animals, bioinformatic analysis indicated expression changes in genes regulating fatty acid metabolism and biosynthesis (e.g., ACACA, ELOVL6, FADS2), increased cholesterol biosynthesis (e.g., CYP7A1, FDPS, HMGCR), downregulation in hepatic AA synthesis (e.g., GPT, GCLC, PSPH, SHMT2), and decreased expression of acute phase proteins (e.g., HP, LBP, SAA2). The primiparous cows on the HC diet also downregulated genes controlling AA metabolism and synthesis (e.g., CTH, GCLC, GOT1, ODC1, SHMT2) but showed higher expression of genes indicative of inflammation (e.g., CCDC80, IL1B, S100A8) and fibrosis (e.g., LOX, LUM, PLOD2). This potentially adverse response to a HC diet in physically immature animals warrants further investigation.
Collapse
Affiliation(s)
- Z Cheng
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - M W Little
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - K L Ingvartsen
- Department of Animal and Veterinary Science, Aarhus University, DK-8830 Tjele, Denmark
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - D C Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
6
|
Neves RC. Relationship between calcium dynamics and inflammatory status in the transition period of dairy cows. JDS COMMUNICATIONS 2023; 4:225-229. [PMID: 37360125 PMCID: PMC10285257 DOI: 10.3168/jdsc.2022-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/28/2023]
Abstract
Improvements in nutrition, management, and genetics of dairy cows over the last several decades have shifted research focus from clinical diseases to subclinical disorders, to which transition cows are particularly vulnerable. Recent studies on the characterization of subclinical hypocalcemia (SCH) indicate that the combined analysis of the degree, timing of suboptimal blood Ca concentration, and duration are most reflective of the disorder. Therefore, the understanding of blood Ca dynamics in early postpartum cows has emerged as an avenue to investigate the paths leading to a successful metabolic adaptation to lactation or not. The conundrum has been in defining whether SCH is the cause or a reflection of a greater underlying disorder. Immune activation and systemic inflammation have been proposed to be the root cause of SCH. However, there is a paucity of data investigating the mechanisms of how systemic inflammation can lead to reduced blood Ca concentration in dairy cows. The objective of this review is to discuss the links between systemic inflammation and reduced blood Ca concentration, and studies needed to advance knowledge on the interface between systemic inflammation and Ca metabolism for the transition dairy cow.
Collapse
|
7
|
Gu F, Zhu S, Tang Y, Liu X, Jia M, Malmuthuge N, Valencak TG, McFadden JW, Liu JX, Sun HZ. Gut microbiome is linked to functions of peripheral immune cells in transition cows during excessive lipolysis. MICROBIOME 2023; 11:40. [PMID: 36869370 PMCID: PMC9983187 DOI: 10.1186/s40168-023-01492-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Postpartum dairy cows experiencing excessive lipolysis are prone to severe immunosuppression. Despite the extensive understanding of the gut microbial regulation of host immunity and metabolism, its role during excessive lipolysis in cows is largely unknown. Herein, we investigated the potential links between the gut microbiome and postpartum immunosuppression in periparturient dairy cows with excessive lipolysis using single immune cell transcriptome, 16S amplicon sequencing, metagenomics, and targeted metabolomics. RESULTS The use of single-cell RNA sequencing identified 26 clusters that were annotated to 10 different immune cell types. Enrichment of functions of these clusters revealed a downregulation of functions in immune cells isolated from a cow with excessive lipolysis compared to a cow with low/normal lipolysis. The results of metagenomic sequencing and targeted metabolome analysis together revealed that secondary bile acid (SBA) biosynthesis was significantly activated in the cows with excessive lipolysis. Moreover, the relative abundance of gut Bacteroides sp. OF04 - 15BH, Paraprevotella clara, Paraprevotella xylaniphila, and Treponema sp. JC4 was mainly associated with SBA synthesis. The use of an integrated analysis showed that the reduction of plasma glycolithocholic acid and taurolithocholic acid could contribute to the immunosuppression of monocytes (CD14+MON) during excessive lipolysis by decreasing the expression of GPBAR1. CONCLUSIONS Our results suggest that alterations in the gut microbiota and their functions related to SBA synthesis suppressed the functions of monocytes during excessive lipolysis in transition dairy cows. Therefore, we concluded that altered microbial SBA synthesis during excessive lipolysis could lead to postpartum immunosuppression in transition cows. Video Abstract.
Collapse
Affiliation(s)
- Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Tang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Nilusha Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Ave S, Lethbridge, AB, T1J 4B1, Canada
| | - Teresa G Valencak
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, 507 Tower Rd, Ithaca, NY, 14850, USA
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
9
|
Wang Z, Wang Q, Tang C, Yuan J, Luo C, Li D, Xie T, Sun X, Zhang Y, Yang Z, Guo C, Cao Z, Li S, Wang W. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front Immunol 2023; 14:1018867. [PMID: 36776875 PMCID: PMC9911908 DOI: 10.3389/fimmu.2023.1018867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows' health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status.
Collapse
Affiliation(s)
- Zhonghan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuanlan Tang
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tian Xie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Wang G, Zhang J, Wu S, Qin S, Zheng Y, Xia C, Geng H, Yao J, Deng L. The mechanistic target of rapamycin complex 1 pathway involved in hepatic gluconeogenesis through peroxisome-proliferator-activated receptor γ coactivator-1α. ANIMAL NUTRITION 2022; 11:121-131. [PMID: 36204284 PMCID: PMC9516411 DOI: 10.1016/j.aninu.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Cattle can efficiently perform de novo generation of glucose through hepatic gluconeogenesis to meet post-weaning glucose demand. Substantial evidence points to cattle and non-ruminant animals being characterized by phylogenetic features in terms of their differing capacity for hepatic gluconeogenesis, a process that is highly efficient in cattle yet the underlying mechanism remains unclear. Here we used a variety of transcriptome data, as well as tissue and cell-based methods to uncover the mechanisms of high-efficiency hepatic gluconeogenesis in cattle. We showed that cattle can efficiently convert propionate into pyruvate, at least partly, via high expression of acyl-CoA synthetase short-chain family member 1 (ACSS1), propionyl-CoA carboxylase alpha chain (PCCA), methylmalonyl-CoA epimerase (MCEE), methylmalonyl-CoA mutase (MMUT), and succinate-CoA ligase (SUCLG2) genes in the liver (P < 0.01). Moreover, higher expression of the rate-limiting enzymes of gluconeogenesis, such as phosphoenolpyruvate carboxykinase (PCK) and fructose 1,6-bisphosphatase (FBP), ensures the efficient operation of hepatic gluconeogenesis in cattle (P < 0.01). Mechanistically, we found that cattle liver exhibits highly active mechanistic target of rapamycin complex 1 (mTORC1), and the expressions of PCCA, MMUT, SUCLG2, PCK, and FBP genes are regulated by the activation of mTORC1 (P < 0.001). Finally, our results showed that mTORC1 promotes hepatic gluconeogenesis in a peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) dependent manner. Collectively, our results not only revealed an important mechanism responsible for the quantitative differences in the efficiency of hepatic gluconeogenesis in cattle versus non-ruminant animals, but also established that mTORC1 is indeed involved in the regulation of hepatic gluconeogenesis through PGC-1α. These results provide a novel potential insight into promoting hepatic gluconeogenesis through activated mTORC1 in both ruminants and mammals.
Collapse
|
11
|
Busato S, Ford HR, Abdelatty AM, Estill CT, Bionaz M. Peroxisome Proliferator-Activated Receptor Activation in Precision-Cut Bovine Liver Slices Reveals Novel Putative PPAR Targets in Periparturient Dairy Cows. Front Vet Sci 2022; 9:931264. [PMID: 35903133 PMCID: PMC9315222 DOI: 10.3389/fvets.2022.931264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic challenges experienced by dairy cows during the transition between pregnancy and lactation (also known as peripartum), are of considerable interest from a nutrigenomic perspective. The mobilization of large amounts of non-esterified fatty acids (NEFA) leads to an increase in NEFA uptake in the liver, the excess of which can cause hepatic accumulation of lipids and ultimately fatty liver. Interestingly, peripartum NEFA activate the Peroxisome Proliferator-activated Receptor (PPAR), a transcriptional regulator with known nutrigenomic properties. The study of PPAR activation in the liver of periparturient dairy cows is thus crucial; however, current in vitro models of the bovine liver are inadequate, and the isolation of primary hepatocytes is time consuming, resource intensive, and prone to errors, with the resulting cells losing characteristic phenotypical traits within hours. The objective of the current study was to evaluate the use of precision-cut liver slices (PCLS) from liver biopsies as a model for PPAR activation in periparturient dairy cows. Three primiparous Jersey cows were enrolled in the experiment, and PCLS from each were prepared prepartum (−8.0 ± 3.6 DIM) and postpartum (+7.7± 1.2 DIM) and treated independently with a variety of PPAR agonists and antagonists: the PPARα agonist WY-14643 and antagonist GW-6471; the PPARδ agonist GW-50156 and antagonist GSK-3787; and the PPARγ agonist rosiglitazone and antagonist GW-9662. Gene expression was assayed through RT-qPCR and RNAseq, and intracellular triacylglycerol (TAG) concentration was measured. PCLS obtained from postpartum cows and treated with a PPARγ agonist displayed upregulation of ACADVL and LIPC while those treated with PPARδ agonist had increased expression of LIPC, PPARD, and PDK4. In PCLS from prepartum cows, transcription of LIPC was increased by all PPAR agonists and NEFA. TAG concentration tended to be larger in tissue slices treated with PPARδ agonist compared to CTR. Use of PPAR isotype-specific antagonists in PCLS cultivated in autologous blood serum failed to decrease expression of PPAR targets, except for PDK4, which was confirmed to be a PPARδ target. Transcriptome sequencing revealed considerable differences in response to PPAR agonists at a false discovery rate-adjusted p-value of 0.2, with the most notable effects exerted by the PPARδ and PPARγ agonists. Differentially expressed genes were mainly related to pathways involved with lipid metabolism and the immune response. Among differentially expressed genes, a subset of 91 genes were identified as novel putative PPAR targets in the bovine liver, by cross-referencing our results with a publicly available dataset of predicted PPAR target genes, and supplementing our findings with prior literature. Our results provide important insights on the use of PCLS as a model for assaying PPAR activation in the periparturient dairy cow.
Collapse
Affiliation(s)
- Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Hunter R. Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Charles T. Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- *Correspondence: Massimo Bionaz
| |
Collapse
|
12
|
Erol SA, Anuk AT, Tanaçan A, Semiz H, Keskin HL, Neşelioğlu S, Erel Ö, Moraloğlu Tekin Ö, Şahin D. An evaluation of maternal serum dynamic thiol-disulfide homeostasis and ischemia modified albumin changes in pregnant women with COVID-19. Turk J Obstet Gynecol 2022; 19:21-27. [PMID: 35343216 PMCID: PMC8966320 DOI: 10.4274/tjod.galenos.2022.72929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: It is thought that oxidative stress, free radicals, reactive oxygen species and reactive nitrogen species affect the pathophysiology of coronavirus disease-2019 (COVID-19). This study aimed to evaluate the oxidative status in pregnant patients with COVID-19 infection according to the changes seen in the levels of maternal serum thiol-disulfide and ischemia-modified albumin (IMA). Materials and Methods: A study group was formed of 40 pregnant women with confirmed COVID-19 infection (study group) and a control group of 40 healthy pregnant women with no risk factors determined. In this prospective, case-controlled study, analyses were made of the maternal serum native thiol, total thiol, disulfide, IMA, and disulfide/native thiol concentrations. Results: The maternal serum native thiol and total thiol concentrations in the study group were determined to be statistically significantly lower (p=0.007 and p=0.006, respectively), and the disulfide/native thiol ratio was higher but not to a level of statistical significance (p=0.473). There was no difference between the two groups regarding IMA levels (p=0.731). Conclusion: The thiol-disulfide balance was seen to shift in the oxidant direction in pregnancies with COVID-19, which might support the view that ischemic processes play a role in the etiopathogenesis of this novel disease.
Collapse
|