1
|
Shen Z, Wang H, Liang J, Zhao Q, Lu W, Cui Y, Wang P, Shen Q, Chen J. An in situ and real-time analytical method for detection of freeze-thew cycles in tuna via IKnife rapid evaporative ionization mass spectrometry. Food Chem X 2024; 23:101705. [PMID: 39229614 PMCID: PMC11369502 DOI: 10.1016/j.fochx.2024.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
Freezing is one of the most commonly used preservation methods for Bluefin tuna (Thunnus orientalis). However, repeated freezing and thawing would inevitably occur due to the temperature fluctuation, leading to the microstructure damage, lipid oxidation and protein integrity decline of tuna muscle without notable visual appearance change. In this study, we used a rapid evaporative ionization mass spectrometry (REIMS) technique for the real-time determination of the extent of repeated freezing and thawing cycles in tuna fillets. We found significant variance in the relative abundance of fatty acids between bluefin tuna and its fresh counterpart following freeze-thaw cycles. Meanwhile, the difference is statistically significant (p < 0.05). The quality of tuna remains largely unaffected by a single freeze-thaw cycle but significantly deteriorates after freeze-thaw cycles (freeze-thaw count ≥2), and the relative fatty acid content of the ionized aerosol analysis in the REIMS system positively correlated with the number of freeze-thaw cycles. Notably, palmitic acid (C 16:0, m/z 255.23), oleic acid (C 18:1, m/z 281.24), and docosahexaenoic acid (C 22:6, m/z 327.23) displayed the most pronounced changes within the spectrum of fatty acid groups.
Collapse
Affiliation(s)
- Zhifeng Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China
- Key Laboratory of Quality and Safety of Functional Food for State Market Regulation
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan 316000, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Jian Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Xia B, Hu R, Chen J, Shan S, Xu F, Zhang G, Zhou Z, Fan Y, Hu Z, Liang XJ. Oral Administration Properties Evaluation of Three Milk-Derived Extracellular Vesicles Based on Ultracentrifugation Extraction Methods. Adv Healthc Mater 2024; 13:e2401370. [PMID: 38767497 DOI: 10.1002/adhm.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Milk-derived extracellular vesicles (M-EVs) are low-cost, can be prepared in large quantities, and can cross the gastrointestinal barrier for oral administration. However, the composition of milk is complex, and M-EVs obtained by different extraction methods may affect their oral delivery. Based on this, a new method for extracting M-EVs based on cryogenic freezing treatment (Cryo-M-EVs) is proposed and compared with the previously reported acetic acid treatment (Acid-M-EVs) method and the conventional ultracentrifugation method (Ulltr-M-EVs). The new method simplifies the pretreatment step and achieves 25-fold and twofold higher yields than Acid-M-EVs and Ulltr-M-EVs. And it is interesting to note that Cryo-M-EVs and Acid-M-EVs have higher cellular uptake efficiency, and Cryo-M-EVs present the best transepithelial transport effect. After oral administration of the three M-EVs extracted by three methods in mice, Cryo-M-EVs effectively successfully cross the gastrointestinal barrier and achieve hepatic accumulation, whereas Acid-M-EVs and Ultr-M-EVs mostly reside in the intestine. The M-EVs obtained by the three extraction methods show a favorable safety profile at the cellular as well as animal level. Therefore, when M-EVs obtained by different extraction methods are used for oral drug delivery, their accumulation properties at different sites can be utilized to better deal with different diseases.
Collapse
Affiliation(s)
- Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runjing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Shaobo Shan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing, 100083, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Yu Z, Fu S, Li L, Liu Y. Quality characteristics of goat milk powder produced by freeze drying followed by UV-C radiation sterilization. Food Chem X 2024; 22:101495. [PMID: 38827021 PMCID: PMC11140183 DOI: 10.1016/j.fochx.2024.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Goat milk was directly freeze-dried into milk powder after freezing and then sterilized using UV-C radiation to produce low-dose, medium-dose and high-dose UV-C radiation sterilized freeze-dried goat milk powder (LGP, MGP and HGP). UV-C sterilization effectively reduced the total bacteria count and coliform bacteria in the goat milk powder while preserving the active proteins, and maintaining the color unchanged. Additionally, LGP, MGP, and HGP all exhibited a moisture content below 5 g/100 g and water activity below 0.5. Upon reconstitution, the milk powder formed uniform and stable emulsion. During accelerated storage tests, the increased Aw did not compromise the microbial quality of milk powder, and there were no significant changes in active proteins as confirmed via SDS-PAGE results. Furthermore, the color parameters (a*, b* and ΔE) showed a strong correlation with hydroxymethyl furfural levels.
Collapse
Affiliation(s)
- Zhezhe Yu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
4
|
Li A, Han X, Zheng J, Zhai J, Cui N, Du P, Xu J. Effects of Freezing Raw Yak Milk on the Fermentation Performance and Storage Quality of Yogurt. Foods 2023; 12:3223. [PMID: 37685156 PMCID: PMC10487070 DOI: 10.3390/foods12173223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, the effects of freezing yak milk at -20 °C and -40 °C for 30, 90 and 180 days on the fermentation characteristics and storage quality of the corresponding yogurt were discussed. The results showed that, compared with that of yogurt made from fresh yak milk, the lactic acid bacteria (LAB) growth and acid production rate of the yogurt in the -20 °C group decreased at 90 d. The water-holding capacity, viscosity and hardness decreased during storage, and a sour taste was prominent, while no significant changes were observed in the -40 °C group. At 180 d of freezing, the post-acidification of the yogurt in the -20 °C and -40 °C groups increased after 21 d of storage. Compared with the -40 °C group, the -20 °C group showed a significant decrease in LAB counts, a decrease in pH value to 3.63-3.80 and poor texture and sensory quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (A.L.); (X.H.); (J.Z.); (J.Z.); (N.C.); (P.D.)
| |
Collapse
|
5
|
Wang W, Jia R, Hui Y, Zhang F, Zhang L, Liu Y, Song Y, Wang B. Utilization of two plant polysaccharides to improve fresh goat milk cheese: Texture, rheological properties, and microstructure characterization. J Dairy Sci 2023; 106:3900-3917. [PMID: 37080791 DOI: 10.3168/jds.2022-22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 04/22/2023]
Abstract
This study aimed to evaluate the effects of added jujube polysaccharide (JP) and Lycium barbarum polysaccharide (LBP) on the texture, rheological properties, and microstructure of goat milk cheese. Seven groups of fresh goat milk cheese were produced with 4 levels (0, 0.2, 0.6, and 1%, wt/wt) of JP and LBP. The goat milk cheese containing 1% JP showed the highest water-holding capacity, hardness, and the strongest rheological properties by creating a denser and more stable casein network structure. In addition, the yield of goat milk cheese was substantially improved as a result of JP incorporation. Cheeses containing LBP expressed lower fat content, higher moisture, and softer texture compared with the control cheese. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analysis demonstrated that the addition of JP improved the stability of the secondary protein structure in cheese and significantly enhanced the binding capacity of the casein matrix to water molecules due to strengthened intermolecular interactions. The current research demonstrated the potential feasibility of modifying the texture of goat milk cheese by JP or LBP, available for developing tunable goat milk cheese to satisfy consumer preferences and production needs.
Collapse
Affiliation(s)
- Weizhe Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rong Jia
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuanyuan Hui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
6
|
Yu M, Peng M, Chen R, Chen J. Effect of Thermal Pretreatment on the Physiochemical Properties and Stability of Pumpkin Seed Milk. Foods 2023; 12:foods12051056. [PMID: 36900573 PMCID: PMC10000546 DOI: 10.3390/foods12051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
During the production of plant-based milk, thermal treatment of raw materials is an important processing method to improve the physicochemical and nutritional quality of the final products. The objective of this study was to examine the impact of thermal processing on the physiochemical properties and stability of pumpkin seed (Cucurbita pepo L.) milk. Raw pumpkin seeds were roasted at different temperatures (120 °C, 160 °C, and 200 °C), and then processed into milk using a high-pressure homogenizer. The study analyzed the microstructure, viscosity, particle size, physical stability, centrifugal stability, salt concentration, heat treatment, freeze-thaw cycle, and environment stress stability of the resulting pumpkin seed milk (PSM120, PSM160, PSM200). Our results showed that the microstructure of pumpkin seeds was loose and porous, forming a network structure because of roasting. As the roasting temperature increased, the particle size of pumpkin seed milk decreased, with PSM200 showing the smallest at 210.99 nm, while the viscosity and physical stability improved. No stratification was observed for PSM200 within 30 days. The centrifugal precipitation rate decreased, with PSM200 showing the lowest rate at 2.29%. At the same time, roasting enhanced the stability of the pumpkin seed milk in the changes in ion concentration, freeze-thaw, and heating treatment. The results of this study suggested that thermal processing was an important factor in improving the quality of pumpkin seed milk.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ronghua Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
7
|
Ma Y, Li J, Huang Y, Liu X, Dou N, Zhang X, Hou J, Ma J. Physicochemical stability and in vitro digestibility of goat milk affected by freeze-thaw cycles. Food Chem 2023; 404:134646. [DOI: 10.1016/j.foodchem.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
8
|
Mordvinova V, Sviridenko G, Ostroukhova I, Shukhalova O, Mamykin D. Study of the influence of the process of freezing milk on the safety of its properties of cheese suitability. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224601009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article presents the results of studies of the effect of freezing on the change in the physicochemical, microbiological and technological properties of goat milk and the preservation of its qualities of cheese suitability. A statistically significant dependence of the composition of milk on the duration of storage in a frozen state was revealed. There was no significant effect of freezing and defrosting modes on the quality indicators of milk. It has been established that changes in the technological properties of frozen goat milk after defrosting, such as the duration of coagulation and the ability to syneresis, are insignificant in comparison with defrosted cow's milk.
Collapse
|
9
|
Biegalski J, Cais-Sokolińska D, Tomaszewska-Gras J, Baranowska HM. The Effect of Freezing Sheep's Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese. Animals (Basel) 2021; 11:ani11092740. [PMID: 34573705 PMCID: PMC8466675 DOI: 10.3390/ani11092740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Sheep’s milk is usually produced on small farms. It is mainly used in the pro duction of cheese products. One of the methods of extending the shelf life of sheep’s milk is freezing it. In this study we examined the effect of freezing on sheep’s milk and a mixture of sheep’s and cow’s milk on the quality of fresh pasta filata cheeses produced from the milk. It has been proven that the freezing of milk affects the possibility of using it in later cheese processing. Freezing sheep’s milk influenced, among others, a greater hardness and less elasticity of the cheese. We also noticed that the addition of frozen sheep’s milk caused consumer dissatisfaction. Abstract Sheep’s milk is produced in smallholdings, which hinders the continuity of production. Therefore, freezing during periods of high production can be a solution. Herein, we examined the effect of freezing on sheep’s milk and a mixture of sheep and cow’s milk (70:30, v/v) on the quality of fresh pasta filata cheeses produced from the milk. Frozen/thawed sheep’s milk contributes little to the development of innovative and reformulated cheeses. This was due to 24% higher hardness and greater extensibility and cutting force, as well as lower stretching and elasticity. Although their flowability increased (Oiling-off from 3 to 12%), the meltability (tube test, and Schreiber test) decreased. Additionally, the use of frozen milk caused consumer dissatisfaction. The consumer penalty analysis of the just–about–right showed that freezing of the milk caused the loss of the refreshing, elasticity and shininess of pasta filata cheeses.
Collapse
Affiliation(s)
- Jakub Biegalski
- Department of Dairy Products Quality, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Dorota Cais-Sokolińska
- Department of Dairy Products Quality, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland;
- Correspondence: ; Tel.: +48-61-8487-317
| | - Jolanta Tomaszewska-Gras
- Department of Food Safety and Quality Management, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Hanna M. Baranowska
- Department of Physics and Biophysics, Poznań University of Life Sciences, ul. Wojska Polskiego 38/42, 60-637 Poznań, Poland;
| |
Collapse
|