1
|
Zhang C, Liu H, Jiang X, Zhang Z, Hou X, Wang Y, Wang D, Li Z, Cao Y, Wu S, Huws SA, Yao J. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. MICROBIOME 2024; 12:232. [PMID: 39529146 PMCID: PMC11555892 DOI: 10.1186/s40168-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows. RESULTS The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly heritable enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies (mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was positively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently positively correlated with ECM (CFI = 0.942). CONCLUSION Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota through SNP variants to regulate their own lactation performance. Video Abstract.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zhihong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Xinfeng Hou
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Al-Saiady M, Al-Shaheen T, El-Waziry A, Mohammed AENA. Effects of extruded flaxseed and Salmate ® inclusion in the diet on milk yield and composition, ruminal fermentation and degradation, and kinetic flow of digesta and fluid in lactating dairy cows in the subtropics. Vet World 2024; 17:540-549. [PMID: 38680160 PMCID: PMC11045532 DOI: 10.14202/vetworld.2024.540-549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Dietary supplements play pivotal roles in promoting productive and reproductive performance in ruminant animals. The aims of the present study were to evaluate the effects of extruded flaxseed and Salmate® (Ballard Group, Inc, OH, USA) inclusion in diets on milk yield and composition, ruminal degradation and fermentation, and flow of fluids and digesta in lactating cattle. Materials and Methods Six rumen-fistulated Holstein lactating cows were distributed to a 6 × 6 design of Latin square (L.S.). The groups were assorted into a control group fed a basal control diet and two treated groups fed diets containing extruded flaxseed (7.0%) or Salmate® (25 g/head/day). The basal control, extruded flaxseed, and Salmate® diets were formulated as isonitrogenous and isoenergetic. Each L.S. period of the group comprised 21 days, including 10 days for adaptation to the diet and 11 days for data sampling and recording. Results Feed intake did not differ among the control, extruded flaxseed, and Salmate® groups. Milk yield (kg) and protein and fat composition (%) were improved on feeding the extruded flaxseed diet compared with the Salmate® and control diets. Extruded flaxseed or Salmate® diet had no effect on the values of ruminal pH, ammonia, and volatile fatty acids except isobutyrate, which decreased in the Salmate® group. Degradable efficiency and ruminal digestibility were significantly decreased with the inclusion of extruded flaxseed and/or Salmate® in the diets. The extruded flaxseed and Salmate® groups had a greater digesta passage rate than the control group. The extruded flaxseed and control groups had a greater liquid passage rate than the Salmate® group. Conclusion The inclusion of extruded flaxseed in the diet improved (p < 0.05) milk yield, milk composition, and milk Omega-6: Omega-3 ratio with no changes in ruminal fermentation, notable negative effects on degradable efficiency and ruminal digestibility.
Collapse
Affiliation(s)
- Mohammed Al-Saiady
- Department of ARASCO Research and Development, P.O. Box 53845, Riyadh, 11593, Kingdom of Saudi Arabia
| | - Tarek Al-Shaheen
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hassa, 31982, Kingdom of Saudi Arabia
| | - Ahmed El-Waziry
- Department of Animal and Fish Production, Faculty of Agriculture, El-Shatby, Alexandria University, P.O. Box 21454, Egypt
| | - Abd El-Nasser Ahmed Mohammed
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hassa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Irawan A, Puerto-Hernandez GM, Ford HR, Busato S, Ates S, Cruickshank J, Ranches J, Estill CT, Trevisi E, Bionaz M. Feeding spent hemp biomass to lactating dairy cows: Effects on performance, milk components and quality, blood parameters, and nitrogen metabolism. J Dairy Sci 2024; 107:258-277. [PMID: 37690708 DOI: 10.3168/jds.2023-23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
The legalization of industrial hemp by the 2018 Farm Bill in the United States has driven a sharp increase in its cultivation, including for cannabinoid extraction. Spent hemp biomass (SHB), produced from the extraction of cannabinoids, can potentially be used as feed for dairy cows; however, it is still illegal to do so in the United States, according to the US Food and Drug Administration Center for Veterinary Medicine, due to the presence of cannabinoids and the lack of data on the effect on animals. To assess the safety of this byproduct as feed for dairy cows, late-lactation Jersey cows (245 ± 37 d in milk; 483 ± 38 kg body weight; 10 multiparous and 8 primiparous) received a basal total mixed ration (TMR) diet plus 13% alfalfa pellet (CON) or 13% pelleted SHB for 4 wk (intervention period [IP]) followed by 4 wk of withdrawal period (WP), where all cows received only the basal TMR during WP. The dry matter intake (DMI), body weight, body condition score, milk yield, milk components, and fatty acid profile, blood parameters, N metabolism, methane emission, and activity were measured. Results indicated that feeding SHB decreased DMI mainly due to the low palatability of the SHB pellet, as the cows consumed only 7.4% of the total TMR with 13.0% SHB pellet offered in the ration. However, milk yield was not affected during the IP and was higher than CON during the WP, leading to higher milk yield/DMI. Milk components were not affected, except for a tendency in decreased fat percentage. Milk fat produced by cows fed SHB had a higher proportion of oleate and bacteria-derived fatty acids than CON. The activity of the cows was not affected, except for a shorter overall lying time in SHB versus CON cows during the IP. Blood parameters related to immune function were not affected. Compared with CON, cows fed SHB had a lower cholesterol concentration during the whole experiment and higher β-hydroxybutyric acid during the WP, while a likely low-grade inflammation during the IP was indicated by higher ceruloplasmin and reactive oxidative metabolites. Other parameters related to liver health and inflammatory response were unaffected, except for a tendency for higher activity of alkaline phosphatase during IP and a lower activity of gamma-glutamyl transferase during WP in the SHB group versus CON. The bilirubin concentration was increased in cows fed SHB, suggesting a possible decrease in the clearance ability of the liver. Digestibility of the dry matter and protein and methane emission were not affected by feeding SHB. The urea, purine derivatives, and creatinine concentration in urine was unaffected, but cows fed SHB had higher N use efficiency and lower urine volume. Altogether, our data revealed a relatively low palatability of SHB affecting DMI with minimal biological effects, except for a likely low-grade inflammation, a higher N use efficiency, and a possible decrease in liver clearance. Overall, the data support the use of SHB as a safe feed ingredient for lactating dairy cows.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Universitas Sebelas Maret, Surakarta, 57126 Central Java, Indonesia
| | | | - Hunter Robert Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Jenifer Cruickshank
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Juliana Ranches
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331.
| |
Collapse
|
4
|
Fang Z, Jiang X, Wang S, Tai W, Jiang Q, Loor JJ, Yu H, Hao X, Chen M, Shao Q, Song Y, Lei L, Liu G, Du X, Li X. Nuciferine protects bovine hepatocytes against free fatty acid-induced oxidative damage by activating the transcription factor EB/peroxisome proliferator-activated receptor γ coactivator 1 alpha pathway. J Dairy Sci 2024; 107:625-640. [PMID: 37709032 DOI: 10.3168/jds.2022-22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Excessive free fatty acid (FFA) oxidation and related metabolism are the major cause of oxidative stress and liver injury in dairy cows during the early postpartum period. In nonruminants, activation of transcription factor EB (TFEB) can improve cell damage and reduce the overproduction of mitochondrial reactive oxygen species. As a downstream target of TFEB, peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α, gene name PPARGC1A) is a critical regulator of oxidative metabolism. Nuciferine (Nuc), a major bioactive compound isolated from the lotus leaf, has been reported to possess hepatoprotective activity. Therefore, the objective of this study was to investigate whether Nuc could protect bovine hepatocytes from FFA-induced lipotoxicity and the underlying mechanisms. A mixture of FFA was diluted in RPMI-1640 basic medium containing 2% low fatty acid bovine serum albumin to treat hepatocytes. Bovine hepatocytes were isolated from newborn calves and treated with various concentrations of FFA mixture (0, 0.3, 0.6, or 1.2 mM) or Nuc (0, 25, 50, or 100 μM), as well as co-treated with 1.2 mM FFA and different concentrations of Nuc. For the experiments of gene silencing, bovine hepatocytes were transfected with small interfering RNA targeted against TFEB or PPARGC1A for 36 h followed by treatment with 1.2 mM FFA for 12 h in presence or absence of 100 μΜ Nuc. The results revealed that FFA treatment decreased protein abundance of nuclear TFEB, cytosolic TFEB, total (t)-TFEB, lysosome-associated membrane protein 1 (LAMP1) and PGC-1α and mRNA abundance of LAMP1, but increased phosphorylated (p)-TFEB. In addition, FFA treatment increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) and decreased the activities of catalase (CAT) and glutathione peroxidase (GSH-Px) in bovine hepatocytes. Moreover, FFA administration enhanced the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactose dehydrogenase (LDH) in the medium of FFA-treated hepatocytes, but reduced the content of urea. In FFA-treated bovine hepatocytes, Nuc administration increased TFEB nuclear localization and the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, decreased the contents of MDA and H2O2 and the protein abundance of p-TFEB, and enhanced the activities of CAT and GSH-Px in a dose-dependent manner. Consistently, Nuc administration reduced the activities of ALT, AST, and LDH and increased the content of urea in the medium of FFA-treated hepatocytes. Importantly, knockdown of TFEB reduced the protein abundance of p-TFEB, t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, and impeded the beneficial effects of Nuc on FFA-induced oxidative damage in bovine hepatocytes. In addition, PPARGC1A silencing did not alter Nuc-induced nuclear translocation of TFEB, increase of the protein abundance of t-TFEB, LAMP1, and PGC-1α and mRNA abundance of LAMP1, or decrease of the protein abundance of p-TFEB, whereas it partially reduced the beneficial effects of Nuc on FFA-caused oxidative injury. Taken together, Nuc exerts protective effects against FFA-induced oxidative damage in bovine hepatocytes through activation of the TFEB/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiuhuan Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjun Tai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Hao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xue Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
de Freitas DS, Lopes GADG, Nascimento BR, Madureira AP, Campos-Junior PHA. C is-9, trans-11 and trans-10, cis-12 conjugated linoleic acid gastric administration during the pregestational and gestational periods does not influence the follicular endowment of the progeny. Anim Reprod 2023; 20:e20220124. [PMID: 37795199 PMCID: PMC10546913 DOI: 10.1590/1984-3143-ar2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 10/06/2023] Open
Abstract
Fetal programming suggests that maternal stimulation and nutrition during the period of fetal development can program the progeny. Conjugated linoleic acid (CLA), an isomer of linoleic acid, has been characterized in several aspects, but few studies have been performed on its involvement in reproduction and fetal programming. The aim of this study was to evaluate the F1, F2 and F3 progeny of female mice supplemented with CLA during the pregestational and gestational periods with respect to biometric and reproductive parameters, as well as ovarian morphophysiology. The F1 progeny of mothers supplemented with CLA exhibited stable weight gain, while the F2 progeny showed no effects (P=0.0187 and P=0.0245, respectively). A reduction in Lee's Index was observed in both generations at the second post-weaning evaluation week in the animals treated with CLA (P=0.0100 and P=0.0078, respectively). The F2 generation showed an increase in the anogenital index in both sexes of the animals treated with CLA (P= 0.0114 and P<0.0001, female and male respectively). CLA administration to mothers did not affect any of the following in their progeny: ovarian follicle mobilization (P>0.05), follicle number (P>0.05) and the integrated density of the lipid content of oocytes included in antral follicles (P>0.05). This study evaluated the use of CLA in mothers and found that it did not affect the progeny regarding murine reproductive performance, suggesting that this supplement can be used safely.
Collapse
Affiliation(s)
- Danielle Storino de Freitas
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | | - Barbara Rodrigues Nascimento
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | - Ana Paula Madureira
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | |
Collapse
|