1
|
Gupta M, Vaidya M, Kumar S, Singh G, Osei-Amponsah R, Chauhan SS. Heat stress: a major threat to ruminant reproduction and mitigating strategies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02805-3. [PMID: 39432081 DOI: 10.1007/s00484-024-02805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Stress is an external event or condition that puts pressure on a biological system. Heat stress is defined as the combination of internal and external factors acting on an animal to cause an increase in body temperature and elicit a physiological response. Heat stress is a set of conditions caused by overexposure to or overexertion at excess ambient temperature and leads to the inability of animals to dissipate enough heat to sustain homeostasis. Heat exhaustion, heat stroke, and cramps are among the symptoms. For the majority of mammalian species, including ruminants, heat stress has a negative impact on physiological, reproductive, and nutritional requirements. Reproductive functions, including the male and female reproductive systems, are negatively affected by heat stress. It decreases libido and spermatogenic activity in males and negatively affects follicle development, oogenesis, oocyte maturation, fertilization, implantation, and embryo-fetal development in females. These effects lead to a decrease in the rate of reproduction and financial losses for the livestock industry. Understanding the impact of heat stress on reproductive tissues will aid in the development of strategies for preventing heat stress and improving reproductive functions. Modification of the microenvironment, nutritional control, genetic development of heat-tolerant breeds, hormonal treatment, estrous synchronization, timed artificial insemination, and embryo transfer are among the strategies used to reduce the detrimental effects of heat stress on reproduction. These strategies may also increase the likelihood of establishing pregnancy in farm animals.
Collapse
Affiliation(s)
- Mahesh Gupta
- Maharashtra Animal & Fishery Sciences University, Nagpur, Maharashtra, 440001, India.
- Department of Veterinary Physiology, Nagpur Veterinary College, MAFSU, Nagpur, M.S, 440006, India.
| | - Mangesh Vaidya
- Maharashtra Animal & Fishery Sciences University, Nagpur, Maharashtra, 440001, India
| | - Sachin Kumar
- ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Gyanendra Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Richard Osei-Amponsah
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, Dookie College, The University of Melbourne, Dookie College, Melbourne, VIC, 3647, Australia
- Department of Animal Science, School of Agriculture, University of Ghana, Legon, Ghana
| | - Surinder Singh Chauhan
- School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, Dookie College, The University of Melbourne, Dookie College, Melbourne, VIC, 3647, Australia
| |
Collapse
|
2
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif 2024; 57:e13526. [PMID: 37417221 PMCID: PMC10771118 DOI: 10.1111/cpr.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary MedicineMansoura UniversityMansouraEgypt
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | | |
Collapse
|
4
|
Khan I, Mesalam A, Heo YS, Lee SH, Nabi G, Kong IK. Heat Stress as a Barrier to Successful Reproduction and Potential Alleviation Strategies in Cattle. Animals (Basel) 2023; 13:2359. [PMID: 37508136 PMCID: PMC10376617 DOI: 10.3390/ani13142359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In recent decades, the adverse effects of global warming on all living beings have been unanimously recognized across the world. A high environmental temperature that increases the respiration and rectal temperature of cattle is called heat stress (HS), and it can affect both male and female reproductive functions. For successful reproduction and fertilization, mature and healthy oocytes are crucial; however, HS reduces the developmental competence of oocytes, which compromises reproduction. HS disturbs the hormonal balance that plays a crucial role in successful reproduction, particularly in reducing the luteinizing hormone and progesterone levels, which leads to severe problems such as poor follicle development with a poor-quality oocyte and problems related to maturity, silent estrus, abnormal or weak embryo development, and pregnancy loss, resulting in a declining reproduction rate and losses for the cattle industry. Lactating cattle are particularly susceptible to HS and, hence, their reproduction rate is substantially reduced. Additionally, bulls are also affected by HS; during summer, semen quality and sperm motility decline, leading to compromised reproduction. In summer, the conception rate is reduced by 20-30% worldwide. Although various techniques, such as the provision of water sprinklers, shade, and air conditioning, are used during summer, these methods are insufficient to recover the normal reproduction rate and, therefore, special attention is needed to improve reproductive efficiency and minimize the detrimental effect of HS on cattle during summer. The application of advanced reproductive technologies such as the production of embryos in vitro, cryopreservation during the hot season, embryo transfer, and timed artificial insemination may minimize the detrimental effects of HS on livestock reproduction and recover the losses in the cattle industry.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biomedical Engineering, College of Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yun Seok Heo
- Department of Biomedical Engineering, College of Engineering, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
- Department of Premedicine, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Seo-Hyun Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
- The King Kong Corp., Ltd., Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Rhoads ML. Review: Reproductive consequences of whole-body adaptations of dairy cattle to heat stress. Animal 2023; 17 Suppl 1:100847. [PMID: 37567679 DOI: 10.1016/j.animal.2023.100847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 08/13/2023] Open
Abstract
Heat stress has far-reaching ramifications for agricultural production and the severity of its impact has increased alongside the growing threats of global warming. Climate change is exacerbating the already-severe consequences of seasonal heat stress and is predicted to cause additional losses in reproductive performance, milk production and overall productivity. Estimated and predicted losses are staggering, and without advancement in production practices during heat stress, these projected losses will threaten the human food supply. This is particularly concerning as the worldwide population and, thus, demand for animal products grows. As such, there is an urgent need for the development of technologies and management strategies capable of improving animal production capacity and efficiency during periods of heat stress. Reproduction is a major component of animal productivity, and subfertility during thermal stress is ultimately the result of both reproductive and whole-body physiological responses to heat stress. Improving reproductive performance during seasonal heat stress requires a thorough understanding of its effects on the reproductive system as well as other physiological systems involved in the whole-body response to elevated ambient temperature. To that end, this review will explore the reproductive repercussions of whole-body consequences of heat stress, including elevated body temperature, altered metabolism and circulating lipopolysaccharide. A comprehensive understanding of the physiological responses to heat stress is a prerequisite for improving fertility, and thus, the overall productivity of dairy cattle experiencing heat stress.
Collapse
Affiliation(s)
- M L Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
da Silva WC, da Silva JAR, Camargo-Júnior RNC, da Silva ÉBR, dos Santos MRP, Viana RB, Silva AGME, da Silva CMG, Lourenço-Júnior JDB. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front Vet Sci 2023; 10:1083469. [PMID: 37065229 PMCID: PMC10102491 DOI: 10.3389/fvets.2023.1083469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Thermal stress causes severe effects on the wellbeing and reproduction of cattle, including changes in oogenesis and spermatogenesis, generating great concerns, which last for decades. In cattle, the occurrence of thermal stress is associated with a reduction in the production of spermatozoids and ovarian follicles, in addition to the increase of major and minor defects in gametes or in their intermediate stages. In bovine females able to reproduce, a reduction in the rate of estrus manifestation and an increase in embryonic mortality has been observed. Therefore, keeping animals on good welfare conditions, with water supply and in shaded areas can favor the improvement of different reproductive parameters. For all this, the present study aimed to gather, synthesize and argue recent studies related to animal welfare, focusing on the effects of thermal stress on the reproduction of cattle, aiming to support possible strategies to mitigate the harmful effects of thermal stress in this species.
Collapse
Affiliation(s)
- Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
- *Correspondence: Welligton Conceição da Silva
| | | | - Raimundo Nonato Colares Camargo-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | | | | | - Rinaldo Batista Viana
- Federal Rural University of the Amazon (UFRA), Institute of Animal Health and Production, Belém, Brazil
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| | - Cleidson Manoel Gomes da Silva
- Federal University of the South and Southeast of Pará (UNIFESSPA), Institute of Veterinary Medicine, Xinguara, Pará, Brazil
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), UFRA, Brazilian Agricultural Research Corporation (EMBRAPA), Castanhal, Brazil
| |
Collapse
|
7
|
Miętkiewska K, Kordowitzki P, Pareek CS. Effects of Heat Stress on Bovine Oocytes and Early Embryonic Development-An Update. Cells 2022; 11:4073. [PMID: 36552837 PMCID: PMC9776454 DOI: 10.3390/cells11244073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress is a major threat to cattle reproduction today. It has been shown that the effect of high temperature not only has a negative effect on the hormonal balance, but also directly affects the quality of oocytes, disrupting the function of mitochondria, fragmenting their DNA and changing their maternal transcription. Studies suggest that the induction of HSP70 may reduce the apoptosis of granular layer cells caused by heat stress. It has been shown that the changes at the transcriptome level caused by heat stress are consistent with 46.4% of blastocyst development disorders. Cows from calves exposed to thermal stress in utero have a lower milk yield in their lifetime, exhibit immunological disorders, have a lower birth weight and display a shorter lifespan related to the expedited aging. In order to protect cow reproduction, the effects of heat stress at the intracellular and molecular levels should be tracked step by step, and the impacts of the dysregulation of thermal homeostasis (i.e., hyperthermy) should be taken into account.
Collapse
Affiliation(s)
- Klaudia Miętkiewska
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Pawel Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Chandra S. Pareek
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
8
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
9
|
Liu Y, Guo S, He X, Jiang Y, Hong Q, Lan R, Chu M. Effect of Upregulation of Transcription Factor TFDP1 Binding Promoter Activity Due to RBP4 g.36491960G>C Mutation on the Proliferation of Goat Granulosa Cells. Cells 2022; 11:cells11142148. [PMID: 35883591 PMCID: PMC9321149 DOI: 10.3390/cells11142148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Retinol-binding protein 4 (RBP4), a member of the lipocalin family, is a specific carrier of retinol (vitamin A) in the blood. Numerous studies have shown that RBP4 plays an important role in mammalian embryonic development and that mutations in RBP4 can be used for the marker-assisted selection of animal reproductive traits. However, there are few studies on the regulation of reproduction and high-prolificacy traits by RBP4 in goats. In this study, the 5′ flanking sequence of RBP4 was amplified, and a G>C polymorphism in the promoter region -211 bp (g.36491960) was detected. An association analysis revealed that the respective first, second and third kidding number and mean kidding number of nanny goats with CC and GC genotypes (2.167 ± 0.085, 2.341 ± 0.104, 2.529 ± 0.107 and 2.189 ± 0.070 for CC and 2.052 ± 0.047, 2.206 ± 0.057, 2.341 ± 0.056 and 2.160 ± 0.039 for GC) were significantly higher (p < 0.05) than those with the GG genotype (1.893 ± 0.051, 2.027 ± 0.064, 2.107 ± 0.061 and 1.74 ± 0.05). The luciferase assay showed that luciferase activity was increased in C allele individuals compared with that in G allele individuals. A competitive electrophoretic mobility shift assay (EMSA) showed that individuals with the CC genotype had a stronger promoter region binding capacity than those with the GG genotype. In addition, transcription factor prediction software showed that the RBP4 g.36491960G>C mutation added a novel binding site for transcription factor DP-1 (TFDP1). RT−qPCR results showed that the expression of TFDP1 was significantly higher in the high-prolificacy group than in the low-prolificacy group, and the expression of RBP4 was higher in both the CC and GC genotypes than that in the GG genotype. TFDP1 overexpression significantly increased the expression of RBP4 mRNA (p < 0.05) and the expression of the cell proliferation factors cyclin-D1, cyclin-D2 and CDK4 (p < 0.05). The opposite trend was observed after interference with TFDP1. Both the EdU and CCK-8 results showed that TFDP1 expression could regulate the proliferation of goat ovarian granulosa cells. In summary, our results showed that RBP4 g.36491960G>C was significantly associated with fecundity traits in goats. The g.36491960G>C mutation enhanced the transcriptional activity of RBP4 and increased the expression of RBP4, thus improving the fertility of Yunshang black goats.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Siwu Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
- Correspondence: ; Tel.: +86-10-62819850; Fax: +86-10-62895351
| |
Collapse
|
10
|
Báez F, López Darriulat R, Rodríguez-Osorio N, Viñoles C. Effect of season on germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes. J Therm Biol 2022; 103:103171. [PMID: 35027190 DOI: 10.1016/j.jtherbio.2021.103171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
Although the reproductive performance of grazing cattle is lower in summer compared to winter, the effect of season on oocyte developmental competence has not been thoroughly examined. We measured the effect of season on oocyte chromatin compaction, cumulus cell quality, and embryonic development after in vitro fertilization. Cumulus oocytes-complexes (COCs) were collected from abattoir cows' ovaries during the winter and summer months. First, we evaluated the degree of chromatin compaction in germinal vesicle (GV) oocytes (GV1 through GV3), which is associated with different degrees of developmental competence. Then, we determined the apoptotic index in cumulus cells from immature and in vitro matured COCs. Finally, in vitro matured oocytes were fertilized to determine blastocyst rate and embryo quality. During the summer months, we observed a significantly lower proportion of oocytes reaching the GV3 stage and higher levels of DNA fragmentation in cumulus cell. As a result, blastocyst yield and quality were reduced during the summer months. In conclusion, summer negatively affected oocyte GV stage progression, cumulus cell quality, and embryo development. Increased cumulus cell DNA fragmentation during summer, may partially explain the reduced oocyte maturation capacity, considering the relevance of cumulus-oocyte communication during this stage.
Collapse
Affiliation(s)
- Francisco Báez
- Polo de Desarrollo Universitario (PDU) Instituto Superior de la Carne, Centro Universitario Regional Noreste, UdelaR, Ruta 5, km 386, Tacuarembó 45000, Uruguay.
| | - Ramiro López Darriulat
- Polo de Desarrollo Universitario (PDU) Instituto Superior de la Carne, Centro Universitario Regional Noreste, UdelaR, Ruta 5, km 386, Tacuarembó 45000, Uruguay
| | - Nélida Rodríguez-Osorio
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, UdelaR, Rivera 1350, Salto 50000, Uruguay
| | - Carolina Viñoles
- PDU Centro de Salud Reproductiva de Rumiantes en Sistemas Agroforestales, Centro Universitario Regional Noreste, UdelaR, Ruta 26, km 408, Cerro Largo 37000, Uruguay
| |
Collapse
|
11
|
KAWANO K, YANAGAWA Y, NAGANO M, KATAGIRI S. Effects of heat stress on the endometrial epidermal growth factor profile and fertility in dairy cows. J Reprod Dev 2022; 68:144-151. [PMID: 35095040 PMCID: PMC8979802 DOI: 10.1262/jrd.2021-120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endometrial epidermal growth factor (EGF) profile is an indicator of uterine function and fertility in cattle. The present study aimed to investigate the effects of heat stress on the
endometrial EGF profile and fertility in lactating Holstein cows. The endometrial EGF profiles of 365 cows in the Hokkaido and Kyushu regions were examined between June and September (heat
stress period, n = 211) and between October and January (control period, n = 154). EGF profiles were investigated using uterine endometrial tissues obtained by biopsy 3 days after estrus
(Day 3). The proportion of cows with an altered EGF profile was higher between June and September than between October and January (41.2 vs. 16.2%, P < 0.05). The effects
of rectal temperature on Days 0 and 3 on the endometrial EGF profile were also assessed in cows (n = 79) between June and September in the Kyushu region. A single embryo was transferred to
cow on Day 7 to evaluate fertility (n = 67). Regardless of the rectal temperature on Day 3, the proportion of cows with an altered EGF profile was higher (64.1 vs. 30.0%, P
< 0.05) and the pregnancy rate after embryo transfer (ET) was lower (26.7 vs. 51.4%, P < 0.05) in cows with a rectal temperature ≥ 39.5°C on Day 0 than in cows with a
rectal temperature < 39.5°C on Day 0. The present results indicate that alterations in the endometrial EGF profile induced by an elevated body temperature on Day 0 contributed to
reductions in fertility in lactating dairy cows during the heat stress period.
Collapse
Affiliation(s)
- Kohei KAWANO
- Laboratory of Theriogenology, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yojiro YANAGAWA
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masashi NAGANO
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Seiji KATAGIRI
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
12
|
Rowinski JR, Rispoli LA, Payton RR, Schneider LG, Schrick FN, McLean KJ, Edwards JL. Impact of an acute heat shock during in vitro maturation on interleukin 6 and its associated receptor component transcripts in bovine cumulus-oocyte complexes. Anim Reprod 2021; 17:e20200221. [PMID: 33936291 PMCID: PMC8081495 DOI: 10.1590/1984-3143-ar2020-0221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An acute heat stress event after the LH surge increased interleukin 6 (IL6) levels in the follicular fluid of the ovulatory follicle in hyperthermic cows. To examine direct consequences of a physiologically-relevant elevated temperature (41.0°C) on the cumulus-oocyte complex (COC), IL6 transcript abundance and related receptor components were evaluated throughout in vitro maturation. Heat-induced increases in IL6 were first noted at 4 hours of in vitro maturation (hIVM); peak levels occurred at 4.67 versus 6.44 hIVM for 41.0 and 38.5°C COCs, respectively (SEM = 0.23; P < 0.001). Peak IL6ST levels occurred at 6.95 versus 8.29 hIVM for 41.0 and 38.5°C, respectively (SEM = 0.23; P < 0.01). Transcript for LIF differed over time (P < 0.0001) but was not affected by 41.0°C exposure. Blastocyst development after performing IVF was not affected by 41.0°C exposure for 4 or 6 h. When limiting analysis to when IL6 was temporally produced, progesterone levels were only impacted by time and temperature (no interaction). Heat-induced shift in the temporal production of IL6 and IL6ST along with its impact on progesterone likely cooperate in heat-induced hastening of meiotic progression described by others.
Collapse
Affiliation(s)
- Julia R Rowinski
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA.,Cincinnati Zoo & Botanical Garden, Cincinnati, OH, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Liesel G Schneider
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - F Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Kyle J McLean
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| |
Collapse
|
13
|
Sirotkin AV, Parkanyi V, Pivko J. High temperature impairs rabbit viability, feed consumption, growth and fecundity: examination of endocrine mechanisms. Domest Anim Endocrinol 2021; 74:106478. [PMID: 32846372 DOI: 10.1016/j.domaniend.2020.106478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to examine the effect of high ambient temperature on rabbit feed consumption, growth, viability, and fecundity, as well as the morphology and endocrine function of gonadal and adrenal cells. Adult does and their offspring were kept at either a comfortable (20°C; control) or high (36°C) temperature throughout pregnancy and up until weaning of pups. Doe mortality and fecundity, and plasma concentrations of hormones were evaluated. In addition, granulosa cells were cultured with and without FSH to assess progesterone production. In the offspring, we assessed mortality, total feed consumption, feed efficiency, growth, plasma hormone concentrations, as well as the microstructure in ovarian granulosa cells, testicular Leydig cells, and adrenocortical cells. We observed greater mortality of both adult animals and offspring at the higher ambient temperature compared with the control. The higher ambient temperature suppressed feed consumption, feed efficiency, and growth of pups. Adult and young females exposed to a high temperature had lower circulating concentrations of progesterone, but not of estradiol, compared with controls. Young males exposed to a high ambient temperature had greater circulating concentrations of testosterone, but not progesterone, compared with controls. High ambient temperature reduced circulating IGF-I concentrations in all the animals. Corticosterone level was increased in plasma of young but not of adult animals. Granulosa cells isolated from the ovaries of does subjected to high temperatures released less progesterone, and they had poorer response to the stimulatory action of FSH than the cells from control does. High temperatures induced fragmentation of nucleoli in ovarian granulosa cells, but they did not alter the state of other organelles in ovarian, testicular, or adrenocortical cells. A negative influence of high temperature on rabbit feed consumption, growth, viability, and fecundity was observed. Taken together, these changes could be due to a decrease in IGF-I and/or progesterone secretion, destruction of ovarian cell nucleoli, and/or impaired ovarian cell response to FSH.
Collapse
Affiliation(s)
- A V Sirotkin
- Constantine the Philosopher University, 949 74 Nitra, Slovakia; Research Institute for Animal Production, National Agricultural and Food Centre, 11 Nitra, 951 41 Lužianky, Slovakia.
| | - V Parkanyi
- Research Institute for Animal Production, National Agricultural and Food Centre, 11 Nitra, 951 41 Lužianky, Slovakia
| | - J Pivko
- Research Institute for Animal Production, National Agricultural and Food Centre, 11 Nitra, 951 41 Lužianky, Slovakia
| |
Collapse
|
14
|
Moura MT, Paula-Lopes FF. Thermoprotective molecules to improve oocyte competence under elevated temperature. Theriogenology 2020; 156:262-271. [PMID: 32784066 DOI: 10.1016/j.theriogenology.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Heat stress is an environmental factor that challenges livestock by disturbing animal homeostasis. Despite the broad detrimental effects of heat stress on reproductive function, the germline and the early preimplantation embryo are particularly prone. There is extensive evidence that elevated temperature reduces oocyte developmental competence through a series of cellular and molecular damages. Further research revealed that the oocyte respond to stress by activating cellular mechanisms such as heat shock response, unfolded protein response and autophagy to improve survival under heat shock. Such knowledge paved the way for the identification of thermoprotective molecules that alleviate heat-induced oocyte oxidative stress, organelle damage, and apoptosis. Therefore, this review depicts the deleterious effects of heat shock on oocyte developmental competence, heat-induced cellular and molecular changes, outlines pro-survival cellular mechanisms and explores thermoprotective molecules to improve oocyte competence.
Collapse
Affiliation(s)
- Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil
| | - Fabíola F Paula-Lopes
- Department of Biological Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil.
| |
Collapse
|
15
|
Bouroutzika E, Kouretas D, Papadopoulos S, Veskoukis AS, Theodosiadou E, Makri S, Paliouras C, Michailidis ML, Caroprese M, Valasi I. Effects of Melatonin Administration to Pregnant Ewes under Heat-Stress Conditions, in Redox Status and Reproductive Outcome. Antioxidants (Basel) 2020; 9:antiox9030266. [PMID: 32210209 PMCID: PMC7139596 DOI: 10.3390/antiox9030266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heat stress is a known promoter of reactive oxygen species generation, which may compromise pregnancy and foetal development. Melatonin is a pleiotropic molecule that regulates various processes including pregnancy. Thus, it could be used to ameliorate the redox status of pregnant heat-stressed ewes and the outcome of their pregnancy. Sixty-eight ewes participated in the study, which were allocated into two equal groups, i.e., Melatonin (M) and Control (C) group. All ewes were exposed to heat stress from D0 to D120. In both groups, after oestrus synchronization of ewes, rams were introduced to them for mating (D16). In M group, starting with sponges’ insertion (D0), melatonin implants were administered four-fold every 40 days. Pregnancy diagnosis was performed by means of ultrasonography. Daily evaluation of temperature humidity index (THI), rectal temperature, and breathing rate were performed throughout the study. Blood samples were collected repeatedly from D0 until weaning for assaying redox biomarkers. Milk yield was measured thrice during puerperium. The results showed that melatonin administration throughout pregnancy improved the redox status of heat-stressed ewes and increased the mean number and bodyweight of lambs born per ewe, as well as the milk production. Therefore, melatonin may be used as antioxidant regimen in heat-stressed ewes for improving their reproductive traits.
Collapse
Affiliation(s)
- Efterpi Bouroutzika
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.B.); (E.T.); (C.P.); (M.-L.M.)
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (D.K.); (A.S.V.); (S.M.)
| | - Serafeim Papadopoulos
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou str., 38446 Volos, Greece;
| | - Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (D.K.); (A.S.V.); (S.M.)
| | - Ekaterini Theodosiadou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.B.); (E.T.); (C.P.); (M.-L.M.)
| | - Sotiria Makri
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece; (D.K.); (A.S.V.); (S.M.)
| | - Charilaos Paliouras
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.B.); (E.T.); (C.P.); (M.-L.M.)
| | | | - Mariangela Caroprese
- Department of Sciences of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Irene Valasi
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; (E.B.); (E.T.); (C.P.); (M.-L.M.)
- Correspondence:
| |
Collapse
|
16
|
Rispoli LA, Edwards JL, Pohler KG, Russell S, Somiari RI, Payton RR, Schrick FN. Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows. PLoS One 2019; 14:e0227095. [PMID: 31887207 PMCID: PMC6936800 DOI: 10.1371/journal.pone.0227095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
We hypothesized that heat-induced perturbations in cumulus cells surrounding the maturing oocyte may extend to the mural granulosa of the periovulatory follicle in the heat-stressed cow to subsequently the follicular fluid proteome. Lactating Holsteins were pharmacologically stimulated to have a dominant follicle that was capable of responding to a gonadotropin releasing hormone-induced luteinizing hormone surge. Following gonadotropin releasing hormone administration, cows were maintained at ~67 temperature humidity index (THI; thermoneutral conditions) or exposed to conditions simulating an acute heat stress event (71 to 86 THI; heat stress for ~12 h). Dominant follicle collection was conducted in the periovulatory period ~16 h after gonadotropin releasing hormone. Follicular fluid proteome from thermoneutral (n = 5) and hyperthermic (n = 5) cows was evaluated by quantitative tandem mass spectrometry (nano LC-MS/MS). We identified 35 differentially-abundant proteins. Functional annotation revealed numerous immune-related proteins. Subsequent efforts revealed an increase in levels of the proinflammatory mediator bradykinin in follicular fluid (P = 0.0456) but not in serum (P = 0.9319) of hyperthermic cows. Intrafollicular increases in transferrin (negative acute phase protein) in hyperthermic cows (P = 0.0181) coincided with a tendency for levels to be increased in the circulation (P = 0.0683). Nine out of 15 cytokines evaluated were detected in follicular fluid. Heat stress increased intrafollicular interleukin 6 levels (P = 0.0160). Whether hyperthermia-induced changes in the heat-stressed cow's follicular fluid milieu reflect changes in mural granulosa, cumulus, other cell types secretions, and/or transudative changes from circulation remains unclear. Regardless of origin, heat stress/hyperthermia related changes in the follicular fluid milieu may have an impact on components important for ovulation and competence of the cumulus-oocyte complex contained within the periovulatory follicle.
Collapse
Affiliation(s)
- Louisa A. Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Ky G. Pohler
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - Stephen Russell
- ITSI–Biosciences, LLC, Johnstown, PA, United States of America
| | | | - Rebecca R. Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| | - F. Neal Schrick
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, United States of America
| |
Collapse
|
17
|
Sammad A, Umer S, Shi R, Zhu H, Zhao X, Wang Y. Dairy cow reproduction under the influence of heat stress. J Anim Physiol Anim Nutr (Berl) 2019; 104:978-986. [PMID: 31782564 DOI: 10.1111/jpn.13257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Dairy farming is vulnerable to global warming and climate change. Improving and maintaining conception rates (CRs) have a paramount importance for the profitability of any dairy enterprise. There is an antagonistic relationship between fertility and milk yield, and intensive selection for milk yield has severely deteriorated reproductive efficiency. Irrespective of geography and husbandry, modern dairy cows experience heat stress (HS) effects leading to fertility declines, but it worsens in tropical climates. The threshold of HS experience among modern dairy cow has lowered, leading to decreased thermal comfort zone. Studies show that this threshold is lower for fertility than for lactation. HS abatement and robustness response to lactation yield lead to negative energy balance, and cow's reproductive requirements remain unfulfilled. The adverse effects of HS commence from developing oocyte throughout later stages and its fertilization competence; the oestrus cycle and oestrus behaviour; the embryo development and implantation; on uterine environment; and even extend towards foetal calf. Even cows can become acyclic under the influence of HS. These harmful effects of HS arise due to hyperthermia, oxidative stress and physiological modifications in the body of dairy cows. Proper assessment of HS and efficient cooling of dairy animals irrespective of their stage of life at farm is the immediate strategy to reduce fertility declines. Other long- and short-term mitigation strategies to reduce fertility declines during HS include feeding care, reducing disease and mastitis rates, using semen from cooled bulls, timed artificial inseminations (AI), allied hormonal interventions and use of embryo transfer technology. Ultimate long-term solution should be well-planned breeding for fertility improvement and HS tolerance.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| | - Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Shi
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Abazarikia AH, Zhandi M, Shakeri M, Towhidi A, Yousefi AR. In vitro supplementation of trans-10, cis-12 conjugated linoleic acid ameliorated deleterious effect of heat stress on bovine oocyte developmental competence. Theriogenology 2019; 142:296-302. [PMID: 31708194 DOI: 10.1016/j.theriogenology.2019.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
Abstract
Environmental stresses, such as heat stress (HS), have been shown to have diverse effects on the developmental competence of oocytes. The aim of this study was to determine the effect of exogenous conjugated linoleic acid (CLA) supplementation in maturation medium on bovine oocyte maturation and developmental competence under HS condition. Accordingly, cumulus-oocyte complexes (COCs) were cultured at 41 °C and 38.5 °C for the first and second 12 h of maturation in the presence of 0 (PC), 50 (CLA50-HS) and 100 (CLA100-HS) μM CLA. Also, a group of COCs were cultured at 38.5 °C for 24 h of maturation without CLA supplementation as negative control (NC). Nuclear maturation, level of intracellular glutathione (GSH), reactive oxygen species (ROS) content, cleavage and blastocyst rates as well as relative expression of BAX, and BCL2 genes in blastocysts were investigated. Our finding for the PC and NC groups revealed that HS decreased the percentage of MII oocytes, cleavage and blastocyst rates (P < 0.05). Moreover, HS lead to an increase in ROS levels and relative expression of BAX gene, decreased the intracellular content of GSH and relative expression of BCL2 gene (P < 0.05). However, the cleavage and blastocyst rates tended to increase in the CLA-supplemented groups compared to PC group (p < 0.10). Also, ROS and GSH levels in the matured oocytes decreased and increased in the CLA50-HS group compared to the PC group (P < 0.05), respectively. The ratio of expression levels of BAX to BCL2 genes was not different between the PC and CLA50-HS groups (P > 0.05). These findings suggest that HS has undesirable effects on the maturation competence of bovine oocyte and subsequent embryo development while administration of CLA can ameliorate some of adverse effects of HS.
Collapse
Affiliation(s)
- Amir Hossein Abazarikia
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Malak Shakeri
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Armin Towhidi
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Iran
| |
Collapse
|
19
|
Hansen PJ. Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Anim Reprod 2019; 16:497-507. [PMID: 32435293 PMCID: PMC7234026 DOI: 10.21451/1984-3143-ar2019-0053] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heat stress causes a large decline in pregnancy success per insemination during warm times of the year. Improvements in fertility are possible by exploiting knowledge about how heat stress affects the reproductive process. The oocyte can be damaged by heat stress at the earliest stages of folliculogenesis and remains sensitive to heat stress in the peri-ovulatory period. Changes in oocyte quality due to heat stress are the result of altered patterns of folliculogenesis and, possibly, direct effects of elevated body temperature on the oocyte. While adverse effects of elevated temperature on the oocyte have been observed in vitro, local cooling of the ovary and protective effects of follicular fluid may limit these actions in vivo. Heat stress can also compromise fertilization rate. The first seven days of embryonic development are very susceptible to disruption by heat stress. During these seven days, the embryo undergoes a rapid change in sensitivity to heat stress from being very sensitive (2- to 4-cell stage) to largely resistant (by the morulae stage). Direct actions of elevated temperature on the embryo are likely to be an important mechanism for reduction in embryonic survival caused by heat stress. An effective way to avoid effects of heat stress on the oocyte, fertilization, and early embryo is to bypass the effects through embryo transfer because embryos are typically transferred into females after acquisition of thermal resistance. There may be some opportunity to mitigate effects of heat stress by feeding antioxidants or regulating the endocrine environment of the cow but neither approach has been reduced to practice. The best long-term solution to the problem of heat stress may be to increase genetic resistance of cows to heat stress. Thermotolerance genes exist within dairy breeds and additional genes can be introgressed from other breeds by traditional means or gene editing.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Negrón-Pérez VM, Fausnacht DW, Rhoads ML. Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. J Dairy Sci 2019; 102:10695-10710. [PMID: 31521355 DOI: 10.3168/jds.2019-16718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022]
Abstract
Impaired fertility during periods of heat stress is the culmination of numerous physiological responses to heat stress, ranging from reduced estrus expression and altered follicular function to early embryonic death. Furthermore, heat-stressed dairy cattle exhibit a unique metabolic status that likely contributes to the observed reduction in fertility. An understanding of this unique physiological response can be used as a basis for improving cow management strategies, thereby reducing the negative effects of heat stress on reproduction. Potential opportunities for improving the management of dairy cattle during heat stress vary greatly and include feed additives, targeted cooling, genetic selection, embryo transfer and, potentially, crossbreeding. Previous studies indicate that dietary interventions such as melatonin and chromium supplementation could alleviate some of the detrimental effects of heat stress on fertility, and that factors involved in the methionine cycle would likely do the same. These supplements, particularly chromium, may improve reproductive performance during heat stress by alleviating insulin-mediated damage to the follicle and its enclosed cumulus-oocyte complex. Beyond feed additives, some of the simplest, yet most effective strategies involve altering the timing of feeding and cooling to take advantage of comparatively low nighttime temperatures. Likewise, expansion of cooling systems to include breeding-age heifers and dry cows has significant benefits for dams and their offspring. More complicated but promising strategies involve the calculation of breeding values for thermotolerance, the identification of genomic markers for heat tolerance, and the development of bedding-based conductive cooling systems. Unfortunately, no single approach can completely rescue the fertility of lactating dairy cows during heat stress. That said, region-appropriate combinations of strategies can improve reproductive measures to reasonable levels.
Collapse
Affiliation(s)
- V M Negrón-Pérez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - D W Fausnacht
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | - M L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061.
| |
Collapse
|
21
|
Min L, Li D, Tong X, Nan X, Ding D, Xu B, Wang G. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1283-1302. [PMID: 31218396 DOI: 10.1007/s00484-019-01744-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Heat stress responses negatively impact production performance, milk quality, body temperature, and other parameters in dairy cows. As global warming continues unabated, heat stress in dairy cows is likely to become more widespread in the future. To address this challenge, researchers have evaluated a number of potentially available nutritional strategies, including dietary fat, dietary fiber, dietary microbial additives, minerals, vitamins, metal ion buffer, plant extracts, and other anti-stress additives. In this paper, we discuss the evidence for the efficacy of these nutritional strategies aimed at alleviating the detrimental effects of heat stress in dairy cows. It was comprised of the treatment (dosage and usage), animal information (lactation stage and number of dairy cows), THI value (level of heat stress), duration of exposure, the changes of feed intake and milk yield (production performance), the changes of milk protein and milk fat (milk quality), the changes of rectal temperature and respiration rate (body temperature), other indices, and reference resources. The results of these studies are presented with statistical justification in the tables. In total, the 49 kinds of dietary interventions derived from these eight types of nutritional strategies may provide an appropriate means of mitigating heat stress on a particular dairy farm based on the explanation of the results.
Collapse
Affiliation(s)
- Li Min
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dagang Li
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiong Tong
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Diyun Ding
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
22
|
Zhao Y, Li C, Zhou X. Transcriptomic Analysis of Porcine Granulosa Cells Overexpressing Retinol Binding Protein 4. Genes (Basel) 2019; 10:genes10080615. [PMID: 31412686 PMCID: PMC6722559 DOI: 10.3390/genes10080615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Retinol binding protein 4 (RBP4), mainly secreted by the liver and adipocytes, is a transporter of vitamin A. RBP4 has been shown to be involved in several pathophysiological processes, such as obesity, insulin resistance, and cardiovascular risk. Reports have indicated the high expression levels of RBP4 in cystic follicles. However, the role of RBP4 in mammalian follicular granulosa cells (GCs) remains largely unknown. To illustrate the molecular pathways associated with the effects of RBP4 on GCs, we used high-throughput sequencing to detect differential gene expression in GCs overexpressing RBP4. A total of 113 differentially expressed genes (DEGs) were identified in RBP4-overexpressing GCs, and they included 71 upregulated and 42 downregulated genes. The differential expressions of the top 10 DEGs were further confirmed by real-time quantitative polymerase chain reaction. Pathway analysis indicated that the DEGs are mostly involved in oxidative phosphorylation, Parkinson’s disease, non-alcoholic fatty liver disease, Huntington’s disease, cardiac muscle contraction, Alzheimer’s disease, fatty acid biosynthesis, AMP-activated protein kinase signaling pathway, and insulin signaling pathway. Genes in these pathways should be useful for future studies on GCs. Altogether, the results of our study establish a framework for understanding the potential functions of RBP4 in porcine GCs.
Collapse
Affiliation(s)
- Yun Zhao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chunjin Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
23
|
Báez F, Camargo Á, Reyes AL, Márquez A, Paula-Lopes F, Viñoles C. Time-dependent effects of heat shock on the zona pellucida ultrastructure and in vitro developmental competence of bovine oocytes. Reprod Biol 2019; 19:195-203. [PMID: 31208934 DOI: 10.1016/j.repbio.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the effects of different exposure lenght to heat shock (HS) during in vitro maturation (IVM) on zona pellucida (ZP) ultrastructure and developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were matured in vitro (IVM) at 38.5 °C for 24 h (control group, CG), or incubated at 41 °C (HS) for 6 h (HS-6h), 12 h (HS-12h), 18 h (HS-18h), and 22h (HS-22h) followed by incubation at 38.5 °C to complete a full 24-h period of maturation. After IVM, oocytes were subjected to scanning electron microscopy (SEM) or in vitro fertilization and culture until the blastocyst stage. For heat-shocked oocytes, with exception of those in the HS-6h group, SEM examinations revealed that ZP surfaces were rough and characterized by a presence of spongy network. Oocytes from the HS-22h group displayed an increase in the number of pores, as well as a higher proportion of oocytes with amorphous ZPs. The proportion of oocytes that reached metaphase II (MII) stage decreased in all HS groups, regardless of the duration of exposure to 41 °C. These results provide evidence that HS during IVM for 12-22 h reduces the developmental competence of bovine oocytes, increasing the percentage of oocytes with abnormal chromosomal organization, and reducing fertilization and blastocysts formation rate. The effects of HS were more pronounced for the 22-h exposure group. The damage induced by HS on oocyte function clearly increased upon exposure to elevated temperature.
Collapse
Affiliation(s)
- Francisco Báez
- Instituto Superior de la Carne, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay.
| | - Álvaro Camargo
- Instituto Superior de Estudios Forestales, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay
| | - Ana Laura Reyes
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Alejandro Márquez
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Fabíola Paula-Lopes
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275 Jardim Eldorado, 09972-270, Diadema, SP, Brazil
| | - Carolina Viñoles
- Centro de Salud Reproductiva de Rumiantes en Sistemas Agroforestales, Casa de la Universidad de Cerro Largo, UdelaR, Ruta 26, km 408, Cerro Largo, Uruguay
| |
Collapse
|
24
|
Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation. ZYGOTE 2019; 27:180-186. [PMID: 31171044 DOI: 10.1017/s0967199419000236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SummaryHeat shock may disrupt oocyte function by increasing the generation of reactive oxygen species (ROS). We evaluated the capacity of the antioxidant melatonin to protect oocytes using two models of oxidative stress - heat shock and the pro-oxidant menadione. Bovine cumulus-oocyte complexes (COC) were exposed in the presence or absence of 1 µM melatonin to the following treatments during maturation: 38.5°C, 41°C and 38.5°C+5 µM menadione. In the first experiment, COC were matured for 3 h with 5 µM CellROX® and analyzed by epifluorescence microscopy to quantify production of ROS. The intensity of ROS was greater for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin reduced ROS intensity for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. In the second experiment, COC were matured for 22 h. After maturation, oocytes were fertilized and the embryos cultured for 7.5 days. The proportion of oocytes that cleaved after fertilization was lower for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin increased cleavage for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. Melatonin tended to increase the developmental competence of embryos from heat-shocked oocytes but not for embryos from oocytes exposed to menadione or from control oocytes. In conclusion, melatonin reduced production of ROS of maturing oocytes and protected oocytes from deleterious effects of both stresses on competence of the oocyte to cleave after coincubation with sperm. These results suggest that excessive production of ROS compromises oocyte function.
Collapse
|
25
|
Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol Reprod Dev 2019; 86:1307-1323. [PMID: 30767310 DOI: 10.1002/mrd.23123] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Global warming represents a major stressful environmental condition that compromises the reproductive efficiency of animals and humans via a rise of body temperature above its physiological homeothermic point (heat stress [HS]). The injuries caused by HS on reproductive function involves both male and female components, fertilization mechanisms as well as the early and late stages of embryo-fetal development. This occurrence causes great economic damage in livestock, and, in wild animals creates selective pressure towards the advantages of better-adapted genotypes to the detriment of others. Humans undergo several types of stress, including heat, and these represent putative causes of ongoing progressive decay in procreation; an increasing number of remedies in the form of antioxidant preparations are now being proposed to counteract the effects of stress. This review aims to describe the results of the most recent studies that aimed to highlight these effects and to draw information on the mechanisms acting as the basis of this problem from a comparative analysis.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
26
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
27
|
Payton RR, Rispoli LA, Nagle KA, Gondro C, Saxton AM, Voy BH, Edwards JL. Mitochondrial-related consequences of heat stress exposure during bovine oocyte maturation persist in early embryo development. J Reprod Dev 2018; 64:243-251. [PMID: 29553057 PMCID: PMC6021609 DOI: 10.1262/jrd.2017-160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperthermia during estrus has direct consequences on the maturing oocyte that carries over to the resultant embryo to compromise its ability to continue in development. Because early embryonic development is reliant upon maternal transcripts and other ooplasmic components, we examined impact of heat stress on bovine oocyte transcripts using microarray. Oocytes were matured at 38.5ºC for 24 h or 41.0ºC for the first 12 h of in vitro maturation; 38.5ºC thereafter. Transcriptome profile was performed on total (adenylated + deadenylated) RNA and polyadenylated mRNA populations. Heat stress exposure altered the abundance of several transcripts important for mitochondrial function. The extent to which transcript differences are coincident with functional changes was evaluated by examining reactive oxygen species, ATP content, and glutathione levels. Mitochondrial reactive oxygen species levels were increased by 6 h exposure to 41.0ºC while cytoplasmic levels were reduced compared to controls (P < 0.0001). Exposure to 41.0ºC for 12 h increased total and reduced glutathione levels in oocytes at 12 h but reduced them by 24 h (time × temperature P < 0.001). ATP content was higher in heat-stressed oocytes at 24 h (P < 0.0001). Heat-induced increases in ATP content of matured oocytes persisted in early cleavage-stage embryos (8- to 16-cell embryos; P < 0.05) but were no longer apparent in blastocysts (P > 0.05). Collectively, results indicate that direct exposure of maturing oocytes to heat stress may alter oocyte mitochondrial processes/function, which is inherited by the early embryo after fertilization.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Kimberly A Nagle
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Brynn H Voy
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| |
Collapse
|
28
|
Abdelatty AM, Iwaniuk ME, Potts SB, Gad A. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int J Vet Sci Med 2018; 6:S1-S5. [PMID: 30761314 PMCID: PMC6161856 DOI: 10.1016/j.ijvsm.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
The global population is expected to increase from 7.6 to 9.6 billion people from 2017 to 2050. Increased demand for livestock production and rising global temperatures have made heat stress (HS) a major challenge for the dairy industry. HS been shown to have negative effects on production parameters such as dry matter intake, milk yield, and feed efficiency. In addition to affecting production parameters, HS has also been shown to have negative effects on the reproductive functions of dairy cows. Mitigation of HS effects on dairy cow productivity and fertility necessitate the strategic planning of nutrition, and environmental conditions. The current review will discuss the potential nutriepigenomic strategies to mitigate the effect of HS on bovine embryo.
Collapse
Affiliation(s)
- Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, 11221 Giza, Egypt
| | - Marie E. Iwaniuk
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Sarah B. Potts
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
29
|
Effects of natural environment on reproductive histo-morphometric dynamics of female dromedary camel. Anim Reprod Sci 2017; 181:30-40. [PMID: 28413155 DOI: 10.1016/j.anireprosci.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 11/20/2022]
Abstract
Camel shows a seasonal breeding pattern with enhanced reproductive activity during the period of low climatic temperature, high rainfall and better food conditions. Therefore, the study was conducted to explore the underlying seasonal effects on histological dimensions of reproductive tract in adult female one-humped camel (Camelus dromedarius) kept in the natural environment of Pakistan. A total 25 reproductive tracts were collected during spring, summer, autumn and winter seasons and were analysed for histo-morphometric parameters during different environmental conditions. A significant increase in number (p<0.05) and size (p<0.05) of surface with secondary and tertiary ovarian follicles was observed in winter season. The epithelial height (p<0.05) and luminal diameter (p<0.05) of infundibulum, ampulla and isthmus of uterine tubes were also significantly increased during winter season. Moreover, significantly increased length (p<0.05) and circumference (p<0.05) of uterine cornua, increased number (p<0.001) and diameter (p<0.001) of endometrial glands with enlarged surface and glandular epithelia (p<0.001) were found in winter compared to summer season. Therefore, we concluded that quiescent ovarian follicular and uterine glandular activities are the main reason of camel low breeding during summer season.
Collapse
|
30
|
Rizos D, Maillo V, Sánchez-Calabuig MJ, Lonergan P. The Consequences of Maternal-Embryonic Cross Talk During the Periconception Period on Subsequent Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:69-86. [PMID: 28864985 DOI: 10.1007/978-3-319-62414-3_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The periconception period comprises the final maturation of sperm and the processes of fertilization and early embryonic development, which take place in the oviduct. The final goal of these important events is to lead to establishment of pregnancy leading to the birth of healthy offspring. Studies in rodents and domestic animals have demonstrated that environmental conditions experienced during early development affect critical aspects of future growth, metabolism, gene expression, and physiology. Similarly, in vitro culture of embryos can be associated with changes in fetal growth, gene expression and regulation, and postnatal behavior.In the oviduct, the cross talk between the mother and gametes/embryo begins after ovulation, between the oocyte and the female reproductive tract, and continues with the sperm and the early embryo after successful fertilization. These signals are mainly the result of direct interaction of gametes and embryos with oviductal and endometrial cells, influencing the microenvironment at the specific location. Identifying and understanding the mechanisms involved in this cross talk during the critical period of early reproductive events leading to pregnancy establishment could potentially lead to improvements in current in vitro embryo production systems in domestic mammals and humans. In this review, we discuss current knowledge of the short- and long-term consequences of in vitro embryo production on embryo development.
Collapse
Affiliation(s)
- Dimitrios Rizos
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain.
| | - Veronica Maillo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain
| | - Maria-Jesús Sánchez-Calabuig
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km. 5,9, 28040, Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
31
|
Curcacycline A and B modulate apoptosis induced by heat stress in sheep oocytes during in vitro maturation. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Li Y, Zhang Z, He C, Zhu K, Xu Z, Ma T, Tao J, Liu G. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res 2015; 59:365-75. [PMID: 26291611 DOI: 10.1111/jpi.12268] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 12/14/2022]
Abstract
Melatonin is a pleiotropic molecule which plays an important role in animal reproductive activities. Because of the increased global warming, the impact of heat stress (HS) on stockbreeding has become an inevitable issue to be solved. To investigate the potential effects of melatonin on the in vitro maturation of porcine oocyte under the HS, a HS model for porcine oocyte maturation has been used in this study and the different concentrations of melatonin (10(-6) -10(-9) m) were also tested for their protective effects on oocytes. The polar body rate, the index of the nuclear maturation of the oocytes, and the cleavage rate as well as the blastocyst rate were measured to evaluate the developmental competence of the oocytes after parthenogenetic activation (PA). The results showed that HS [in vitro maturation (IVM) 20-24 hr, 42°C] significantly reduced the polar body rate of oocytes and the blastocyte rate of porcine PA embryos, while melatonin (10(-7) m) application not only improved polar body rate and blastocyte rate, but also preserved the normal levels of steroid hormone which is disrupted by HS. The presence of melatonin (10(-7) m) during the oocyte maturation under the HS reduced reactive oxygen species (ROS) formation, enhanced glutathione (GSH) production, inhibited cell apoptosis, and increased the gene expressions of SIRT1, AKT2, and Polg2. Importantly, the endogenously occurring melatonin of cumulus-oocyte complexes was significantly induced by HS. The results indicated that melatonin application effectively protected the oocytes from HS. These observations warranted the further studies in vivo regarding to improve the reproductive activities of animals under the global warming environment.
Collapse
Affiliation(s)
- Yu Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhenZhen Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ChangJiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - KuanFeng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - ZhiYuan Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Teng Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - JingLi Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - GuoShi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Xinjiang Agricultural University, Wulumuqi, Xinjiang, China
| |
Collapse
|
33
|
Pavani K, Carvalhais I, Faheem M, Chaveiro A, Reis FV, da Silva FM. Reproductive Performance of Holstein Dairy Cows Grazing in Dry-summer Subtropical Climatic Conditions: Effect of Heat Stress and Heat Shock on Meiotic Competence and In vitro Fertilization. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:334-42. [PMID: 25656191 PMCID: PMC4341077 DOI: 10.5713/ajas.14.0480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/14/2014] [Accepted: 11/02/2014] [Indexed: 11/27/2022]
Abstract
The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43' N 27° 12' W) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C), HS1 (39.5°C) and HS2 (40.5°C). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was 71.7±0.7 and the CR (40.2±1.5%) while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (±8.0) to 44.3% (±8.1), while embryos development ranged from 53.8% (±5.8) to 36.3% (±3.3) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every 1°C rising temperature (78.4±8.0, 21.7±3.1 and 8.9±2.2, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.
Collapse
Affiliation(s)
| | | | - Marwa Faheem
- Department of Animal Production Science, Faculty of Agriculture, Cairo University, 12613 Giza,
Egypt
| | | | - Francisco Vieira Reis
- Centre of Climate, Meteorology and Global Change of the University of the Azores, Angra do Heroísmo 9700-042,
Portugal
| | - Fernando Moreira da Silva
- Corresponding Author: Fernando Moreira da Silva. Tel: +351-295-402200, Fax: +351-295-402209, E-mail:
| |
Collapse
|
34
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|
35
|
Ashraf S, Shah SM, Saini N, Dhanda S, Kumar A, Goud TS, Singh MK, Chauhan MS, Upadhyay RC. Developmental competence and expression pattern of bubaline (Bubalus bubalis) oocytes subjected to elevated temperatures during meiotic maturation in vitro. J Assist Reprod Genet 2014; 31:1349-60. [PMID: 24938361 PMCID: PMC4171417 DOI: 10.1007/s10815-014-0275-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To determine the direct effect of physiologically relevant high temperatures (40.5 and 41.5 °C) for two time periods (12 and 24 h) on bubaline oocytes during in vitro maturation. METHOD The control group oocytes were cultured at 38.5 °C for 24 h. The treatment 1 (T1) and 3 (T3) group oocytes were cultured at 40.5 and 41.5 °C respectively, for the first 12 h and at 38.5 °C for rest of the 12 h. However, treatment 2 (T2) and 4 (T4) group oocytes were cultured at 40.5 and 41.5 °C for complete 24 h. RESULTS Development of oocytes to blastocyst was severely compromised (p < 0.001) when matured at 40.5 and 41.5 °C for both exposure periods (12 h and 24 h). It was found that the cleavage rates, blastocyst yield and mean cell number decreased remarkably (p < 0.001) in the treatment groups compared to control. The relative mRNA expression of heat shock protein (Hsp 70.1, 70.2, 70.8, 60, 10 and HSF1), pro-apoptotic (caspases-3, -7, -8, Bid and Bax) and oxidative stress (iNOS) related genes was significantly higher (p < 0.05) in all the treatment groups compared to control. However, mRNA abundance of anti-apoptotic (Bcl-2, Mcl-1, Bcl-xl), glucose transport (Glut1, Glut3 and IGF1R), developmental competence (ZAR1 and BMP15) and oxidative stress (MnSOD) related genes was significantly decreased (p < 0.05) in the treatment groups compared to control. CONCLUSION The present study clearly establishes that physiologically relevant elevated temperatures during in vitro meiotic maturation reduce developmental competence of bubaline oocytes.
Collapse
Affiliation(s)
- Syma Ashraf
- />Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Syed Mohammad Shah
- />Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Neha Saini
- />Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - Suman Dhanda
- />Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Anil Kumar
- />Dairy Cattle Physiology, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - T. Sridhar Goud
- />Dairy Cattle Physiology, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - M. K. Singh
- />Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - M. S. Chauhan
- />Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001 Haryana India
| | - R. C. Upadhyay
- />Dairy Cattle Physiology, National Dairy Research Institute, Karnal, 132001 Haryana India
| |
Collapse
|
36
|
Balboula AZ, Yamanaka K, Sakatani M, Kawahara M, Hegab AO, Zaabel SM, Takahashi M. Cathepsin B activity has a crucial role in the developmental competence of bovine cumulus-oocyte complexes exposed to heat shock during in vitro maturation. Reproduction 2013; 146:407-17. [PMID: 23898216 DOI: 10.1530/rep-13-0179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cathepsin B was found to be correlated inversely with the quality of bovine oocytes and embryos. The aims of this study were to evaluate i) the relationship between heat shock during in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COCs) and cathepsin B activity in relation to apoptosis and ii) the effect of supplementation of cathepsin B inhibitor (E-64) during IVM of heat-shocked COCs on embryonic development. After IVM at 38.5 °C for 22 h (control group) or at 38.5 °C for 5 h followed by 41 °C for 17 h (heat shock group) either with or without 1 μM E-64, activities and protein expression of cathepsin B and caspase 3 were evaluated as well as TUNEL staining. After IVF, developmental rate, total cell number, and the percentage of apoptotic cells in blastocysts were evaluated on day 8 (day 0, IVF day). Heat-shocked IVM COCs showed significantly high activities and expressions of both cathepsin B, and caspase 3 accompanied by a significant increase in number of TUNEL-positive cells. Addition of E-64 significantly decreased the activities of cathepsin B and caspase 3, and TUNEL-positive cells in heat-shocked IVM COCs. Moreover, addition of 1 μM E-64 during IVM under heat shock conditions significantly improved both developmental competence and quality of the produced embryos. These results indicate that heat shock induction of cathepsin B is associated with apoptosis of COCs, and inhibition of cathepsin B activity can improve the developmental competence of heat-shocked COCs during IVM.
Collapse
Affiliation(s)
- A Z Balboula
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 2421 Suya, Kumamoto 861-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Cebrian-Serrano A, Salvador I, Raga E, Dinnyes A, Silvestre MA. Beneficial Effect of Melatonin on BlastocystIn VitroProduction from Heat-Stressed Bovine Oocytes. Reprod Domest Anim 2013; 48:738-46. [DOI: 10.1111/rda.12154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - I Salvador
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | - E Raga
- Centro de Tecnología Animal; Instituto Valenciano de Investigaciones Agrarias; Segorbe; Spain
| | | | | |
Collapse
|
38
|
Maya-Soriano M, Taberner E, Sabés-Alsina M, López-Béjar M. Retinol might stabilize sperm acrosomal membrane in situations of oxidative stress because of high temperatures. Theriogenology 2013; 79:367-73. [DOI: 10.1016/j.theriogenology.2012.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 01/27/2023]
|
39
|
Mullen MP, Forde N, Parr MH, Diskin MG, Morris DG, Nally JE, Evans ACO, Crowe MA. Alterations in systemic concentrations of progesterone during the early luteal phase affect RBP4 expression in the bovine uterus. Reprod Fertil Dev 2012; 24:715-22. [PMID: 22697121 DOI: 10.1071/rd11246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022] Open
Abstract
Systemic progesterone affects the timing and duration of uterine endometrial gene and protein expression and has significant effects on conceptus development. The objective of the present study was to examine how changes in progesterone concentrations during the early luteal phase affect retinol-binding protein (RBP4) mRNA and protein concentrations in the uterus. Endometrial tissue and uterine flushings were recovered on Days 7 and 13 of the oestrous cycle in heifers with high, normal and low progesterone concentrations. RBP4 mRNA and protein concentrations were higher (P<0.05) on Day 13 compared with Day 7 in heifers with high and control progesterone concentrations. However, there was no difference in RBP4 protein concentrations between Days 7 and 13 in heifers with low progesterone (P>0.05). On Day 7, although heifers with low progesterone had lower RBP4 mRNA expression compared with controls (P<0.05) there was no difference in protein concentrations between treatment groups. On Day 13, RBP4 mRNA was 2-fold higher (P<0.001) in heifers with high and control progesterone compared with their low-progesterone counterparts and RBP4 protein concentrations were over 2-fold higher (P<0.001) in heifers with high compared to low progesterone. In conclusion, progesterone modulates uterine RBP4 mRNA and protein abundance in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Michael P Mullen
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Heat stress (HS) is especially harmful for bovine ovarian follicle development and oocyte competence. Furthermore, HS causes premature aging in oocytes due to high levels of reactive oxygen species (ROS), involved in the harmful effects over the oocyte maturation and the steroidogenic activity of follicular cells. In this study, the presumptive protective effects of antioxidant agents on heat-stressed oocytes were evaluated. Heifer oocytes were matured for 22 h under control (38°C) and HS conditions (41.5°C at 18-21 h of maturation). For each oocyte, nuclear stage and cortical granule (CG) distribution were evaluated. Steroidogenic activity of cumulus cells was also recorded. The antioxidant agents used in the study were: retinol (1.43 μg/ml), retinyl (0.28 μg/ml) and oleic acid (0.05 mg/ml). Based on a chi-squared test (P < 0.05), HS affected negatively the metaphase II (MII) progression and produced a premature CG exocytosis. Retinol improved the oocyte MII progression. However, retinyl and oleic acid, at the concentrations used in this study, could not counteract adverse effects of HS. A decrease in progesterone and increase in estradiol availability were observed when retinyl and oleic acid were supplemented to the maturation medium, respectively. In conclusion, retinol proved to be valuable in heat-stressed oocytes protecting nuclear maturation.
Collapse
|
41
|
Rispoli LA, Lawrence JL, Payton RR, Saxton AM, Schrock GE, Schrick FN, Middlebrooks BW, Dunlap JR, Parrish JJ, Edwards JL. Disparate consequences of heat stress exposure during meiotic maturation: embryo development after chemical activation vs fertilization of bovine oocytes. Reproduction 2011; 142:831-43. [PMID: 21994359 DOI: 10.1530/rep-11-0032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Consequences of heat stress exposure during the first 12 h of meiotic maturation differed depending on how and when bovine oocytes were activated. If heat-stressed oocytes underwent IVF at ~24 h, blastocyst development was less than for respective controls and similar to that obtained for nonheat-stressed oocytes undergoing IVF at 30 h (i.e. slightly aged). In contrast, if heat-stressed oocytes underwent chemical activation with ionomycin/6-dimethylaminopurine at 24 h, blastocyst development was not only higher than respective controls, but also equivalent to development obtained after activation of nonheat-stressed oocytes at 30 h. Developmental differences in chemically activated vs IVF-derived embryos were not related to fertilization failure or gross alterations in cytoskeletal components. Rather, ionomycin-induced calcium release and MAP kinase activity were less in heat-stressed oocytes. While underlying mechanisms are multifactorial, ability to obtain equivalent or higher development after parthenogenetic activation demonstrates that oocytes experiencing heat stress during the first 12 h of meiotic maturation have the necessary components to develop to the blastocyst stage, but fail to do so after fertilization.
Collapse
Affiliation(s)
- L A Rispoli
- Department of Animal Science, Institute of Agriculture, UT AgResearch, The University of Tennessee, Knoxville, Tennessee 37996-4574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sirotkin AV, Bauer M. Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones. Cell Stress Chaperones 2011; 16:379-87. [PMID: 21188661 PMCID: PMC3118823 DOI: 10.1007/s12192-010-0252-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 11/30/2022] Open
Abstract
The present studies aimed to understand the interrelationships between stress, hormones and heat shock proteins (HSPs) in the ovary. We examined (1) whether HSP70.2, HSP72 and HSP105/110 can be produced and accumulated in porcine ovarian tissue, (2) whether these HSPs could be indicators of stress, i.e. whether two kinds of stress (high temperatures and malnutrition/serum deprivation) can affect them, and (3) whether some hormonal regulators of ovarian functions (insulin-like growth factor (IGF)-I, leptin and follicle-stimulating hormone (FSH)) can affect these HSPs and response of ovaries to HSP-related stress. We analysed the expression of HSP70.2, HSP72 and HSP105/110 mRNA (by using real-time reverse transcriptase polymerase chain reaction) in porcine ovarian granulosa cells, as well as the accumulation of HSP70 protein (by using sodium dodecyl sulphate polyacrylamide gel electrophoresis-Western) in either whole ovarian follicles and granulose cells cultured at normal (37.5°C) or high (41.5°C) temperature, with and without serum and with and without IGF-I, leptin and FSH. Expression of mRNA for HSP70.2, HSP72 and HSP105/110 in ovarian granulosa cells and accumulation of HSP70 protein in whole ovarian follicles and granulosa cells were demonstrated. In all the groups, addition of either IGF-I, leptin and FSH reduced the expression of HSP70.2, HSP72 and HSP105/110 mRNA. Both high temperature, serum deprivation and their combination resulted in increase in mRNAs for all three analysed HSPs. Additions of either IGF-I, leptin and FSH prevented the stimulatory effect of both high temperature and serum deprivation on the transcription of HSP70.2, HSP72 and HSP105/110. In contrast, high temperature reduced accumulation of peptide HSP70 in both ovarian follicles and granulosa cell. Serum deprivation promoted accumulation of HSP70 in granulosa cells, but not in ovarian follicles. Addition of IGF-I, leptin and FSH was able to alter accumulation of HSP70 in both follicles and granulosa cells. The present observations suggest (1) that HSPs can be synthesised in ovarian follicular granulosa cells; (2) that hormones (IGF-I, leptin and FSH) can inhibit, whilst stressors (both high temperature and malnutrition/serum deprivation) can stimulate transcription of HSP70.2, HSP72 and HSP105/110 genes, whilst heat stress, but not malnutrition, can promote depletion of HSP70 in ovarian cells, and (3) that hormones (IGF-I, leptin and FSH) can prevent stress-related changes in HSPs. The application of HSPs as indicators and mediators of stress and hormones on ovarian functions, as well as use of hormones and HSPs as anti-stressor molecules, are discussed.
Collapse
|
43
|
The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. ZYGOTE 2011; 20:249-59. [DOI: 10.1017/s0967199411000220] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.
Collapse
|
44
|
Payton RR, Rispoli LA, Saxton AM, Edwards JL. Impact of heat stress exposure during meiotic maturation on oocyte, surrounding cumulus cell, and embryo RNA populations. J Reprod Dev 2011; 57:481-91. [PMID: 21478651 DOI: 10.1262/jrd.10-163m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if reductions in developmental competence related to heat stress exposure were correlated with perturbations in certain RNA populations, poly(A) RNA, total RNA, RNA size distribution, and the abundance of transcripts (cyclin B1, GDF9, BMP15, poly(A) polymerase, HSP70, 18S & 28S rRNA) were examined in oocytes matured at 38.5 or 41 C. Performing in vitro fertilization resulted in embryos for examining RNA. Relative to germinal vesicle-stage oocytes, total amount of poly(A) RNA decreased similarly in oocytes matured at 38.5 or 41 C. Total RNA did not change during meiotic maturation or up through the 4 to 8-cell stage of embryonic development. Blastocyst-stage embryos had more total RNA; those originating from heat-stressed oocytes had more than those from nonheat-stressed oocytes. Oocytes and 4 to 8-cell embryos had similar RIN values and ratios for rRNA, 18S/fast region, and 18S/inter region. Values obtained for blastocyst-stage embryos were similar to those obtained for cumulus cell RNA, which did not change during maturation. Culture at 41 C for the first 12 h of meiotic maturation had no impact on RNA size distribution or transcripts examined from oocytes, surrounding cumulus or resultant 4 to 8-cell embryos. Interestingly, however, RNA from blastocysts originating from heat-stressed oocytes had lower 18S/fast region and 18S/inter region ratios compared to other developmental stages and cumulus cells. Although biological significance of these RNA changes is unclear, differences at the molecular level in embryos from heat-stressed oocytes emphasize the importance of minimizing stress exposure during meiotic maturation, if the intent is to obtain developmentally-competent embryos.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee Institute of Agriculture and AgResearch, Knoxville, TN 37996-4574, USA
| | | | | | | |
Collapse
|
45
|
NABENISHI H, OHTA H, NISHIMOTO T, MORITA T, ASHIZAWA K, TSUZUKI Y. Effect of the Temperature-Humidity Index on Body Temperature and Conception Rate of Lactating Dairy Cows in Southwestern Japan. J Reprod Dev 2011; 57:450-6. [DOI: 10.1262/jrd.10-135t] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hisashi NABENISHI
- Domestic Animal Biotechnology Department, Miyazaki Livestock Research Institute, Miyazaki 889-4411, Japan
- Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi OHTA
- Domestic Animal Biotechnology Department, Miyazaki Livestock Research Institute, Miyazaki 889-4411, Japan
| | - Toshihumi NISHIMOTO
- Domestic Animal Biotechnology Department, Miyazaki Livestock Research Institute, Miyazaki 889-4411, Japan
| | - Tetsuo MORITA
- Animal Nutrition Laboratory, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Koji ASHIZAWA
- Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yasuhiro TSUZUKI
- Animal Reproduction Laboratory, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
46
|
Sirotkin AV. Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. ACTA ACUST UNITED AC 2010; 213:2125-30. [PMID: 20511527 DOI: 10.1242/jeb.040626] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to understand the interrelationships between stress, hormones and basic ovarian functions in the ovary. For this purpose, we compared the expression of markers of proliferation (PCNA, cyclin B1), of apoptosis (Bax, caspase-3) and secretory activity (release of progesterone, P(4), and insulin-like growth factor, IGF-I) in whole ovarian follicles and granulosa cells cultured in conditions of normal temperature (37.5 degrees C) and feeding (with serum), high temperature (41.5 degrees C, with serum) and malnutrition (37.5 degrees C, without serum), with and without hormones [IGF-I, leptin and follicle-stimulating hormone (FSH)]. The expression of proliferation and apoptosis markers was evaluated by SDS PAGE-western blotting whereas radioimmunoassay (RIA) measured the release of hormones. High temperature dramatically induced a reduction in both proliferation and apoptosis markers in both ovarian follicles and granulosa cells and induced a significant increase in P(4) and IGF-I release by ovarian granulosa cells but not in P(4) secretion by ovarian follicles. Serum deprivation increased accumulation of cyclin B1 but not other markers of proliferation (PCNA) and apoptosis (Bax, caspase-3) or P(4) release in ovarian follicles. On the contrary, it inhibited the expression of apoptotic marker (Bax), release of both P(4) and IGF-I but it did not affect proliferation marker (PCNA) in granulosa cells. Adding IGF-I, leptin and FSH affected proliferation, apoptosis and secretory activity of ovarian cell functions but also prevented an inhibitory effect of high temperature on the expression of Bax and PCNA and an inhibitory action of serum deprivation on PCNA in ovarian follicles. Furthermore, treatment with these hormones prevented an inhibitory action of thermal stress on Bax, PCNA, P(4) and IGF-I in ovarian granulosa cells. The present observations (1) confirm the involvement of hormones (IGF-I, leptin and FSH) in the control of proliferation, apoptosis and secretory activity of ovarian cells, (2) demonstrate for the first time that heat stress/increased temperature can induce a reduction in ovarian cell proliferation and apoptosis and an oversecretion of ovarian hormones, (3) show that malnutrition/serum deprivation can reduce both apoptosis and secretory activity of ovarian cells, (4) demonstrate the differences in the response of granulosa and other ovarian follicular cells to stresses, and (5) are the first demonstration that hormones (IGF-I, leptin and FSH) could be used for preventing the effect of stresses on ovarian cell functions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Animal Production Research Centre, Hlohovecká 2, 951 41 Luzianky near Nitra, Slovakia.
| |
Collapse
|
47
|
Payton RR, Rispoli LA, Edwards JL. General features of certain RNA populations from gametes and cumulus cells. J Reprod Dev 2010; 56:583-92. [PMID: 20657155 DOI: 10.1262/jrd.10-007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Results described herein provide insight regarding certain features of gamete RNA and how they compare to cumulus cell RNA. In particular, 28S/18S rRNA ratio and size distribution of RNA molecules differed in total RNA from oocytes versus surrounding cumulus cells. Specifically, oocyte total RNA had a lower rRNA ratio and an increased abundance of smaller RNA sizes compared to RNA from surrounding cumulus. Extensive efforts demonstrated that observed differences were repeatable whether oocyte maturation occurred in vitro or in vivo, and were similar between the nuclear stages examined. Features of oocyte RNA were conserved across six mammalian species, yet differed from surrounding cumulus. Profiles of sperm RNA were also examined but had no discernible ribosomal RNA peaks and were conserved across four mammalian species. Because the oocyte and spermatozoon are highly specialized cells representing unique molecular entities required for proper embryo development, dissimilarities described herein likely represent real gamete versus cumulus RNA differences.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee Institute of Agriculture and Agricultural Experiment Station, Knoxville, TN 37996-4574, USA
| | | | | |
Collapse
|
48
|
Does heat stress provoke the loss of a continuous layer of cortical granules beneath the plasma membrane during oocyte maturation? ZYGOTE 2010; 18:293-9. [PMID: 20331910 DOI: 10.1017/s0967199410000043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of the present study was to evaluate the influence of heat stress on bovine oocyte maturation. Both nuclear stage and distribution of cortical granules (CG) were simultaneously evaluated in each oocyte. Oocyte overmaturation under standard conditions of culture was also evaluated. For this purpose, logistic regression procedures were used to evaluate possible effects of factors such as heat stress, overmaturation, replicate, CG distribution and metaphase II (MII) morphology on oocyte maturation. Based on the odds ratio, oocytes on heat stressed (HSO) and overmaturated (OMO) oocyte group were, respectively, 14.5 and 5.4 times more likely to show anomalous MII morphology than those matured under control conditions (CO). The likelihood for an oocyte of showing the CG distribution pattern IV (aging oocyte) was 6.3 and 9.3 times higher for HSO and OMO groups, respectively, than for the CO group. The risk of undergoing anomalous oocyte maturation, considering both nuclear stage and distribution of CG was 17.1 and 18 times greater in oocytes cultured in HSO and OMO groups, respectively, than those in the CO group. In conclusion, heat stress proved to be valuable in aging oocytes. Heat stress advanced age for nuclear and cytoplasmic processes in a similar form to that of oocyte overmaturation.
Collapse
|
49
|
Livingston T, Rich K, MacKenzie S, Godkin JD. Glutathione content and antioxidant enzyme expression of in vivo matured sheep oocytes. Anim Reprod Sci 2009; 116:265-73. [DOI: 10.1016/j.anireprosci.2009.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 11/25/2022]
|
50
|
Abstract
Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611-0910, USA.
| |
Collapse
|