1
|
Jiao T, Wu J, Casper DP, Davis DI, Brown MA, Zhao S, Liang J, Lei Z, Holloway B. Feeding Sheep Cobalt and Oregano Essential Oil Alone or in Combination on Ruminal Nutrient Digestibility, Fermentation, and Fiber Digestion Combined With Scanning Electron Microscopy. Front Vet Sci 2021; 8:639432. [PMID: 34195240 PMCID: PMC8236605 DOI: 10.3389/fvets.2021.639432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
The feeding of Co lactate (Co), an essential oil blend (EO; oregano), or a combination of Co and EO (EOC) may improve nutrient digestion of corn silage-based rations. In four separate studies, Co, EO, or EOC was fed at 0, 4, and 7 g/days to nine rumen fistulated rams arranged in a replicated 3 × 3 Latin square design. The fourth study evaluated the carrier at 0, 4, and 7 g/day. In each ram, fresh ensiled corn silage, leaf, and husk were placed in individual nylon bags inserted through the ruminal cannula and removed after 48 h. Rams fed increasing carrier rates demonstrated similar (P > 0.10) nutrient digestibilities and ruminal pH and volatile fatty acid concentrations. Feeding Co at 4 and 7 g/day increased (P < 0.05) digestibility of DM (59.4, 63.9, and 62.4% for 0, 4, and 7 g/day, respectively), NDF (59.4, 63.9, and 62.4%), and hemicellulose (HC; 56.2, 63.6, and 65.9%) compared with rams fed 0 g/day, while CP digestibility (46.4, 49.9, and 57.8%) was improved (P < 0.05) in rams fed 7 g/day compared with those fed 0 and 4 g/day. Rams fed 4 g/day EO digested greater (P < 0.05) HC (64.1, 71.4, and 69.1%) than rams fed 0 g/day, while rams fed 7 g/day were intermediate and similar (P > 0.10). Rams fed the EOC combination at 4 and 7 g/day demonstrated greater (P < 0.05) digestibilities of DM (57.7, 60.0, and 60.0%), NDF (21.4, 28.8, and 27.7%), and ADF (24.3, 33.3, and 34.4%) than rams fed 0 g/day. The SEM and SM techniques visually demonstrated minor evidence of husk and leaf digestibility in rams across the three experiments when fed 0 g/day of Co, EO, or EOC; rams fed 4 g/day of Co, EO, or EOC exhibited varying visual signs of leaf digestion with some palisade tissue, spongy tissue, and whole vein structure remaining, while in rams fed 7 g/day, only the vein structure remained. Results demonstrated that feeding Co, EO, or EOC at 4 or 7 g/day enhanced ruminal nutrient digestion and fermentation parameters, which was visually confirmed via SEM and SM.
Collapse
Affiliation(s)
- Ting Jiao
- College of Grassland Science, Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - David P Casper
- Casper's Calf Ranch, LLC, Freeport, IL, United States.,Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | | | | | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianyong Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | |
Collapse
|
2
|
Abstract
There have been extensive studies in sheep and cattle considering cobalt (Co) supplementation and its effects on vitamin B12 concentrations in the body. However, there are limited studies on goats. The aim of this study was to compare two different sources of Co (sulfate v. glucoheptonate) at two different concentrations (0.25 and 0.5 mg/kg dry matter) in goat kid nutrition, and to evaluate the effects of these supplements on performance, serum vitamin B12, blood biochemistry and rumen volatile fatty acids. For this purpose, 30 weaned male goat kids were randomly allotted to five treatments. Serum vitamin B12 increased during the trial in the Co-supplemented groups. Co supplementation increased serum glucose concentrations. On day 35, Co-supplemented groups had greater glucose concentrations compared with control. Propionic+iso-butyric acid concentrations increased only in the 0.5 mg Co glucoheptonate treatment (P<0.05). Our results suggest that, despite the two sources of Co proving mostly similar, the main advantage of Co glucoheptonate compared with Co sulfate was in the ruminal synthesis of vitamin B12. However, although providing Co at National Research Council recommendation levels maintained vitamin B12 above or at normal concentrations, Co supplementation of the Co sufficient basal diet increased vitamin B12 and glucose concentrations.
Collapse
|
6
|
Tiffany ME, Spears JW, Xi L, Horton J. Influence of dietary cobalt source and concentration on performance, vitamin B12 status, and ruminal and plasma metabolites in growing and finishing steers1,2. J Anim Sci 2003; 81:3151-9. [PMID: 14677871 DOI: 10.2527/2003.81123151x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sixty Angus steers, averaging 274 kg, were used to evaluate the effects of Co source and concentration on performance, vitamin B12 status, and metabolic characteristics of steers. Treatments consisted of 0 (control, analyzed 0.04 mg Co/kg), 0.05, 0.10, and 1.0 mg of supplemental Co/kg of DM from CoCO3 or 0.05 and 0.10 mg of supplemental Co/kg of DM from Co propionate. Steers were individually fed a growing diet for 56 d followed by a high-concentrate finishing diet. Performance was not affected by Co supplementation during the growing phase. During the finishing phase, ADFI (DM basis) and ADG were higher (P < 0.05) for the entire finishing phase, and gain:feed was higher (P < 0.10) over the first 56 d for Co-supplemented steers. Steers supplemented with 0.10 mg Co/kg as Co propionate had higher (P < 0.05) ruminal propionate and lower (P < 0.05) acetate molar proportions than steers receiving 0.10 Co/kg as CoCO3 during the growing phase. Supplemental Co increased (P < 0.10) molar proportion of propionate during the finishing phase. Plasma vitamin B12 was higher (P < 0.05) in Co-supplemented steers by d 56 of the growing phase and remained higher (P < 0.10) throughout the study. Control steers had higher (P < 0.05) plasma methylmalonic acid on d 56 of the growing phase and on d 28, 56, and 112 of the finishing phase than steers receiving supplemental Co. Steers supplemented with Co had higher plasma glucose at d 56 (P < 0.01), 84 (P < 0.10), and 112 (P < 0.01) of the finishing phase. Steers supplemented with 0.10 mg Co/kg as Co propionate had higher plasma glucose than those receiving 0.10 mg Co/kg as CoCO3 at d 28 of the growing phase (P < 0.05) and d 28 of the finishing phase (P < 0.10). Final body weight and hot carcass weight were lower (P < 0.10) in steers receiving the control diet, whereas other carcass characteristics were not affected by dietary Co. Average daily gain and feed efficiency for the entire finishing phase did not differ among Co-supplemented steers. However, increasing supplemental Co above 0.05 mg/kg DM (total diet Co = 0.09 mg/kg) resulted in increased (P < 0.01) plasma (linear) and liver (quadratic) vitamin B12 concentrations and decreased (quadratic, P < 0.10) plasma methylmalonic acid concentrations toward the end of the finishing phase. These results suggest that finishing steers require approximately 0.15 mg Co/kg of DM. Vitamin B12 status was not affected by Co source; however, the two Co sources seemed to affect certain metabolites differently.
Collapse
Affiliation(s)
- M E Tiffany
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA
| | | | | | | |
Collapse
|