1
|
Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L, Zhang J, Liu J. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Microb Cell Fact 2023; 22:165. [PMID: 37644496 PMCID: PMC10466699 DOI: 10.1186/s12934-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
3-Hydroxybutanone (Acetoin, AC) and 2,3-butanediol (BD) are two essential four-carbon platform compounds with numerous pharmaceutical and chemical synthesis applications. AC and BD have two and three stereoisomers, respectively, while the application of the single isomer product in chemical synthesis is superior. AC and BD are glucose overflow metabolites produced by biological fermentation from a variety of microorganisms. However, the AC or BD produced by microorganisms using glucose is typically a mixture of various stereoisomers. This was discovered to be due to the simultaneous presence of multiple butanediol dehydrogenases (BDHs) in microorganisms, and AC and BD can be interconverted under BDH catalysis. In this paper, beginning with the synthesis pathways of microbial AC and BD, we review in detail the studies on the formation mechanisms of different stereoisomers of AC and BD, summarize the properties of different types of BDH that have been tabulated, and analyze the structural characteristics and affinities of different types of BDH by comparing them using literature and biological database data. Using microorganisms, recent research on the production of optically pure AC or BD was also reviewed. Limiting factors and possible solutions for chiral AC and BD production are discussed.
Collapse
Affiliation(s)
- Yuchen Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China.
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Wenli Yang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yanlei Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
2
|
Bio-Labneh fortified with functional microcapsules filled with chickpea flour and probiotics. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Green strategies to control redox potential in the fermented food industry. Food Res Int 2022; 156:111154. [DOI: 10.1016/j.foodres.2022.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
4
|
Kim Y, Yoon S, Shin H, Jo M, Lee S, Kim SH. Isolation of Lactococcus lactis ssp. cremoris LRCC5306 and Optimization of Diacetyl Production Conditions for Manufacturing Sour Cream. Food Sci Anim Resour 2021; 41:373-385. [PMID: 34017948 PMCID: PMC8112315 DOI: 10.5851/kosfa.2021.e3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 01/23/2021] [Indexed: 11/06/2022] Open
Abstract
The sensory properties and flavor of sour cream are important factors that influence consumer acceptability. The present study aimed to isolate lactic acid bacteria with excellent diacetyl production ability and to optimize the fermentation conditions for sour cream manufacture. Lactococcus lactis ssp. cremoris was isolated as a lactic acid bacterium derived from raw milk. This strain showed the greatest diacetyl production among other strains and was named LRCC5306. Various culture conditions were optimized to improve the diacetyl production of LRCC5306. The highest diacetyl production was found to be at 105.04±2.06 mg/L, when 0.2% citric acid and 0.001% Fe2+ were added and cultured at 20°C for 15 h. Based on the optimal cultivation conditions, sour cream was manufactured using LRCC5306, with a viable count of 1.04×108 CFU/g and a diacetyl concentration of 106.56±1.53 mg/g. The electronic tongue system was used to compare the sensory properties of the sour cream; the fermented product exhibited sweetness and saltiness which was similar to that of an imported commercial product, but with slightly reduced bitterness and a significantly greater degree of sour taste. Therefore, our study shows that if cream is fermented using the LRCC5306, it is possible to produce sour cream with greatly improved sensory attractiveness, resulting in increased acceptance by consumers. Since this sour cream has a higher viable count of lactic acid bacteria, it is also anticipated that it will have a better probiotic effect.
Collapse
Affiliation(s)
- Yunsik Kim
- Department of Biosystems and
Biotechnology, College of Life Science and Biotechnology, Korea
University, Seoul 02841, Korea
| | - Seokmin Yoon
- Food-Biotech Team, Division of Basic
Research, Lotte R&D Center, Seoul 07594,
Korea
| | - Hyejung Shin
- Department of Food Bioscience and
Technology, College of Life Science and Biotechnology, Korea
University, Seoul 02841, Korea
| | - Miyoun Jo
- Food-Biotech Team, Division of Basic
Research, Lotte R&D Center, Seoul 07594,
Korea
| | - Sunmin Lee
- Food-Biotech Team, Division of Basic
Research, Lotte R&D Center, Seoul 07594,
Korea
| | - Sae-hun Kim
- Department of Food Bioscience and
Technology, College of Life Science and Biotechnology, Korea
University, Seoul 02841, Korea
| |
Collapse
|
5
|
Complete Genome Sequence of the Plant Growth-Promoting Bacterium Hartmannibacter diazotrophicus Strain E19 T. Int J Genomics 2019; 2019:7586430. [PMID: 31583244 PMCID: PMC6754898 DOI: 10.1155/2019/7586430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 11/17/2022] Open
Abstract
Strain E19T described as Hartmannibacter diazotrophicus gen. nov. sp. nov. was isolated from the rhizosphere of Plantago winteri from a natural salt meadow in a nature protection area. Strain E19T is a plant growth-promoting rhizobacterium able to colonize the rhizosphere of barley and to promote its growth only under salt stress conditions. To gain insights into the genetic bases of plant growth promotion and its lifestyle at the rhizosphere under salty conditions, we determined the complete genome sequence using two complementary sequencing platforms (Ilumina MiSeq and PacBio RSII). The E19T genome comprises one circular chromosome and one plasmid containing several genes involved in salt adaptation and genes related to plant growth-promoting traits under salt stress. Based on previous experiments, ACC deaminase activity was identified as a main mechanism of E19T to promote plant growth under salt stress. Interestingly, no genes classically reported to encode for ACC deaminase activity are present. In general, the E19T genome provides information to confirm, discover, and better understand many of its previously evaluated traits involved in plant growth promotion under salt stress. Furthermore, the complete E19T genome sequence helps to define its previously reported unclear 16S rRNA gene-based phylogenetic affiliation. Hartmannibacter forms a distinct subcluster with genera Methylobrevis, Pleomorphomonas, Oharaeibacter, and Mongoliimonas subclustered with genera belonging to Rhizobiales.
Collapse
|
6
|
Laëtitia G, Pascal D, Yann D. The Citrate Metabolism in Homo- and Heterofermentative LAB: A Selective Means of Becoming Dominant over Other Microorganisms in Complex Ecosystems. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.510106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Liquid chromatography–mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria. Anal Bioanal Chem 2013; 405:8151-70. [DOI: 10.1007/s00216-013-7269-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022]
|
8
|
Lee KYM, Paterson A, Piggott JR, Richardson GD. Origins of Flavour in Whiskies and a Revised Flavour Wheel: a Review. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2001.tb00099.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Martin F, Cachon R, Pernin K, De Coninck J, Gervais P, Guichard E, Cayot N. Effect of oxidoreduction potential on aroma biosynthesis by lactic acid bacteria in nonfat yogurt. J Dairy Sci 2011; 94:614-22. [PMID: 21257030 DOI: 10.3168/jds.2010-3372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of oxidoreduction potential (Eh) on the biosynthesis of aroma compounds by lactic acid bacteria in non-fat yogurt. The study was done with yogurts fermented by Lactobacillus bulgaricus and Streptococcus thermophilus. The Eh was modified by the application of different gaseous conditions (air, nitrogen, and nitrogen/hydrogen). Acetaldehyde, dimethyl sulfide, diacetyl, and pentane-2,3-dione, as the major endogenous odorant compounds of yogurt, were chosen as tracers for the biosynthesis of aroma compounds by lactic acid bacteria. Oxidative conditions favored the production of acetaldehyde, dimethyl sulfide, and diketones (diacetyl and pentane-2,3-dione). The Eh of the medium influences aroma production in yogurt by modifying the metabolic pathways of Lb. bulgaricus and Strep. thermophilus. The use of Eh as a control parameter during yogurt production could permit the control of aroma formation.
Collapse
Affiliation(s)
- F Martin
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, EA 1684, AgroSup Dijon-Université de Bourgogne, INRA, 17 rue Sully, 21065 Dijon, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Liaw IW, Eshpari H, Tong PS, Drake MA. The impact of antioxidant addition on flavor of cheddar and mozzarella whey and cheddar whey protein concentrate. J Food Sci 2011; 75:C559-69. [PMID: 20722911 DOI: 10.1111/j.1750-3841.2010.01695.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lipid oxidation products are primary contributors to whey ingredient off-flavors. The objectives of this study were to evaluate the impact of antioxidant addition in prevention of flavor deterioration of fluid whey and spray-dried whey protein. Cheddar and Mozzarella cheeses were manufactured in triplicate. Fresh whey was collected, pasteurized, and defatted by centrifugal separation. Subsequently, 0.05% (w/w) ascorbic acid or 0.5% (w/w) whey protein hydrolysate (WPH) were added to the pasteurized whey. A control with no antioxidant addition was also evaluated. Wheys were stored at 3 degrees C and evaluated after 0, 2, 4, 6, and 8 d. In a subsequent experiment, selected treatments were then incorporated into liquid Cheddar whey and processed into whey protein concentrate (WPC). Whey and WPC flavors were documented by descriptive sensory analysis, and volatile components were evaluated by solid phase micro-extraction with gas chromatography mass spectrometry. Cardboard flavors increased in fluid wheys with storage. Liquid wheys with ascorbic acid or WPH had lower cardboard flavor across storage compared to control whey. Lipid oxidation products, hexanal, heptanal, octanal, and nonanal increased in liquid whey during storage, but liquid whey with added ascorbic acid or WPH had lower concentrations of these products compared to untreated controls. Mozzarella liquid whey had lower flavor intensities than Cheddar whey initially and after refrigerated storage. WPC with added ascorbic acid or WPH had lower cardboard flavor and lower concentrations of pentanal, heptanal, and nonanal compared to control WPC. These results suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to flavor of spray-dried whey protein. Practical Application: Lipid oxidation products are primary contributors to whey ingredient off-flavors. Flavor plays a critical and limiting role in widespread use of dried whey ingredients, and enhanced understanding of flavor and flavor formation as well as methods to control or minimize flavor formation during processing are industrially relevant. The results from this study suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to minimize flavor of spray-dried whey protein.
Collapse
Affiliation(s)
- I W Liaw
- Dept. of Food, Bioprocessing and Nutritional Sciences, Southeast Dairy Foods Research Center, North Carolina State Univ., Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Acetoin is an important physiological metabolite excreted by many microorganisms. The excretion of acetoin, which can be diagnosed by the Voges Proskauer test and serves as a microbial classification marker, has its vital physiological meanings to these microbes mainly including avoiding acification, participating in the regulation of NAD/NADH ratio, and storaging carbon. The well-known anabolism of acetoin involves alpha-acetolactat synthase and alpha-acetolactate decarboxylase; yet its catabolism still contains some differing views, although much attention has been focused on it and great advances have been achieved. Current findings in catabolite control protein A (CcpA) mediated carbon catabolite repression may provide a fuller understanding of the control mechanism in bacteria. In this review, we first examine the acetoin synthesis pathways and its physiological meanings and relevancies; then we discuss the relationship between the two conflicting acetoin cleavage pathways, the enzymes of the acetoin dehydrogenase enzyme system, major genes involved in acetoin degradation, and the CcpA mediated acetoin catabolite repression pathway; in the end we discuss the genetic engineering progresses concerning applications. To date, this is the first integrated review on acetoin metabolism in bacteria, especially with regard to catabolic aspects. The apperception of the generation and dissimilation of acetoin in bacteria will help provide a better understanding of microbial strategies in the struggle for resources, which will consequently better serve the utilization of these microbes.
Collapse
Affiliation(s)
- Zijun Xiao
- State Key Laboratory of Microbial Technology, Shandong University, People's Republic of China
| | | |
Collapse
|
12
|
Aymes F, Monnet C, Corrieu G. Effect of alpha-acetolactate decarboxylase inactivation on alpha-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar diacetylactis. J Biosci Bioeng 2005; 87:87-92. [PMID: 16232430 DOI: 10.1016/s1389-1723(99)80013-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 11/15/1998] [Indexed: 10/18/2022]
Abstract
Strains of Lactococcus lactis subsp. lactis biovar diacetylactis deficient in alpha-acetolactate decarboxylase produce alpha-acetolactate. This unstable compound is a precursor of acetoin and an aromatic compound, diacetyl. Following random mutagenesis of strain CNRZ 483, alpha-acetolactate decarboxylase-negative mutant 483 M1 was selected. When grown in milk, its growth and acidification characteristics were similar to those of the parental strain. In anaerobic conditions, the parental strain produced 2.10 mM acetoin and less than 0.05 mM diacetyl. The mutant accumulated up to 2.11 mM alpha-acetolactate, which spontaneously degraded to acetoin and diacetyl. After 24 h of culture, the alpha-acetolactate concentration was only 0.49 mM and the acetoin and diacetyl concentrations reached 1.50 mM and 0.26 mM, respectively. Diacetyl production by both strains increased in aerobic conditions, as well as when citrate was added. In contrast to cultures of the parental strain, however, diacetyl and acetoin concentrations in mutant cultures continued to increase without reaching a plateau. The results also showed that diacetyl production by wild type L. lactis subsp. lactis biovar diacetylactis strains cannot be explained uniquely by the spontaneous decarboxylation of the alpha-acetolactate produced in the culture medium.
Collapse
Affiliation(s)
- F Aymes
- Laboratoire de Génie et Microbiologie des Procédés Alimentaires, Institut National de la Recherche Agronomique, 78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
13
|
Mahmoud M, Gentil E, Robins RJ. Natural-abundance isotope ratio mass spectrometry as a means of evaluating carbon redistribution during glucose-citrate cofermentation by Lactococcus lactis. ACTA ACUST UNITED AC 2004; 271:4392-400. [PMID: 15560780 DOI: 10.1111/j.1432-1033.2004.04376.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cometabolism of citrate and glucose by growing Lactococcus lactis ssp. lactis bv. diacetylactis was studied using a natural-abundance stable isotope technique. By a judicious choice of substrates differing slightly in their 13C/12C ratios, the simultaneous metabolism of citrate and glucose to a range of compounds was analysed. These end-products include lactate, acetate, formate, diacetyl and acetoin. All these products have pyruvate as a common intermediate. With the objective of estimating the degree to which glucose and citrate metabolism through pyruvate may be differentially regulated, the delta13C values of the products accumulated over a wide range of concentrations of citrate and glucose were compared. It was found that, whereas the relative accumulation of different products responds to both the substrate concentration and the ratio between the substrates, the delta13C values of the products primarily reflect the availability of the two substrates over the entire range examined. It can be concluded that in actively growing L. lactis the maintenance of pyruvate homeostasis takes precedence over the redox status of the cells as a regulatory factor.
Collapse
Affiliation(s)
- Mohamed Mahmoud
- Groupe de Fractionnement Isotopique de Métabolismes, Laboratoire d'Analyse Isotopique et Electrochimique de Métabolismes, Université de Nantes, France
| | | | | |
Collapse
|
14
|
Carunchia Whetstine ME, Parker JD, Drake MA, Larick DK. Determining flavor and flavor variability in commercially produced liquid cheddar whey. J Dairy Sci 2003; 86:439-48. [PMID: 12647950 DOI: 10.3168/jds.s0022-0302(03)73622-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dried whey and whey protein are important food ingredients. Functionality of whey products has been studied extensively. Flavor inconsistency and flavors which may carry through to the finished product can limit whey ingredient applications in dairy and nondairy foods. The goal of this research was to determine the flavor and flavor variability of commercially produced liquid Cheddar cheese whey. Liquid Cheddar cheese whey from five culture blends from two different stirred-curd Cheddar cheese manufacturing facilities was collected. Whey flavor was characterized using instrumental and sensory methods. Wide variation in whey headspace volatiles was observed between different manufacturing facilities (P < 0.05). Hexanal and diacetyl were two key volatiles that varied widely (P < 0.05). FFA profiles determined by solid-phase microextraction and degree of proteolysis of the whey samples were also different (P < 0.05). Differences in whey flavor profiles were also confirmed by descriptive sensory analysis (P < 0.05). Differences in liquid whey flavor were attributed to differences in milk source, processing and handling and starter culture blend. The flavor of liquid Cheddar cheese whey is variable and impacted by milk source and starter culture rotation. Results from this study will aid future studies that address the impact of liquid whey flavor variability on flavor of dried whey ingredients.
Collapse
|
15
|
Pakdeeto A, Naranong N, Tanasupawat S. Diacetyl of lactic acid bacteria from milk and fermented foods in Thailand. J GEN APPL MICROBIOL 2003; 49:301-7. [PMID: 14673754 DOI: 10.2323/jgam.49.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Amnat Pakdeeto
- Department of Applied Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | | | | |
Collapse
|
16
|
Melchiorsen CR, Jokumsen KV, Villadsen J, Johnsen MG, Israelsen H, Arnau J. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J Bacteriol 2000; 182:4783-8. [PMID: 10940018 PMCID: PMC111354 DOI: 10.1128/jb.182.17.4783-4788.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme pyruvate formate-lyase (PFL) from Lactococcus lactis was produced in Escherichia coli and purified to obtain anti-PFL antibodies that were shown to be specific for L. lactis PFL. It was demonstrated that activated L. lactis PFL was sensitive to oxygen, as in E. coli, resulting in the cleavage of the PFL polypeptide. The PFL protein level and its in vivo activity and regulation were shown by Western blotting, enzyme-linked immunosorbent assay, and metabolite measurement to be dependent on the growth conditions. The PFL level during anaerobic growth on the slowly fermentable sugar galactose was higher than that on glucose. This shows that variation in the PFL protein level may play an important role in the regulation of metabolic shift from homolactic to mixed-acid product formation, observed during growth on glucose and galactose, respectively. During anaerobic growth in defined medium, complete activation of PFL was observed. Strikingly, although no formate was produced during aerobic growth of L. lactis, PFL protein was indeed detected under these conditions, in which the enzyme is dispensable due to the irreversible inactivation of PFL by oxygen. In contrast, no oxygenolytic cleavage was detected during aerobic growth in complex medium. This observation may be the result of either an effective PFL deactivase activity or the lack of PFL activation. In E. coli, the PFL deactivase activity resides in the multifunctional alcohol dehydrogenase ADHE. It was shown that in L. lactis, ADHE does not participate in the protection of PFL against oxygen under the conditions analyzed. Our results provide evidence for major differences in the mechanisms of posttranslational regulation of PFL activity in E. coli and L. lactis.
Collapse
Affiliation(s)
- C R Melchiorsen
- Department of Biotechnology, Center for Process Biotechnology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
Curic M, Stuer-Lauridsen B, Renault P, Nilsson D. A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. Appl Environ Microbiol 1999; 65:1202-6. [PMID: 10049884 PMCID: PMC91165 DOI: 10.1128/aem.65.3.1202-1206.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains.
Collapse
Affiliation(s)
- M Curic
- Research and Development, Chr. Hansen A/S, DK-2970 Horsholm, Denmark
| | | | | | | |
Collapse
|
18
|
Boumerdassi H, Monnet C, Desmazeaud M, Corrieu G. Effect of Citrate on Production of Diacetyl and Acetoin by Lactococcus lactis ssp. lactis CNRZ 483 Cultivated in the Presence of Oxygen. J Dairy Sci 1997. [DOI: 10.3168/jds.s0022-0302(97)75981-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|