1
|
Quagliata M, Stincarelli MA, Papini AM, Giannecchini S, Rovero P. Antiviral Activity against SARS-CoV-2 of Conformationally Constrained Helical Peptides Derived from Angiotensin-Converting Enzyme 2. ACS OMEGA 2023; 8:22665-22672. [PMID: 37387789 PMCID: PMC10275481 DOI: 10.1021/acsomega.3c01436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Despite the availability of vaccines, COVID-19 continues to be aggressive, especially in immunocompromised individuals. Therefore, the development of a specific therapeutic agent with antiviral activity against SARS-CoV-2 is necessary. The infection pathway starts when the receptor binding domain of the viral spike protein interacts with the angiotensin converting enzyme 2 (ACE2), which acts as a host receptor for the RBD expressed on the host cell surface. In this scenario, ACE2 analogs binding to the RBD and preventing the cell entry can be promising antiviral agents. Most of the ACE2 residues involved in the interaction belong to the α1 helix, more specifically to the minimal fragment ACE2(24-42). In order to increase the stability of the secondary structure and thus antiviral activity, we designed different triazole-stapled analogs, changing the position and the number of bridges. The peptide called P3, which has the triazole-containing bridge in the positions 36-40, showed promising antiviral activity at micromolar concentrations assessed by plaque reduction assay. On the other hand, the double-stapled peptide P4 lost the activity, showing that excessive rigidity disfavors the interaction with the RBD.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | - Anna Maria Papini
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Simone Giannecchini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
| | - Paolo Rovero
- Interdepartmental
Research Unit of Peptide and Protein Chemistry and Biology, Department
of NeuroFarBa, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Staśkiewicz A, Quagliata M, Real-Fernandez F, Nuti F, Lanzillo R, Brescia-Morra V, Rusche H, Jewginski M, Carotenuto A, Brancaccio D, Aharoni R, Arnon R, Rovero P, Latajka R, Papini AM. Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Front Chem 2022; 10:885180. [PMID: 35795217 PMCID: PMC9250970 DOI: 10.3389/fchem.2022.885180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81–106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76–116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81–106) (1) is recognized more efficiently by IgM antibodies than MBP (76–116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Brescia-Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Hendrik Rusche
- Fischer Analytics GmbH, Weiler, Germany
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
| | - Michal Jewginski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
- *Correspondence: Anna Maria Papini,
| |
Collapse
|
3
|
Kim M, Son J, Kim Y. Structural and Mechanismic Studies of Lactophoricin Analog, Novel Antibacterial Peptide. Int J Mol Sci 2021; 22:ijms22073734. [PMID: 33918526 PMCID: PMC8038340 DOI: 10.3390/ijms22073734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Naturally derived antibacterial peptides exhibit excellent pharmacological action without the risk of resistance, suggesting a potential role as biologicals. Lactophoricin-I (LPcin-I), found in the proteose peptone component-3 (PP3; lactophorin) of bovine milk, is known to exhibit antibiotic activity against Gram-positive and Gram-negative bacteria. Accordingly, we derived a new antibacterial peptide and investigated its structure–function relationship. This study was initiated by designing antibacterial peptide analogs with better antibacterial activity, less cytotoxicity, and shorter amino acid sequences based on LPcin-I. The structural properties of antibacterial peptide analogs were investigated via spectroscopic analysis, and the antibacterial activity was confirmed by measurement of the minimal inhibitory concentration (MIC). The structure and mechanism of the antibacterial peptide analog in the cell membrane were also studied via solution-state nuclear magnetic resonance (NMR) and solid-state NMR spectroscopy. Through 15N one-dimensional and two-dimensional NMR experiments and 31P NMR experiments, we suggest the 3D morphology and antibacterial mechanism in the phospholipid bilayer of the LPcin analog. This study is expected to establish a system for the development of novel antibacterial peptides and to establish a theoretical basis for research into antibiotic substitutes.
Collapse
Affiliation(s)
| | | | - Yongae Kim
- Correspondence: ; Tel.: +82-31-330-4604; Fax: +82-31-330-4566
| |
Collapse
|
4
|
Becucci L, Aloisi G, Scaloni A, Guidelli R. Channel-forming activity of lactophoricins I and II in mercury-supported tethered bilayer lipid membranes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Karamoko G, Renaville R, Blecker C. Interfacial activities of milk total proteose-peptone: Contribution and miscibility of nonhydrophobic and hydrophobic fractions. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Pedersen LRL, Hansted JG, Nielsen SB, Petersen TE, Sørensen US, Otzen D, Sørensen ES. Proteolytic activation of proteose peptone component 3 by release of a C-terminal peptide with antibacterial properties. J Dairy Sci 2012; 95:2819-29. [PMID: 22612919 DOI: 10.3168/jds.2011-4837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 01/29/2012] [Indexed: 02/02/2023]
Abstract
The milk protein proteose peptone component 3 (PP3, also known as lactophorin) is a small phosphoglycoprotein, which is exclusively expressed in the lactating mammary gland. A 23-residue synthetic peptide (lactophoricin, Lpcin S), corresponding to the C-terminal amphipathic α-helix of PP3, has previously been shown to permeabilize membranes and display antibacterial activity. Lactophorin readily undergoes proteolytic cleavage in milk and during dairy processing, and it has been suggested that PP3-derived peptides are part of milk's endogenous defense system against bacteria. Here, we report that a 26-residue C-terminal peptide (Lpcin P) can be generated by trypsin proteolysis of PP3 and that structural and functional studies of Lpcin P indicate that the peptide has antibacterial properties. The Lpcin P showed α-helical structure in both anionic and organic solvents, and the amount of α-helical structure was increased in the presence of lipid vesicles. Oriented circular dichroism showed that Lpcin P oriented parallel to the membrane surface. However, the peptide permeabilized calcein-containing vesicles efficiently. Lpcin P displayed antibacterial activity against Streptococcus thermophilus, but not against Staphylococcus aureus and Escherichia coli. The PP3 full-length protein did not display the same properties, which could indicate that PP3 functions as a precursor protein that upon proteolysis, releases a bioactive antibacterial peptide.
Collapse
Affiliation(s)
- L R L Pedersen
- Protein Chemistry Laboratory, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
7
|
Park TJ, Kim JS, Ahn HC, Kim Y. Solution and solid-state NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys J 2011; 101:1193-201. [PMID: 21889457 DOI: 10.1016/j.bpj.2011.06.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/07/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
Lactophoricin (LPcin-I) is an antimicrobial, amphiphatic, cationic peptide with 23-amino acid residues isolated from bovine milk. Its analogous peptide, LPcin-II, lacks six N-terminal amino acids compared to LPcin-I. Interestingly, LPcin-II does not display any antimicrobial activity, whereas LPcin-I inhibits the growth of both Gram-negative and Gram-positive bacteria without exhibiting any hemolytic activity. Uniformly (15)N-labeled LPcin peptides were prepared by the recombinant expression of fusion proteins in Escherichia coli, and their properties were characterized by electrospray ionization mass spectrometry, circular dichroism spectroscopy, and antimicrobial activity tests. To understand the structure-activity relationship of these two peptides, they were studied in model membrane environments by a combination of solution and solid-state NMR spectroscopy. We determined the tertiary structure of LPcin-I and LPcin-II in the presence of dodecylphosphorylcholine micelles by solution NMR spectroscopy. Magnetically aligned unflipped bicelle samples were used to investigate the structure and topology of LPcin-I and LPcin-II by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea
| | | | | | | |
Collapse
|
8
|
Kim JS, Park TJ, Kim YA. Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2009. [DOI: 10.6564/jkmrs.2009.13.2.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Park TJ, Kim JS, Choi SS, Kim Y. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr Purif 2008; 65:23-9. [PMID: 19130889 DOI: 10.1016/j.pep.2008.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/14/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
Lactophoricin (LPcin-I) is a 23-amino acid peptide that corresponds to the carboxyterminal 113-135 region of component-3 of proteose peptone (PP3), a minor phosphoglycoprotein found in bovine milk. It has been reported that lactophoricin has antibacterial activity and a cationic amphipathic helical structure, but its shorter analogous peptide (LPcin-II), a 17-amino acid peptide, corresponding to the 119-135 region of PP3 does not display antibacterial activity. LPcin-I and LPcin-II have similar charge ratios and identical hydrophobic/hydrophilic sectors, according to their helical wheel projection patterns, and both peptides show cationic amphipathic helical folding and interact with membranes. However, it is known that only LPcin-I incorporates into planar lipidic bilayers to form voltage-dependent channels. In this study, the authors cloned and expressed the two recombinant peptides as ketosteroid isomerase (KSI) fusion proteins inclusion bodies in Escherichia coli. These peptides were subjected to NMR structural studies to explore their structure-activity relationships. Fusion proteins were purified by Ni-NTA affinity chromatography under denaturing conditions, and recombinant LPcin-I and LPcin-II were released from fusion by CNBr cleavage. Final purifications of LPcin-I and LPcin-II were achieved by preparative reversed-phase high performance liquid chromatography. Using these methods, we obtained several tens of milligrams of uniformly and selectively (15)N labeled peptides per liter of growth, which was sufficient for solid-state NMR spectroscopy. Peptides were identified by tris-tricine polyacrylamide gel electrophoresis and HSQC spectra. Initial structural data were obtained by solution NMR spectroscopy and compared in membrane-like environments.
Collapse
Affiliation(s)
- Tae-Joon Park
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In 449-791, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Campagna S, Mathot AG, Fleury Y, Girardet JM, Gaillard JL. Antibacterial Activity of Lactophoricin, a Synthetic 23-Residues Peptide Derived from the Sequence of Bovine Milk Component-3 of Proteose Peptone. J Dairy Sci 2004; 87:1621-6. [PMID: 15453475 DOI: 10.3168/jds.s0022-0302(04)73316-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A synthetic peptide of 23 residues corresponding to the carboxyterminal 113 to 135 region of component-3 of proteose peptone (PP3) has been investigated with regard to its antibacterial properties. This cationic amphipathic peptide that we refer to as lactophoricin, displayed a growth-inhibitory activity against both gram-positive and gram-negative bacteria. For most of the strains tested, bacterial growth was observed in the presence of lactophoricin except for Streptococcus thermophilus. In that case, lactophoricin exhibited a minimum inhibitory concentration of 10 microM and a minimum lethal concentration of 20 microM. No hemolysis of human red blood cells was detected for peptide concentrations between 2 to 200 microM, indicating that lactophoricin would be noncytotoxic when used in this concentration range.
Collapse
Affiliation(s)
- S Campagna
- Laboratoire des Biosciences de l'Aliment, UC INRA 885, Université Henri Poincaré, Nancy-1, BP 239, 54506 Vandceuvre-lès-Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
11
|
Dilational Rheology of Mixed β-Casein/Tween 20 and β-Casein (f114–169)/Tween 20 Films at Oil–Water Interface. J Colloid Interface Sci 2001. [DOI: 10.1006/jcis.2001.7893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Campagna S, Cosette P, Molle G, Gaillard JL. Evidence for membrane affinity of the C-terminal domain of bovine milk PP3 component. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:217-22. [PMID: 11470093 DOI: 10.1016/s0005-2736(01)00360-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Component PP3 is a phosphoglycoprotein isolated from bovine milk with unknown biological function, which displays in its C-terminal region a basic amphipathic alpha-helix, a feature often involved in membrane association. According to that, the behaviour of PP3 and of a synthetic peptide from the C-terminal domain (residues 113-135) was investigated in lipid environment. Conductance measurements indicated that the peptide was able to associate and form channels in planar lipid bilayers composed of neutral or charged phospholipids. Electrostatic interactions seemed to promote voltage-dependent channel formation but this was not absolutely required since the pore-forming ability of the 113-135 C-terminal peptide was also detected with the zwitterionic lipid bilayer. Additionally, a spectroscopic study using circular dichroism argues that the peptide adopts an alpha-helical conformation in interaction with neutral or charged micelles. Thus, the conducting aggregates in bilayers might be composed of a bundle of peptides in helical conformation. Besides, similar conductance measurements performed with the whole PP3 protein did not induce any channel fluctuations. However, with the latter, an early breakdown of the bilayers occurred, a finding that can be tentatively explained by a massive incorporation of PP3. In the light of the present results, it could be inferred that PP3 membrane attachment may be achieved by oligomerization of the C-terminal amphipathic helical region.
Collapse
Affiliation(s)
- S Campagna
- Laboratoire des Biosciences de l'Aliment, UA INRA 885, Université Henri Poincaré, Nancy-1, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | |
Collapse
|
13
|
Girardet JM, Saulnier F, Gaillard JL, Ramet JP, Humbert G. Camel (camelus dromedarius) milk PP3: evidence for an insertion in the amino-terminal sequence of the camel milk whey protein. Biochem Cell Biol 2000; 78:19-26. [PMID: 10735560 DOI: 10.1139/o99-067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The camel (camelus dromedarius) milk proteose peptone 3 (PP3) was purified successively by size exclusion fast protein liquid chromatography and reversed phase high performance liquid chromatography and then characterized by amino acid residue composition determination and chemical microsequencing after CNBr or trypsin cleavages. In comparison with the previously reported structure of camel milk whey protein, the camel PP3 contains an insertion in the N-terminal region which has approximately 24 residues, whereas the remaining C-terminal regions of these two homologous proteins are essentially identical. The camel PP3 seems to contain a potential O-glycosylation site localized in this insertion and 2 or 3 phosphorylated serine residues. PP3 belongs to the glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) family and could therefore play an immunological role in the camel or its suckling young.
Collapse
Affiliation(s)
- J M Girardet
- Laboratoire des BioSciences de l'Aliment, Université Henri Poincaré-Nancy, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | |
Collapse
|
14
|
Bak M, Sorensen MD, Sorensen ES, Rasmussen LK, Sorensen OW, Petersen TE, Nielsen NC. The structure of the membrane-binding 38 C-terminal residues from bovine PP3 determined by liquid- and solid-state NMR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:188-99. [PMID: 10601866 DOI: 10.1046/j.1432-1327.2000.00989.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding C-terminal 38 residues of the bovine milk component PP3 was determined using 1H NMR in methanol, CD in methanol and SDS micelles, and 15N solid-state NMR in planar phospholipid bilayers. The solution NMR and CD spectra reveal that the PP3 peptide in methanol and SDS predominantly adopts an alpha-helical conformation extending over its entire length with a potential bend around residue 19. 15N solid-state NMR of two PP3 peptides 15N-labelled at the Gly7 and Ala32 positions, respectively, and dissolved in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol phospholipid bilayers shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.
Collapse
Affiliation(s)
- M Bak
- Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular and Structural Biology, Science Park, University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
15
|
Campagna S, Van Mau N, Heitz F, Humbert G, Gaillard JL. Specific interaction between anionic phospholipids and milk bovine component PP3 and its 119–135 C-terminal fragment. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00044-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|