1
|
McConville C, Lastakchi S, Al Amri A, Ngoga D, Fayeye O, Cruickshank G. Local Delivery of Irinotecan to Recurrent GBM Patients at Reoperation Offers a Safe Route of Administration. Cancers (Basel) 2024; 16:3008. [PMID: 39272866 PMCID: PMC11393903 DOI: 10.3390/cancers16173008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastomas are impossible to completely resect and almost always recur at the borders of the resection margin. There is no established chemotherapy regimen available to patients who recur, while systemic treatment is hampered by the blood-brain barrier. Here, we report on the first evaluation in humans of the intraparenchymal injection of irinotecan into the resection cavity after surgical resection of recurrent glioblastoma patients. The cytotoxicity of irinotecan was compared to SN-38 in primary cells from recurrent glioblastoma patients. Irinotecan was injected at multiple (~30) sites of the resection cavity wall at a depth of 3 to 5 mm. SN-38 was more cytotoxic than irinotecan at concentrations below 1 µM due to enzyme kinetics. The intraparenchymal administration of irinotecan was safe, with good wound healing and an absence of swelling, inflammation, or pseudo-abscess formation. The median survival post irinotecan administration was 32.6 weeks. The median overall survival was 30.5 months, with a two-year survival rate of 56%. This study demonstrates that local delivery of irinotecan into the brain parenchyma offers a safe route of administration over systemic delivery in the treatment of recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah Lastakchi
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Al Amri
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Desire Ngoga
- Pediatric Neurosurgery, The Bristol Royal Hospital for Children, Bristol BS2 8BJ, UK
| | - Oluwafikayo Fayeye
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Garth Cruickshank
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham B15 2GW, UK
| |
Collapse
|
2
|
Sadat SMA, Vakili MR, Abd-El Hafeez SI, Paladino M, Hall DG, Weinfeld M, Lavasanifar A. Synergistic Nanomedicine Delivering Topoisomerase I Toxin (SN-38) and Inhibitors of Polynucleotide Kinase 3'-Phosphatase (PNKP) for Enhanced Treatment of Colorectal Cancer. Mol Pharm 2024; 21:3240-3255. [PMID: 38785196 DOI: 10.1021/acs.molpharmaceut.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 μM) and free SN-38 (at a concentration range of 0.001-1 μM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 μM when combined with PM/A83B4C63 at 10 or 20-40 μM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 μM for A83B4C63 and 0.05-1 μM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.
Collapse
Affiliation(s)
- Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Sara I Abd-El Hafeez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
3
|
Gleason JM, Klass SH, Huang P, Ozawa T, Santos RA, Fogarty MM, Raleigh DR, Berger MS, Francis MB. Intrinsically Disordered Protein Micelles as Vehicles for Convection-Enhanced Drug Delivery to Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2022; 5:3695-3702. [PMID: 35857070 DOI: 10.1021/acsabm.2c00215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid and micelle-based nanocarriers have been explored for anticancer drug delivery to improve accumulation and uptake in tumor tissue. As an experimental opportunity in this area, our lab has developed a protein-based micelle nanocarrier consisting of a hydrophilic intrinsically disordered protein (IDP) domain bound to a hydrophobic tail, termed IDP-2Yx2A. This construct can be used to encapsulate hydrophobic chemotherapeutics that would otherwise be too insoluble in water to be administered. In this study, we evaluate the in vivo efficacy of IDP-2Yx2A by delivering a highly potent but water-insoluble cancer drug, SN38, into glioblastoma multiforme (GBM) tumors via convection-enhanced delivery (CED). The protein carriers alone are shown to elicit minimal toxicity effects in mice; furthermore, they can encapsulate and deliver concentrations of SN38 that would otherwise be lethal without the carriers. CED administration of these drug-loaded micelles into mice bearing U251-MG GBM xenografts resulted in slowed tumor growth and significant increases in median survival times compared to nonencapsulated SN38 and PBS controls.
Collapse
Affiliation(s)
- Jamie M Gleason
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sarah H Klass
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul Huang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tomoko Ozawa
- Department of Neurological Surgery, University of California, San Francisco, California 94158, United States
| | - Raquel A Santos
- Department of Neurological Surgery, University of California, San Francisco, California 94158, United States
| | - Miko M Fogarty
- Department of Neurological Surgery, University of California, San Francisco, California 94158, United States
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, California 94158, United States.,Department of Radiation Oncology, University of California, San Francisco, California 94518, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California 94158, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Sadat SMA, Vakili MR, Paiva IM, Weinfeld M, Lavasanifar A. Development of Self-Associating SN-38-Conjugated Poly(ethylene oxide)-Poly(ester) Micelles for Colorectal Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12111033. [PMID: 33138058 PMCID: PMC7694018 DOI: 10.3390/pharmaceutics12111033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clinical use of 7-ethyl-10-hydroxy-camptothecin (SN-38), which is the active metabolite of irinotecan, has been hampered because of its practical water-insolubility. In this study, we successfully synthesized two self-associating SN-38-polymer drug conjugates to improve the water-solubility of SN-38, while retaining its anticancer activity. The polymeric micellar SN-38 conjugates were composed of either methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) conjugated to SN-38 at the PBCL end (mPEO-b-PBCL/SN-38) or mPEO-block-poly(α-carboxyl-ε-caprolactone) attached to SN-38 from the pendent-free carboxyl site (mPEO-b-PCCL/SN-38). The chemical structure of block copolymers was confirmed by 1H NMR. The physicochemical characterizations of their self-assembled structures including size, surface charge, polydispersity, critical micellar concentration, conjugation content and efficiency, morphology, kinetic stability, and in vitro release of SN-38 were compared between the two formulations. In vitro anticancer activities were evaluated by measuring cellular cytotoxicity and caspase activation by MTS and Caspase-Glo 3/7 assays, respectively. The hemolytic activity of both micellar structures against rat red blood cells was also measured. The results showed the formation of SN-38-polymeric micellar conjugates at diameters < 50 nm with a narrow size distribution and sustained release of SN-38 for both structures. The loading content of SN-38 in mPEO-b-PBCL and mPEO-b-PCCL were 11.47 ± 0.10 and 12.03 ± 0.17 (% w/w), respectively. The mPEO-b-PBCL/SN-38, end-capped micelles were kinetically more stable than mPEO-b-PCCL/SN-38. The self-assembled mPEO-b-PBCL/SN-38 and mPEO-b-PCCL/SN-38 micelles resulted in significantly higher cytotoxic effects than irinotecan against human colorectal cancer cell lines HCT116, HT-29, and SW20. The CRC cells were found to be 70-fold to 330-fold more sensitive to micellar SN-38 than irinotecan, on average. Both SN-38-incorporated micelles showed two-fold higher caspase-3/7 activation levels than irinotecan. The mPEO-b-PBCL/SN-38 micelles were not hemolytic, but mPEO-b-PCCL/SN-38 showed some hemolysis. The overall results from this study uphold mPEO-b-PBCL/SN-38 over mPEO-b-PCCL/SN-38 micellar formulation as an effective delivery system of SN-38 that warrants further preclinical investigation.
Collapse
Affiliation(s)
- Sams M. A. Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| | - Igor M. Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.M.A.S.); (I.M.P.)
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence: (M.R.V.); (A.L.); Tel.: +1-5879204349 (M.R.V.); +1-7804922742 (A.L.); Fax: +1-7804921217 (M.R.V.); +1-7804921217 (A.L.)
| |
Collapse
|
5
|
Blood-brain barrier disruption and delivery of irinotecan in a rat model using a clinical transcranial MRI-guided focused ultrasound system. Sci Rep 2020; 10:8766. [PMID: 32472017 PMCID: PMC7260193 DOI: 10.1038/s41598-020-65617-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 11/09/2022] Open
Abstract
We investigated controlled blood-brain barrier (BBB) disruption using a low-frequency clinical transcranial MRI-guided focused ultrasound (TcMRgFUS) device and evaluated enhanced delivery of irinotecan chemotherapy to the brain and a rat glioma model. Animals received three weekly sessions of FUS, FUS and 10 mg/kg irinotecan, or irinotecan alone. In each session, four volumetric sonications targeted 36 locations in one hemisphere. With feedback control based on recordings of acoustic emissions, 98% of the sonication targets (1045/1071) reached a pre-defined level of acoustic emission, while the probability of wideband emission (a signature for inertial cavitation) was than 1%. BBB disruption, evaluated by mapping the R1 relaxation rate after administration of an MRI contrast agent, was significantly higher in the sonicated hemisphere (P < 0.01). Histological evaluation found minimal tissue effects. Irinotecan concentrations in the brain were significantly higher (P < 0.001) with BBB disruption, but SN-38 was only detected in <50% of the samples and only with an excessive irinotecan dose. Irinotecan with BBB disruption did not impede tumor growth or increase survival. Overall these results demonstrate safe and controlled BBB disruption with a low-frequency clinical TcMRgFUS device. While irinotecan delivery to the brain was not neurotoxic, it did not improve outcomes in the F98 glioma model.
Collapse
|
6
|
Tseng YY, Yang TC, Chen SM, Yang ST, Tang YL, Liu SJ. Injectable SN-38-embedded Polymeric Microparticles Promote Antitumor Efficacy against Malignant Glioma in an Animal Model. Pharmaceutics 2020; 12:pharmaceutics12050479. [PMID: 32456305 PMCID: PMC7285024 DOI: 10.3390/pharmaceutics12050479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Malignant glioma (MG) is extremely aggressive and highly resistant to chemotherapeutic agents. Using electrospraying, the potent chemotherapeutic agent 7-ethyl-10-hydroxycamptothecia (SN-38) was embedded into 50:50 biodegradable poly[(d,l)-lactide-co-glycolide] (PLGA) microparticles (SMPs). The SMPs were stereotactically injected into the brain parenchyma of healthy rats and intratumorally injected into F98 glioma-bearing rats for estimating the pharmacodynamics and therapeutic efficacy. SN-38 was rapidly released after injection and its local (brain tissue) concentration remained much higher than that in the blood for more than 8 weeks. Glioma-bearing rats were divided into three groups—group A (n = 13; stereotactically injected pure PLGA microparticles), group B (n = 12; stereotactically injected Gliadel wafer and oral temozolomide), and group C (n = 13; stereotactic and intratumoral introduction of SMPs). The SMPs exhibited significant therapeutic efficacy, with prolonged survival, retarded tumor growth, and attenuated malignancy. The experimental results demonstrated that SMPs provide an effective and potential strategy for the treatment of MG.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.-Y.T.); (S.-T.Y.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tao-Chieh Yang
- Department of Neurosurgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Shu-Mei Chen
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shun-Tai Yang
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.-Y.T.); (S.-T.Y.)
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Ling Tang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-2118166; Fax: +886-3-2118558
| |
Collapse
|
7
|
Gawley M, Almond L, Daniel S, Lastakchi S, Kaur S, Detta A, Cruickshank G, Miller R, Hingtgen S, Sheets K, McConville C. Development and in vivo evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the localised treatment of recurrent glioblastoma multiforme. J Control Release 2020; 324:1-16. [PMID: 32407745 DOI: 10.1016/j.jconrel.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is impossible to fully remove surgically and almost always recurs at the borders of the resection cavity, while systemic delivery of therapeutic drug levels to the brain tumour is limited by the blood-brain barrier. This research describes the development of a novel formulation of Irinotecan-loaded Drug Eluting Seeds (iDES) for insertion into the margin of the GBM resection cavity to provide a sustained high local dose with reduced systemic toxicities. We used primary GBM cells from both the tumour core and Brain Around the Tumour tissue from recurrent GBM patients to demonstrate that irinotecan is more effective than temozolomide. Irinotecan had a 75% response rate, while only 50% responded to temozolomide. With temozolomide the cell viability was never below 80% whereas irinotecan achieved cell viabilities of less than 44%. The iDES were manufactured using a hot melt extrusion process with accurate irinotecan drug loadings and the same cytotoxicity as unformulated irinotecan. The iDES released irinotecan in a sustained fashion for up to 7 days. However, only the 30, 40 and 50% w/w loaded iDES formulations released the 300 to 1000 μg of irinotecan needed to be effective in vivo. The 30 and 40% w/w iDES formulations containing 10% plasticizer and either 60 or 50% PLGA prolonged survival from 27 to 70 days in a GBM xenograft mouse resection model with no sign of tumour recurrence. The 30% w/w iDES formulations showed equivalent toxicity to a placebo in non-tumour bearing mice. This innovative drug delivery approach could transform the treatment of recurrent GBM patients by improving survival and reducing toxicity.
Collapse
Affiliation(s)
- Matthew Gawley
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Lorna Almond
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Senam Daniel
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sarah Lastakchi
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sharnjit Kaur
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Allah Detta
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Garth Cruickshank
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Departments of Neurology and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shawn Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Sheets
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
8
|
Manaspon C, Chaimongkolnukul K, Kengkoom K, Boongird A, Hongeng S, Chairoungdua A, Nasongkla N. Time-dependent distribution of SN-38 from injectable polymeric depots in brain tumor model. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Manaspon C, Nasongkla N, Chaimongkolnukul K, Nittayacharn P, Vejjasilpa K, Kengkoom K, Boongird A, Hongeng S. Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme. Pharm Res 2016; 33:2891-2903. [DOI: 10.1007/s11095-016-2011-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/29/2016] [Indexed: 01/19/2023]
|
10
|
Yadav BS, Chanana P, Jhamb S. Biomarkers in triple negative breast cancer: A review. World J Clin Oncol 2015; 6:252-263. [PMID: 26677438 PMCID: PMC4675910 DOI: 10.5306/wjco.v6.i6.252] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/19/2014] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is an intrinsically heterogeneous disease. In the world about 1 million cases of breast cancer are diagnosed annually and more than 170000 are triple-negative. Characteristic feature of triple negative breast cancer (TNBC) is that it lacks expression of oestrogen, progesterone and human epidermal growth factor receptor-2/neu receptors. They comprise 15%-20% of all breast cancers. We did a systematic review of PubMed and conference databases to identify studies published on biomarkers in TNBC. We included studies with biomarkers including: Epidermal growth factor receptor, vascular endothelial growth factor, c-Myc, C-kit and basal cytokeratins, Poly(ADP-ribose) polymerase-1, p53, tyrosinase kinases, m-TOR, heat and shock proteins and TOP-2A in TNBC. We also looked for studies published on synthetic lethality and inhibition of angiogenesis, growth, and survival pathways. TNBC is a complex disease subtype with many subclasses. Majority TNBC have a basal-like molecular phenotype by gene expression profiling. Their clinical and pathologic features overlap with hereditary BRCA1 related breast cancers. Management of these tumours is a challenge to the clinician because of its aggressive behaviour, poor outcome, and absence of targeted therapies. As the complexity of this disease is being simplified over time new targets are also being discovered for the treatment of this disease. There are many biomarkers in TNBC being used in clinical practice. Biomarkers may be useful as prognostic or predictive indicators as well as suggest possible targets for novel therapies. Many targeted agents are being studied for treatment of TNBC.
Collapse
|
11
|
Zhu X, Ni S, Xia T, Yao Q, Li H, Wang B, Wang J, Li X, Su W. Anti-Neoplastic Cytotoxicity of SN-38-Loaded PCL/Gelatin Electrospun Composite Nanofiber Scaffolds against Human Glioblastoma Cells In Vitro. J Pharm Sci 2015; 104:4345-4354. [DOI: 10.1002/jps.24684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022]
|
12
|
Abstract
INTRODUCTION Clinical use of SN38 is limited by its poor aqueous solubility and hydrolysis of the lactone ring at pH > 6 to inactive carboxylate form. A variety of drug delivery systems have been developed to improve the solubility and stability of SN38, and reduce its toxicity. A few noteworthy formulations with some success in initial phases of clinical trials are reported. AREAS COVERED This work aims to provide a comprehensive review on the various techniques and strategies employed (physical, chemical and biological methods) to improve physicochemical properties and to deliver the drug efficiently to the cancer cells. Physical methods such as nanoparticle encapsulation, cyclodextrin complexation; chemical methods such as prodrugs, polymer-, albumin- and immunoconjugates; and enzyme activated prodrug therapy are discussed. EXPERT OPINION The challenges in SN38 drug delivery may be overcome by two ways: ensuring multiple layers of protection against degradation and slow but sustained release of therapeutically effective drug concentrations. It may also be achieved by preparing a polymer-drug conjugate and further encapsulating the conjugate in suitable carrier system; tumor-targeted SN38 delivery by using immunoconjugates, enzyme-activated prodrug therapy and antibody-directed nanoparticle delivery. However, selection of a suitable ligand for tumor targeting and use of safe and biocompatible nanoparticle systems play an important role in realizing this goal.
Collapse
Affiliation(s)
- Srinath Palakurthi
- a Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Department of Pharmaceutical Sciences , Kingsville, TX 78363, USA +1 3612210748 ; +1 3612210793 ;
| |
Collapse
|
13
|
Vejjasilpa K, Nasongkla N, Manaspon C, Larbcharoensub N, Boongird A, Hongeng S, Israsena N. Antitumor efficacy and intratumoral distribution of SN-38 from polymeric depots in brain tumor model. Exp Biol Med (Maywood) 2015; 240:1640-7. [PMID: 26080460 DOI: 10.1177/1535370215590819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022] Open
Abstract
We investigate antitumor efficacy and 2D and 3D intratumoral distribution of 7-ethyl-10-hydroxycamptothecin (SN-38) from polymeric depots inside U-87MG xenograft tumor model in nude mice. Results showed that polymeric depots could be used to administer and controlled release of a large amount of SN-38 directly to the brain tumor model. SN-38 released from depots suppressed tumor growth, where the extent of suppression greatly depended on doses and the number of depot injections. Tumor suppression of SN-38 from depots was three-fold higher in animals which received double injections of depots at high dose (9.7 mg of SN-38) compared to single injection (2.2 mg). H&E staining of tumor sections showed that the area of tumor cell death/survival of the former group was two-fold higher than those of the latter group. Fluorescence imaging based on self-fluorescent property of SN-38 was used to evaluate the intratumoral distribution of this drug compared to histological results. The linear correlation between fluorescence intensity and the amount of SN-38 allowed quantitative determination of SN-38 in tumor tissues. Results clearly showed direct correlation between the amount of SN-38 in tumor sections and cancer cell death. Moreover, 3D reconstruction representing the distribution of SN-38 in tumors was obtained. Results from this study suggest the rationale for intratumoral drug administration and release of drugs inside tumor, which is necessary to design drug delivery systems with efficient antitumor activity.
Collapse
Affiliation(s)
- Ketpat Vejjasilpa
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Chawan Manaspon
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Atthaporn Boongird
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Paediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nipan Israsena
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Wang W, Sivakumar W, Torres S, Jhaveri N, Vaikari VP, Gong A, Howard A, Golden EB, Louie SG, Schönthal AH, Hofman FM, Chen TC. Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals. Neurosurg Focus 2015; 38:E8. [DOI: 10.3171/2015.1.focus14743] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT
Bevacizumab (Avastin), an antibody to vascular endothelial growth factor (VEGF), alone or in combination with irinotecan (Camptosar [CPT-11]), is a promising treatment for recurrent glioblastoma. However, the intravenous (IV) administration of bevacizumab produces a number of systemic side effects, and the increase in survival it provides for patients with recurrent glioblastoma is still only a few months. Because bevacizumab is an antibody against VEGF, which is secreted into the extracellular milieu by glioma cells, the authors hypothesized that direct chronic intratumoral delivery techniques (i.e., convection-enhanced delivery [CED]) can be more effective than IV administration. To test this hypothesis, the authors compared outcomes for these routes of bevacizumab application with respect to animal survival, microvessel density (MVD), and inflammatory cell distribution.
METHODS
Two human glioma cell lines, U87 and U251, were used as sources of intracranial tumor cells. The glioma cell lines were implanted into the brains of mice in an orthotopic xenograft mouse tumor model. After 7 days, the mice were treated with one of the following: 1) vehicle, 2) CED bevacizumab, 3) IV bevacizumab, 4) intraperitoneal (IP) irinotecan, 5) CED bevacizumab plus IP irinotecan, or 6) IV bevacizumab plus IP irinotecan. Alzet micro-osmotic pumps were used to introduce bevacizumab directly into the tumor. Survival was monitored. Excised tumor tissue samples were immunostained to measure MVD and inflammatory cell and growth factor levels.
RESULTS
The results demonstrate that mice treated with CED of bevacizumab alone or in combination with irinotecan survived longer than those treated systemically; CED-treated animals survived 30% longer than IV-treated animals. In combination studies, CED bevacizumab plus CPT-11 increased survival by more than 90%, whereas IV bevacizumab plus CPT-11 increased survival by 40%. Furthermore, CED bevacizumab-treated tissues exhibited decreased MVD compared with that of IV-treated tissues. In additional studies, the infiltration of macrophages and dendritic cells into CED-treated animals were increased compared with those in IV-treated animals, suggesting a highly active inflammatory response taking place in CED-treated mice.
CONCLUSIONS
The administration of bevacizumab via CED increases survival over that of treatment with IV bevacizumab. Thus, CED of bevacizumab alone or in combination with chemotherapy can be an effective protocol for treating gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stan G. Louie
- 4Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Axel H. Schönthal
- 3Molecular Microbiology and Immunology, Keck School of Medicine; and
| | | | | |
Collapse
|
15
|
Noble CO, Krauze MT, Drummond DC, Forsayeth J, Hayes ME, Beyer J, Hadaczek P, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW. Pharmacokinetics, tumor accumulation and antitumor activity of nanoliposomal irinotecan following systemic treatment of intracranial tumors. Nanomedicine (Lond) 2014; 9:2099-108. [PMID: 24494810 DOI: 10.2217/nnm.13.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model. MATERIALS & METHODS Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments. RESULTS Tissue analysis demonstrated favorable properties for nanoliposomal irinotecan, including a 10.9-fold increase in tumor AUC for drug compared with free irinotecan and 35-fold selectivity for tumor versus normal tissue exposure. As a therapy for orthotopic brain tumors, nanoliposomal irinotecan showed a mean survival time of 54.2 versus 29.5 days for free irinotecan. A total of 33% of the animals receiving nanoliposomal irinotecan showed no residual tumor by study end compared with no survivors in the other groups. CONCLUSION Nanoliposomal irinotecan administered systemically provides significant pharmacologic advantages and may be an efficacious therapy for brain tumors.
Collapse
Affiliation(s)
- Charles O Noble
- Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Escoffre JM, Novell A, Serrière S, Lecomte T, Bouakaz A. Irinotecan Delivery by Microbubble-Assisted Ultrasound: In Vitro Validation and a Pilot Preclinical Study. Mol Pharm 2013; 10:2667-75. [DOI: 10.1021/mp400081b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J.-M. Escoffre
- UMR Inserm
U930, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, 37044 Tours, France
| | - A. Novell
- UMR Inserm
U930, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, 37044 Tours, France
| | - S. Serrière
- UMR Inserm
U930, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, 37044 Tours, France
| | - T. Lecomte
- Université François-Rabelais, UMR CNRS 7292, 37032 Tours,
France
- Service d’Hépato-gastroentérologie
et de Cancérologie Digestive, University Hospital CHU, 37044 Tours, France
| | - A. Bouakaz
- UMR Inserm
U930, Université François-Rabelais de Tours, PRES Centre-Val de Loire Université, 37044 Tours, France
| |
Collapse
|
17
|
Coleman MD, O'Neil JD, Woehrling EK, Ndunge OBA, Hill EJ, Menache A, Reiss CJ. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro. PLoS One 2012; 7:e42768. [PMID: 22880100 PMCID: PMC3411844 DOI: 10.1371/journal.pone.0042768] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023] Open
Abstract
Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.
Collapse
Affiliation(s)
- Michael D. Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- * E-mail:
| | - John D. O'Neil
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | | | - Eric J. Hill
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | | |
Collapse
|
18
|
Manaspon C, Nittayacharn P, Vejjasilpa K, Fongsuk C, Nasongkla N. SN-38:β-cyclodextrin inclusion complex for in situ solidifying injectable polymer implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3241-4. [PMID: 22255030 DOI: 10.1109/iembs.2011.6090881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most useful techniques to treat cancer is chemotherapy. However, anticancer drugs, such as SN-38, have limited solubility with strong side effects. This work aims to use SN-38:β-cyclodextrin (β-CD) inclusion complex for an injectable polymeric in situ forming implant containing poly(ethylene glycol) (PEG), poly(ε-caprolactone), and poly(D, L-lactide). It was found that implant formation and SN-38 encapsulation efficiency directly depended on weight ratio of SN-38 and β-CD. At the ratio of SN-38:β-CD of 1:7, the implant could not be formed perfectly and had lower encapsulation efficiency. Reduction of the amount of β-CD to the ratio of 1:3 showed the higher encapsulation efficiency at 89.7 %. SN-38 release rate was also found to depend on β-CD content and the implant weight. In addition, their active form was protected when encapsulated inside implants.
Collapse
Affiliation(s)
- Chawan Manaspon
- Biomedical Engineering Department, Mahidol University, Nakorn Pathom, CO 73170, Thailand
| | | | | | | | | |
Collapse
|
19
|
Sharpe MA, Marcano DC, Berlin JM, Widmayer MA, Baskin DS, Tour JM. Antibody-targeted nanovectors for the treatment of brain cancers. ACS NANO 2012; 6:3114-3120. [PMID: 22390360 DOI: 10.1021/nn2048679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Introduced here is the hydrophilic carbon clusters (HCCs) antibody drug enhancement system (HADES), a methodology for cell-specific drug delivery. Antigen-targeted, drug-delivering nanovectors are manufactured by combining specific antibodies with drug-loaded poly(ethylene glycol)-HCCs (PEG-HCCs). We show that HADES is highly modular, as both the drug and antibody component can be varied for selective killing of a range of cultured human primary glioblastoma multiforme. Using three different chemotherapeutics and three different antibodies, without the need for covalent bonding to the nanovector, we demonstrate extreme lethality toward glioma, but minimal toxicity toward human astrocytes and neurons.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Methodist Hospital, 6560 Fannin Street, Houston, Texas 77030, United States.
| | | | | | | | | | | |
Collapse
|
20
|
Irinophore C™, a lipid-based nanoparticulate formulation of irinotecan, is more effective than free irinotecan when used to treat an orthotopic glioblastoma model. J Control Release 2012; 158:34-43. [DOI: 10.1016/j.jconrel.2011.09.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|
21
|
Davidson D, Coulombe Y, Martinez-Marignac VL, Amrein L, Grenier J, Hodkinson K, Masson JY, Aloyz R, Panasci L. Irinotecan and DNA-PKcs inhibitors synergize in killing of colon cancer cells. Invest New Drugs 2011; 30:1248-56. [PMID: 21221710 DOI: 10.1007/s10637-010-9626-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 12/19/2010] [Indexed: 12/27/2022]
Abstract
This study sought to measure the degree of synergy induced by specific small molecule inhibitors of DNA-PK [NU7026 and IC486241 (ICC)], a major component of the non-homologous end-joining (NHEJ) pathway, with SN38 or oxaliplatin. Synergy between the DNA damaging drugs and the DNA-PK inhibitors was assessed using the sulforhodamine-B assay (SRB). Effects of drug combinations on cell cycle and DNA-PK activity were determined using flow cytometry and western blot analysis. DNA damage was assessed via comet assay and quantification of γH2AX. The role of homologous recombination repair (HRR) was determined by nuclear Rad51 protein levels and a GFP reporter recombination assay. Significant reductions in the IC(50) values of SN38 were observed at 5 and 10 μM of DNA-PK inhibitors. Moreover, at 1-2 μM (attainable concentrations with ICC in mice) these DNA-PKcs inhibitors demonstrated synergistic reductions in the IC(50) of SN38. Flow cytometric data indicated that SN38 and SN38 in combination with DNA-PKcs inhibitors showed dramatic G2/M arrest at 24 h. Furthermore, reduced phosphorylation of DNA-PKcs and increased DNA damage were observed at this time point with SN38 in combination with DNA-PKcs inhibitors as compared to cells treated with SN38 alone. SN38 alone and in the presence of ICC increased nuclear Rad51 protein levels. Furthermore, inhibition of DNA-PKcs increased HRR suggesting that NHEJ is a negative regulator of HRR. These data indicate that small molecule inhibitors of DNA-PKcs dramatically enhance the efficacy of SN38 in colon cancer cell lines.
Collapse
Affiliation(s)
- David Davidson
- Montreal Centre for Experimental Therapeutics in Cancer-Lady Davis Institute-Jewish General Hospital, McGill University, 3755, Côte Sainte Catherine Road, Montréal, Québec, H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|