1
|
Yin SW, Wang Y, Meng YL, Liu CX. Effects of mild intrauterine hypoperfusion in the second trimester on memory and learning function in rat offspring. Neural Regen Res 2020; 15:2082-2088. [PMID: 32394966 PMCID: PMC7716030 DOI: 10.4103/1673-5374.282268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mild intrauterine hypoperfusion (MIUH) is a serious pathological event that affects the growth and development of fetuses and offspring. MIUH can lead to growth restriction, low birth weight, neurodevelopmental disorders, and other adverse clinical outcomes. To study the effects of MIUH on learning and memory function in offspring, a model of MIUH was established by placing a coil (length 2.5 mm, diameter 0.24 mm) on the uterine artery and ovarian uterine artery of Sprague-Dawley rats in the second trimester of pregnancy (day 17). Next, 120 mg/kg lithium chloride (the MIUH + Li group) or normal saline (the MIUH group) was injected intraperitoneally into these rats. In addition, 120 mg/kg lithium chloride (the Li group) or normal saline (the SHAM group) was injected intraperitoneally into pregnant rats without coil placement. The Morris water maze was used to detect changes in learning and memory ability in the offspring at 4 weeks after birth. In the MIUH group, the escape latency and journey length before reaching the platform were both increased, and the number of times that the platform was crossed and the activity time in the target quadrant within 90 seconds were both decreased compared with the SHAM group. Immunofluorescence double staining and western blot assays demonstrated that hippocampal nestin and Ki67 (both cell-proliferation-related proteins) expression was significantly downregulated in the MIUH group compared with the SHAM group. Furthermore, western blot assays were conducted to investigate changes in related signaling pathway proteins in the brains of offspring rats, and revealed that glycogen synthase kinase 3β (GSK3β) expression was upregulated and β-catenin expression was downregulated in the MIUH group compared with the SHAM group. In addition, compared with the MIUH group, the expression levels of p-GSK3β and β-catenin were upregulated in the MIUH + Li group. These results suggest that MIUH may affect learning and memory function in rat offspring by regulating the GSK3β signaling pathway. The experimental procedures were approved by Animal Ethics Committee of Shengjing Hospital of China Medical University (approval No. 2018PS07K) in June 2018.
Collapse
Affiliation(s)
- Shao-Wei Yin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yuan Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi-Lin Meng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| | - Cai-Xia Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Carusillo Theriault B, Woo SK, Karimy JK, Keledjian K, Stokum JA, Sarkar A, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. Cerebral microbleeds in a neonatal rat model. PLoS One 2017; 12:e0171163. [PMID: 28158198 PMCID: PMC5291518 DOI: 10.1371/journal.pone.0171163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. METHODS Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. RESULTS mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. CONCLUSIONS In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.
Collapse
Affiliation(s)
- Brianna Carusillo Theriault
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jason K. Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Turhan Coksaygan
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Angiogenesis induced by prenatal ischemia predisposes to periventricular hemorrhage during postnatal mechanical ventilation. Pediatr Res 2015; 77:663-73. [PMID: 25665055 PMCID: PMC4405433 DOI: 10.1038/pr.2015.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Three risk factors are associated with hemorrhagic forms of encephalopathy of prematurity (EP): (i) prematurity, (ii) in utero ischemia (IUI) or perinatal ischemia, and (iii) mechanical ventilation. We hypothesized that IUI would induce an angiogenic response marked by activation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9), the latter degrading vascular basement membrane and increasing vulnerability to raised intravenous pressure during positive pressure mechanical ventilation. METHODS We studied a rat model of hemorrhagic-EP characterized by periventricular hemorrhages in which a 20-min episode of IUI is induced at E19, pups are born naturally at E21-22, and on P0, are subjected to a 20-min episode of positive pressure mechanical ventilation. Tissues were studied by H&E staining, immunolabeling, immunoblot, and zymography. RESULTS Mechanical ventilation of rat pups 2-3 d after 20-min IUI caused widespread hemorrhages in periventricular tissues. IUI resulted in upregulation of VEGF and MMP-9. Zymography confirmed significantly elevated gelatinase activity. MMP-9 activation was accompanied by severe loss of MMP-9 substrates, collagen IV and laminin, in microvessels in periventricular areas. CONCLUSION Our findings are consistent with the hypothesis that positive pressure mechanical ventilation of the newborn in the context of recent prenatal ischemia/hypoxia can predispose to periventricular hemorrhages.
Collapse
|
4
|
Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, Coksaygan T, Ivanova S, Gerzanich V, Simard JM. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci 2014; 3:215-38. [PMID: 23667741 PMCID: PMC3647482 DOI: 10.3390/brainsci3010215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We studied a model of hemorrhagic encephalopathy of prematurity (EP) that closely recapitulates findings in humans with hemorrhagic EP. This model involves tandem insults of 20 min intrauterine ischemia (IUI) plus an episode of elevated venous pressure induced by intraperitoneal glycerol on post-natal day (P) 0. We examined Sur1 expression, which is upregulated after focal ischemia but has not been studied after brief global ischemia including IUI. We found that 20 min IUI resulted in robust upregulation of Sur1 in periventricular microvessels and tissues. We studied tandem insult pups from untreated or vehicle-treated dams (TI-CTR), and tandem insult pups from dams administered a low-dose, non-hypoglycemogenic infusion of the Sur1 blocker, glibenclamide, for 1 week after IUI (TI-GLIB). Compared to pups from the TI-CTR group, pups from the TI-GLIB group had significantly fewer and less severe hemorrhages on P1, performed significantly better on the beam walk and accelerating Rotarod on P35 and in tests of thigmotaxis and rapid learning on P35–49, and had significantly greater body and brain weights at P52. We conclude that low-dose glibenclamide administered to the mother at the end of pregnancy protects pups subjected to IUI from post-natal events of elevated venous pressure and its consequences.
Collapse
Affiliation(s)
- Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Michael T. Koltz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Hina Ijaz
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Melda Gurakar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Gary Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Turhan Coksaygan
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mail:
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (C.T.); (M.T.K.); (D.B.K.); (H.I.); (M.G.); (G.S.); (S.I.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mail:
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-328-0850; Fax: +1-410-328-0124
| |
Collapse
|
5
|
Kurland DB, Tosun C, Pampori A, Karimy JK, Caffes NM, Gerzanich V, Simard JM. Glibenclamide for the treatment of acute CNS injury. Pharmaceuticals (Basel) 2013; 6:1287-303. [PMID: 24275850 PMCID: PMC3817601 DOI: 10.3390/ph6101287] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective effects in acute CNS injury. Acting via inhibition of the recently characterized Sur1-Trpm4 channel (formerly, the Sur1-regulated NCCa-ATP channel) and, in some cases, via brain KATP channels, glibenclamide has been shown to be beneficial in several clinically relevant rodent models of ischemic and hemorrhagic stroke, traumatic brain injury, spinal cord injury, neonatal encephalopathy of prematurity, and metastatic brain tumor. Glibenclamide acts on microvessels to reduce edema formation and secondary hemorrhage, it inhibits necrotic cell death, it exerts potent anti-inflammatory effects and it promotes neurogenesis—all via inhibition of Sur1. Two clinical trials, one in TBI and one in stroke, currently are underway. These recent findings, which implicate Sur1 in a number of acute pathological conditions involving the CNS, present new opportunities to use glibenclamide, a well-known, safe pharmaceutical agent, for medical conditions that heretofore had few or no treatment options.
Collapse
Affiliation(s)
- David B. Kurland
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Adam Pampori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Jason K. Karimy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Nicholas M. Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; E-Mails: (D.B.K.); (C.T.); (A.P.); (J.K.K.); (N.M.C.); (V.G.)
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-410-328-0850; Fax: +1-410-328-0124
| |
Collapse
|