1
|
Faingold CL, Feng HJ. A unified hypothesis of SUDEP: Seizure-induced respiratory depression induced by adenosine may lead to SUDEP but can be prevented by autoresuscitation and other restorative respiratory response mechanisms mediated by the action of serotonin on the periaqueductal gray. Epilepsia 2023; 64:779-796. [PMID: 36715572 PMCID: PMC10673689 DOI: 10.1111/epi.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major cause of death in people with epilepsy (PWE). Postictal apnea leading to cardiac arrest is the most common sequence of terminal events in witnessed cases of SUDEP, and postconvulsive central apnea has been proposed as a potential biomarker of SUDEP susceptibility. Research in SUDEP animal models has led to the serotonin and adenosine hypotheses of SUDEP. These neurotransmitters influence respiration, seizures, and lethality in animal models of SUDEP, and are implicated in human SUDEP cases. Adenosine released during seizures is proposed to be an important seizure termination mechanism. However, adenosine also depresses respiration, and this effect is mediated, in part, by inhibition of neuronal activity in subcortical structures that modulate respiration, including the periaqueductal gray (PAG). Drugs that enhance the action of adenosine increase postictal death in SUDEP models. Serotonin is also released during seizures, but enhances respiration in response to an elevated carbon dioxide level, which often occurs postictally. This effect of serotonin can potentially compensate, in part, for the adenosine-mediated respiratory depression, acting to facilitate autoresuscitation and other restorative respiratory response mechanisms. A number of drugs that enhance the action of serotonin prevent postictal death in several SUDEP models and reduce postictal respiratory depression in PWE. This effect of serotonergic drugs may be mediated, in part, by actions on brainstem sites that modulate respiration, including the PAG. Enhanced activity in the PAG increases respiration in response to hypoxia and other exigent conditions and can be activated by electrical stimulation. Thus, we propose the unifying hypothesis that seizure-induced adenosine release leads to respiratory depression. This can be reversed by serotonergic action on autoresuscitation and other restorative respiratory responses acting, in part, via the PAG. Therefore, we hypothesize that serotonergic or direct activation of this brainstem site may be a useful approach for SUDEP prevention.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Hua-Jun Feng
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Henning L, Unichenko P, Bedner P, Steinhäuser C, Henneberger C. Overview Article Astrocytes as Initiators of Epilepsy. Neurochem Res 2023; 48:1091-1099. [PMID: 36244037 PMCID: PMC10030460 DOI: 10.1007/s11064-022-03773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/22/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| |
Collapse
|
3
|
Shen HY, Baer SB, Gesese R, Cook JM, Weltha L, Coffman SQ, Wu J, Chen JF, Gao M, Ji T. Adenosine-A 2A Receptor Signaling Plays a Crucial Role in Sudden Unexpected Death in Epilepsy. Front Pharmacol 2022; 13:910535. [PMID: 35754505 PMCID: PMC9218562 DOI: 10.3389/fphar.2022.910535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Sadie B Baer
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Raey Gesese
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - John M Cook
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Landen Weltha
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Shayla Q Coffman
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Teng Ji
- Department of Pediatric Neurology, Randall Children's Hospital, Legacy Emanuel Medical Center, Portland, OR, United States
| |
Collapse
|
4
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
5
|
Liu G, Li H, Cull G, Wilsey L, Yang H, Reemmer J, Shen HY, Wang F, Fortune B, Bui BV, Wang L. Downregulation of Retinal Connexin 43 in GFAP-Expressing Cells Modifies Vasoreactivity Induced by Perfusion Ocular Pressure Changes. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 33502459 PMCID: PMC7846954 DOI: 10.1167/iovs.62.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose Glia and their communication via connexin 43 (Cx43) gap junctions are known to mediate neurovascular coupling, a process driven by metabolic demand. However, it is unclear whether Cx43 mediated glial communication intermediates classical autoregulation. Here we used viral transfection and a glial fibrillary acidic protein (GFAP) promoter to downregulate glial Cx43 to evaluate its role in retinal vascular autoregulation to ocular perfusion pressure (OPP) reduction. Methods Adult rats were intravitreally injected with the viral active construct or a control. Three weeks after the injection, eyes were imaged using confocal scanning laser ophthalmoscopy before and during a period of OPP decrease induced by blood draw to lower blood pressure or by manometric IOP elevation. Vessel diameter responses to the OPP decrease were compared between Cx43-downregulated and control-injected eyes. The extent of Cx43 downregulation was evaluated by Western blot and immunohistochemistry. Results In control eyes, the OPP decrease induced dilatation of arterioles, but not venules. In Cx43-downregulated eyes, Cx43 expression in whole retina was decreased by approximately 40%. In these eyes, the resting diameter of the venules increased significantly, but there was no effect on arterioles. In Cx43-downregulated eyes, vasoreactivity evoked by blood pressure lowering was significantly compromised in both arterioles (P = 0.005) and venules (P = 0.001). Cx43 downregulation did not affect the arteriole responses to IOP elevation, whereas the responses of the venules showed a significantly greater decrease in diameter (P < 0.001). Conclusions The downregulation of retinal Cx43 in GFAP–expressing cells compromises vasoreactivity of both arterioles and venules in response to an OPP decrease achieved via blood pressure lowering or IOP elevation. The results also suggest that Cx43-mediated glial communication actively regulates resting venular diameter.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Shanghai, China.,Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hui Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Shanghai, China.,Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Grant Cull
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Laura Wilsey
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Jesica Reemmer
- RS Dow Neurobiology, Department of Translational Neuroscience, Legacy Research Institute, Portland, Oregon, United States
| | - Hai-Ying Shen
- RS Dow Neurobiology, Department of Translational Neuroscience, Legacy Research Institute, Portland, Oregon, United States
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Brad Fortune
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lin Wang
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
6
|
Chaihu plus Longgu Muli Decoction Alleviated Brain Injury in Pentylenetetrazole-Kindled Epileptic Mice by Regulating Cyclooxygenase-2/Prostaglandin E2/Multidrug Transporter Pathway. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6652195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate the effect of CLMD administration on epileptic seizures and brain injury in pentylenetetrazole- (PZT-) kindled mice. Methods. The effect of pretreatment with CLMD (5, 10, and 20 ml/kg (mg/kg) by gavage) for seven days on PTZ-induced kindling, duration and grade of kindling-induced seizures, and pathological injury in the cortex and hippocampus was evaluated. Male BALB/c mice with adenosine A1 receptor knockout were subjected to intraperitoneal injection of PTZ (35 mg/kg) once every day until kindling was successfully induced. Quantitative reverse transcription polymerase chain reaction, immunofluorescence, and western blot were performed to assess the mRNA and protein levels of p-glycoprotein (PGP), multidrug resistance-associated protein 1 (MRP1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and adenylate kinase (ADK) in the cortex and hippocampus. Results. PTZ successfully induced kindling in mice after 21 days, wherein CLMD showed an obvious dose-dependent antiepileptic effect. High-dose CLMD significantly increased the latency of epileptic seizures, decreased the sustained time of epileptic seizures and the seizure grade, and ameliorated the histopathological changes in the cortex and hippocampus. Furthermore, PTZ kindling induced significantly higher levels of PGP, MRP1, COX-2, PGE2, and ADK, but this effect was inhibited by pretreatment with CLMD in a dose-dependent manner. Conclusion. Pretreatment with CLMD attenuates PTZ-kindled convulsions and brain injury in mice. The mechanism may be related to the cyclooxygenase-2/prostaglandin E2/multidrug transporter pathway.
Collapse
|
7
|
Boison D, Jarvis MF. Adenosine kinase: A key regulator of purinergic physiology. Biochem Pharmacol 2020; 187:114321. [PMID: 33161022 DOI: 10.1016/j.bcp.2020.114321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Adenosine (ADO) is an essential biomolecule for life that provides critical regulation of energy utilization and homeostasis. Adenosine kinase (ADK) is an evolutionary ancient ribokinase derived from bacterial sugar kinases that is widely expressed in all forms of life, tissues and organ systems that tightly regulates intracellular and extracellular ADO concentrations. The facile ability of ADK to alter ADO availability provides a "site and event" specificity to the endogenous protective effects of ADO in situations of cellular stress. In addition to modulating the ability of ADO to activate its cognate receptors (P1 receptors), nuclear ADK isoform activity has been linked to epigenetic mechanisms based on transmethylation pathways. Previous drug discovery research has targeted ADK inhibition as a therapeutic approach to manage epilepsy, pain, and inflammation. These efforts generated multiple classes of highly potent and selective inhibitors. However, clinical development of early ADK inhibitors was stopped due to apparent mechanistic toxicity and the lack of suitable translational markers. New insights regarding the potential role of the nuclear ADK isoform (ADK-Long) in the epigenetic modulation of maladaptive DNA methylation offers the possibility of identifying novel ADK-isoform selective inhibitors and new interventional strategies that are independent of ADO receptor activation.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, United States.
| | | |
Collapse
|
8
|
P2Y1 receptor inhibition rescues impaired synaptic plasticity and astroglial Ca 2+-dependent activity in the epileptic hippocampus. Neurobiol Dis 2020; 146:105132. [PMID: 33049315 DOI: 10.1016/j.nbd.2020.105132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is characterized by a progressive predisposition to suffer seizures due to neuronal hyperexcitability, and one of its most common co-morbidities is cognitive decline. In animal models of chronic epilepsy, such as kindling, electrically induced seizures impair long-term potentiation (LTP), deteriorating learning and memory performance. Astrocytes are known to actively modulate synaptic plasticity and neuronal excitability through Ca2+-dependent gliotransmitter release. It is unclear, however, if astroglial Ca2+ signaling could contribute to the development of synaptic plasticity alterations in the epileptic hippocampus. By employing electrophysiological tools and Ca2+ imaging, we found that glutamatergic CA3-CA1 synapses from kindled rats exhibit an impairment in theta burst (TBS) and high frequency stimulation (HFS)-induced LTP, which is accompanied by an increased probability of neurotransmitter release (Pr) and an abnormal pattern of astroglial Ca2+-dependent transients. Both the impairment in LTP and the Pr were reversed by inhibiting purinergic P2Y1 receptors (P2Y1R) with the specific antagonist MRS2179, which also restored the spontaneous and TBS-induced pattern of astroglial Ca2+-dependent signals. Two consecutive, spaced TBS protocols also failed to induce LTP in the kindled group, however, this impairment was reversed and a strong LTP was induced when the second TBS was applied in the presence of MRS2179, suggesting that the mechanisms underlying the alterations in TBS-induced LTP are likely associated with an aberrant modulation of the induction threshold for LTP. Altogether, these results indicate that P2Y1R inhibition rescues both the pattern of astroglial Ca2+-activity and the plastic properties of CA3-CA1 synapses in the epileptic hippocampus, suggesting that astrocytes might take part in the mechanisms that deteriorate synaptic plasticity and thus cause cognitive decline in epileptic patients.
Collapse
|
9
|
Grove RA, Madhavan D, Boone CHT, Braga CP, Papackova Z, Kyllo H, Samson K, Simeone K, Simeone T, Helikar T, Hanson CK, Adamec J. Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients. J Proteomics 2020; 223:103812. [PMID: 32418907 PMCID: PMC10588813 DOI: 10.1016/j.jprot.2020.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to compare molecular differences and enzymatic activities in tissue implicated in seizure onset to tissue with no abnormal activity within patients. Label free quantitation identified 17 proteins with altered abundance in the seizure onset zone as compared to tissue with normal activity. Assessment of oxidative protein damage by protein carbonylation identified additional 11 proteins with potentially altered function in the seizure onset zone. Pathway analysis revealed that most of the affected proteins are involved in energy metabolism and redox balance. Further, enzymatic assays showed significantly decreased activity of transketolase indicating a disruption of the Pentose Phosphate Pathway and diversion of intermediates into purine metabolic pathway, resulting in the generation of the potentially pro-convulsant metabolites. Altogether, these findings suggest that imbalance in energy metabolism and redox balance, pathways critical to proper neuronal function, play important roles in neuronal network hyperexcitability and can be used as a primary target for potential therapeutic strategies to combat DRE. SIGNIFICANCE: Epileptic seizures are some of the most difficult to treat neurological disorders. Up to 40% of patients with epilepsy are resistant to first- and second-line anticonvulsant therapy, a condition that has been classified as refractory epilepsy. One potential therapy for this patient population is the ketogenic diet (KD), which has been proven effective against multiple refractory seizure types However, compliance with the KD is extremely difficult, and carries severe risks, including ketoacidosis, renal failure, and dangerous electrolyte imbalances. Therefore, identification of pathways disruptions or shortages can potentially uncover cellular targets for anticonvulsants, leading to a personalized treatment approach depending on a patient's individual metabolic signature.
Collapse
Affiliation(s)
- Ryan A Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Cory H T Boone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Camila Pereira Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Zuzana Papackova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, CZ, Czech Republic; Czech University of Life Science Prague, Faculty of Agrobiology-Food and Natural Recourses, Department of Veterinary Science, Prague, CZ, Czech Republic
| | - Hannah Kyllo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Kaeli Samson
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Kristina Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Timothy Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Corrine K Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America.
| |
Collapse
|
10
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
11
|
Kim JK, Cho J, Kim SH, Kang HC, Kim DS, Kim VN, Lee JH. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J Clin Invest 2020; 129:4207-4223. [PMID: 31483294 DOI: 10.1172/jci127032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Brain somatic mutations confer genomic diversity in the human brain and cause neurodevelopmental disorders. Recently, brain somatic activating mutations in MTOR have been identified as a major etiology of intractable epilepsy in patients with cortical malformations. However, the molecular genetic mechanism of how brain somatic mutations in MTOR cause intractable epilepsy has remained elusive. In this study, translational profiling of intractable epilepsy mouse models with brain somatic mutations and genome-edited cells revealed a novel translational dysregulation mechanism and mTOR activation-sensitive targets mediated by human MTOR mutations that lead to intractable epilepsy with cortical malformation. These mTOR targets were found to be regulated by novel mTOR-responsive 5'-UTR motifs, distinct from known mTOR inhibition-sensitive targets regulated by 5' terminal oligopyrimidine motifs. Novel mTOR target genes were validated in patient brain tissues, and the mTOR downstream effector eIF4E was identified as a new therapeutic target in intractable epilepsy via pharmacological or genetic inhibition. We show that metformin, an FDA-approved eIF4E inhibitor, suppresses intractable epilepsy. Altogether, the present study describes translational dysregulation resulting from brain somatic mutations in MTOR, as well as the pathogenesis and potential therapeutic targets of intractable epilepsy.
Collapse
Affiliation(s)
- Jang Keun Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Weltha L, Reemmer J, Boison D. The role of adenosine in epilepsy. Brain Res Bull 2019; 151:46-54. [PMID: 30468847 PMCID: PMC6527499 DOI: 10.1016/j.brainresbull.2018.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Adenosine is a well-characterized endogenous anticonvulsant and seizure terminator of the brain. Through a combination of adenosine receptor-dependent and -independent mechanisms, adenosine affects seizure generation (ictogenesis), as well as the development of epilepsy and its progression (epileptogenesis). Maladaptive changes in adenosine metabolism, in particular increased expression of the astroglial enzyme adenosine kinase (ADK), play a major role in epileptogenesis. Increased expression of ADK has dual roles in both reducing the inhibitory tone of adenosine in the brain, which consequently reduces the threshold for seizure generation, and also driving an increased flux of methyl-groups through the transmethylation pathway, thereby increasing global DNA methylation. Through these mechanisms, adenosine is uniquely positioned to link metabolism with epigenetic outcome. Therapeutic adenosine augmentation therefore not only holds promise for the suppression of seizures in epilepsy, but moreover the prevention of epilepsy and its progression overall. This review will focus on adenosine-related mechanisms implicated in ictogenesis and epileptogenesis and will discuss therapeutic opportunities and challenges.
Collapse
Affiliation(s)
- Landen Weltha
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Jesica Reemmer
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA.
| |
Collapse
|
13
|
Wang M, Wu N, Huang H, Luo J, Lan G, Zeng Y, Wang X, Xiong H, Han D, Tan H. Large-depth-of-field full-field optical angiography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800329. [PMID: 30315638 DOI: 10.1002/jbio.201800329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
A large-depth-of-field full-field optical angiography (LD-FFOA) method is developed to expand the depth-of-field (DOF) using a contrast pyramid fusion algorithm (CPFA). The absorption intensity fluctuation modulation effect is utilized to obtain full-field optical angiography (FFOA) images at different focus positions. The CPFA is used to process these FFOA images with different focuses. By selecting high-contrast areas, the CPFA can highlight the characteristics and details of blood vessels to obtain LD-FFOA images. In the optimal case of the proposed method, the DOF for FFOA is more than tripled using 10 differently focused FFOA images. Both the phantom and animal experimental results show that the LD-FFOA resolves FFOA defocusing issues induced by surface and thickness inhomogeneities in biological samples. The proposed method can be potentially applied to practical biological experiments.
Collapse
Affiliation(s)
- Mingyi Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Nanshou Wu
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Hongheng Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Jiaxiong Luo
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Yaguang Zeng
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Xuehua Wang
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Honglian Xiong
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Dingan Han
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| | - Haishu Tan
- School of Physics and Optoelectronic Engineering, Foshan University, Guangdong, China
| |
Collapse
|
14
|
Song P, Hu J, Liu X, Deng X. Increased expression of the P2X7 receptor in temporal lobe epilepsy: Animal models and clinical evidence. Mol Med Rep 2019; 19:5433-5439. [PMID: 31059094 PMCID: PMC6522874 DOI: 10.3892/mmr.2019.10202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/27/2019] [Indexed: 11/14/2022] Open
Abstract
Previous studies have indicated that the adenosine triphosphate-sensitive homomeric P2X7 receptor (P2X7R) plays an important role and exhibits therapeutic potential in a number of brain disorders, including temporal lobe epilepsy (TLE). The aim of the present study was to assess the expression of P2X7R, glutamate (GLU) and glial fibrillary acidic protein (GFAP) in the temporal neocortex and hippocampus of rats with lithium-pilocarpine-induced epilepsy as well as in patients with intractable TLE. The results demonstrated that the levels of P2X7R, GLU and GFAP were significantly upregulated in rats with spontaneous recurrent seizures, whereas they were reduced in rats that were treated with brilliant blue G (BBG), a P2X7R antagonist. To the best of our knowledge, the present study is also the first to demonstrate that P2X7R expression was elevated in patients with intractable TLE. These findings suggest that P2X7R plays a key role in the development of TLE and that BBG treatment may be a promising therapeutic strategy for TLE.
Collapse
Affiliation(s)
- Penghui Song
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Hu
- Department of Neurology, Huaihe Hospital, Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xijin Liu
- Department of Neurology, Ordos Center Hospital, Ordos, The Nei Mongol Autonomous Region 017000, P.R. China
| | - Xuejun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
15
|
Wellmann M, Álvarez-Ferradas C, Maturana CJ, Sáez JC, Bonansco C. Astroglial Ca 2+-Dependent Hyperexcitability Requires P2Y 1 Purinergic Receptors and Pannexin-1 Channel Activation in a Chronic Model of Epilepsy. Front Cell Neurosci 2018; 12:446. [PMID: 30542266 PMCID: PMC6277884 DOI: 10.3389/fncel.2018.00446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
Astrocytes from the hippocampus of chronic epileptic rats exhibit an abnormal pattern of intracellular calcium oscillations, characterized by an augmented frequency of long lasting spontaneous Ca2+ transients, which are sensitive to purinergic receptor antagonists but resistant to tetrodotoxin. The above suggests that alterations in astroglial Ca2+-dependent excitability observed in the epileptic tissue could arise from changes in astrocyte-to-astrocyte signaling, which is mainly mediated by purines in physiological and pathological conditions. In spite of that, how purinergic signaling contributes to astrocyte dysfunction in epilepsy remains unclear. Here, we assessed the possible contribution of P2Y1R as well as pannexin1 and connexin43 hemichannels—both candidates for non-vesicular ATP-release—by performing astroglial Ca2+ imaging and dye uptake experiments in hippocampal slices from control and fully kindled rats. P2Y1R blockade with MRS2179 decreased the mean duration of astroglial Ca2+ oscillations by reducing the frequency of slow Ca2+ transients, and thereby restoring the balance between slow (ST) and fast transients (FT) in the kindled group. The potential contribution of astroglial pannexin1 and connexin43 hemichannels as pathways for purine release (e.g., ATP) was assessed through dye uptake experiments. Astrocytes from kindled hippocampi exhibit three-fold more EtBr uptake than controls, whereby pannexin1 hemichannels (Panx1 HCs) accounts for almost all dye uptake with only a slight contribution from connexin43 hemichannels (Cx43 HCs). Confirming its functional involvement, Panx1 HCs inhibition decreased the mean duration of astroglial Ca2+ transients and the frequency of slow oscillations in kindled slices, but had no noticeable effects on the control group. As expected, Cx43 HCs blockade did not have any effects over the mean duration of astroglial Ca2+ oscillations. These findings suggest that P2Y1R and Panx1 HCs play a pivotal role in astroglial pathophysiology, which would explain the upregulation of glutamatergic neurotransmission in the epileptic brain and thus represents a new potential pharmacological target for the treatment of drug-refractory epilepsy.
Collapse
Affiliation(s)
- Mario Wellmann
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Fonoaudiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carla Álvarez-Ferradas
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Ciencias de la Salud, Universidad Viña del Mar, Valparaíso, Chile
| | - Carola J Maturana
- Departamento de Ciencias Fisiológicas, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Ciencias Fisiológicas, Facultad Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Plasticidad Cerebral CNPC, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Hong S, Li T, Luo Y, Li W, Tang X, Ye Y, Wu P, Hu Q, Cheng L, Chen H, Jiang L. Dynamic Changes of Astrocytes and Adenosine Signaling in Rat Hippocampus in Post-status Epilepticus Model of Epileptogenesis. Cell Mol Neurobiol 2018; 38:1227-1234. [PMID: 29770956 DOI: 10.1007/s10571-018-0590-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
It is of great importance to explore the development of epileptogenesis, and the adenosine and adenosine kinase (ADK) system seems to play a key role in this process. The aim of this study is to explore the dynamic changes of astrocytes and adenosine signaling during epileptogenesis in rat hippocampus in a post-status epileptogenesis (SE) model. Rat SE models were built and killed for experiments at 1 day (acute phase of epileptogenesis), 5 days (latent phase), 4 weeks (chronic phase), and 8 weeks (late chronic phase of epileptogenesis) after SE induction. Immunofluorescence staining, high-performance liquid chromatography, and Western blotting were performed to assess changes of astrocytes, adenosine, ADK, and ADK receptors (including A1R, A2aR, A2bR, and A3R) in hippocampus. The expression level of glial fibrillary acidic protein significantly increased from latent to late chronic phase. The concentration of adenosine sharply increased in acute phase and gradually decreased in the remaining phases of post-SE, being significantly lower than in the control group in late chronic phase. Protein levels of A1R and A2aR in post-SE models increased in acute phase, whereas A2bR and A3R protein expression decreased in latent phase, chronic phase, and late chronic phase following post-SE epileptogenesis. Protein expression of ADK significantly increased during latent phase, chronic phase, and late chronic phase of post-SE epileptogenesis. In conclusion, the levels of adenosine and protein expression of A1R and A2R significantly increased during acute phase of post-SE. During the remaining phases of post-SE epileptogenesis, there was imbalance among astrocytes, adenosine, adenosine receptors, and ADK. Regulation of the ADK/adenosine system may provide potential treatment strategies for epileptogenesis.
Collapse
Affiliation(s)
- Siqi Hong
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingsong Li
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuanyuan Luo
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjuan Li
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoju Tang
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanzhen Ye
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Wu
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiao Hu
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cheng
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
17
|
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2017; 66:1235-1243. [PMID: 29044647 DOI: 10.1002/glia.23247] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K+ and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | |
Collapse
|
18
|
Adenosine Kinase Deficiency in the Brain Results in Maladaptive Synaptic Plasticity. J Neurosci 2017; 36:12117-12128. [PMID: 27903722 DOI: 10.1523/jneurosci.2146-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adkfl/fl mice. These AdkΔbrain mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A1 receptor (A1R)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A2A receptor (A2AR) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A2A receptor activity in AdkΔbrain mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking A2AR activity therapeutically can attenuate neurological symptoms in ADK deficiency. SIGNIFICANCE STATEMENT A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy, seizures, and severe cognitive impairment. To model and understand the neurological phenotype of the human mutation, we generated a new conditional knock-out mouse with a brain-specific deletion of Adk (AdkΔbrain). Similar to ADK-deficient patients, AdkΔbrain mice develop seizures and cognitive deficits. We identified increased basal synaptic transmission and enhanced adenosine A2A receptor (A2AR)-dependent synaptic plasticity as the underlying mechanisms that govern these phenotypes. Our data show that neurological phenotypes in ADK-deficient patients are intrinsic to ADK deficiency in the brain and that blocking A2AR activity therapeutically can attenuate neurological symptoms in ADK deficiency.
Collapse
|
19
|
Barker-Haliski ML, Johnson K, Billingsley P, Huff J, Handy LJ, Khaleel R, Lu Z, Mau MJ, Pruess TH, Rueda C, Saunders G, Underwood TK, Vanegas F, Smith MD, West PJ, Wilcox KS. Validation of a Preclinical Drug Screening Platform for Pharmacoresistant Epilepsy. Neurochem Res 2017; 42:1904-1918. [PMID: 28303498 DOI: 10.1007/s11064-017-2227-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
The successful identification of promising investigational therapies for the treatment of epilepsy can be credited to the use of numerous animal models of seizure and epilepsy for over 80 years. In this time, the maximal electroshock test in mice and rats, the subcutaneous pentylenetetrazol test in mice and rats, and more recently the 6 Hz assay in mice, have been utilized as primary models of electrically or chemically-evoked seizures in neurologically intact rodents. In addition, rodent kindling models, in which chronic network hyperexcitability has developed, have been used to identify new agents. It is clear that this traditional screening approach has greatly expanded the number of marketed drugs available to manage the symptomatic seizures associated with epilepsy. In spite of the numerous antiseizure drugs (ASDs) on the market today, the fact remains that nearly 30% of patients are resistant to these currently available medications. To address this unmet medical need, the National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP) revised its approach to the early evaluation of investigational agents for the treatment of epilepsy in 2015 to include a focus on preclinical approaches to model pharmacoresistant seizures. This present report highlights the in vivo and in vitro findings associated with the initial pharmacological validation of this testing approach using a number of mechanistically diverse, commercially available antiseizure drugs, as well as several probe compounds that are of potential mechanistic interest to the clinical management of epilepsy.
Collapse
Affiliation(s)
| | - Kristina Johnson
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peggy Billingsley
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jennifer Huff
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Laura J Handy
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rizvana Khaleel
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Zhenmei Lu
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew J Mau
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Timothy H Pruess
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Carlos Rueda
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Gerald Saunders
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Tristan K Underwood
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Fabiola Vanegas
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Misty D Smith
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Peter J West
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Karen S Wilcox
- Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT, 84112, USA.,Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
20
|
Role of the purinergic signaling in epilepsy. Pharmacol Rep 2016; 69:130-138. [PMID: 27915186 DOI: 10.1016/j.pharep.2016.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
Adenine nucleotides and adenosine are signaling molecules that activate purinergic receptors P1 and P2. Activation of A1 adenosine receptors has an anticonvulsant action, whereas activation of A2A receptors might initiate seizures. Therefore, a significant limitation to the use of A1 receptor agonists as drugs in the CNS might be their peripheral side effects. The anti-epileptic activity of adenosine is related to its increased concentration outside the cell. This increase might result from the inhibition of the equilibrative nucleoside transporters (ENTs). Moreover, the implantation of implants or stem cells into the brain might cause slow and persistent increases in adenosine concentrations in the extracellular spaces of the brain. The role of adenosine in seizure inhibition has been confirmed by results demonstrating that in patients with epilepsy, the adenosine kinase (ADK) present in astrocytes is the only purine-metabolizing enzyme that exhibits increased expression. Increased ADK activity causes intensified phosphorylation of adenosine to 5'-AMP, which therefore lowers the adenosine level in the extracellular spaces. These changes might initiate astrogliosis and epileptogenesis, which are the manifestations of epilepsy. Seizures might induce inflammatory processes and vice versa. Activation of P2X7 receptors causes intensified release of pro-inflammatory cytokines (IL-1β and TNF-α) and activates metabolic pathways that induce inflammatory processes in the CNS. Therefore, antagonists of P2X7 and the interleukin 1β receptor might be efficient drugs for recurring seizures and prolonged status epilepticus. Inhibitors of ADK would simultaneously inhibit the seizures, prevent the astrogliosis and epileptogenesis processes and prevent the formation of new epileptogenic foci. Therefore, these drugs might become beneficial seizure-suppressing drugs.
Collapse
|
21
|
Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci 2016; 10:82. [PMID: 27630556 PMCID: PMC5006088 DOI: 10.3389/fncom.2016.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.
Collapse
Affiliation(s)
- Louis Gagnon
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Amy F Smith
- Institut de Mécanique des Fluides de ToulouseToulouse, France; Department of Physiology, University of ArizonaTucson, AZ, USA
| | - David A Boas
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna Devor
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, USA; Departments of Neurosciences and Radiology, University of California, San DiegoLa Jolla, CA, USA
| | | | - Sava Sakadžić
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
22
|
Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res 2016; 124:49-54. [DOI: 10.1016/j.eplepsyres.2016.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
|
23
|
Gene Therapy for Epilepsy. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Shen HY, van Vliet EA, Bright KA, Hanthorn M, Lytle NK, Gorter J, Aronica E, Boison D. Glycine transporter 1 is a target for the treatment of epilepsy. Neuropharmacology 2015; 99:554-65. [PMID: 26302655 PMCID: PMC4655139 DOI: 10.1016/j.neuropharm.2015.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/27/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022]
Abstract
Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Kerry-Ann Bright
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Marissa Hanthorn
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Nikki K Lytle
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| |
Collapse
|
25
|
Sakadžić S, Lee J, Boas DA, Ayata C. High-resolution in vivo optical imaging of stroke injury and repair. Brain Res 2015; 1623:174-92. [PMID: 25960347 PMCID: PMC4569527 DOI: 10.1016/j.brainres.2015.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022]
Abstract
Central nervous system (CNS) function and dysfunction are best understood within a framework of interactions between neuronal, glial and vascular compartments comprising the neurovascular unit (NVU), all of which contribute to stroke-induced CNS injury, plasticity, repair, and recovery. Recent advances in in vivo optical microscopy have enabled us to observe and interrogate cells and their processes with high spatial resolution in real time and in their natural environment deep in the brain tissue. Here, we review some of these state-of-the-art imaging techniques with an emphasis on imaging the interactions among the constituents of the NVU during ischemic injury and repair in small animal models. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Sava Sakadžić
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Jonghwan Lee
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David A Boas
- Optics Division, MHG/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
26
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
27
|
Huang J, He Y, Chen M, Du J, Li G, Li S, Liu W, Long X. Adenosine deaminase and adenosine kinase expression in human glioma and their correlation with glioma‑associated epilepsy. Mol Med Rep 2015; 12:6509-16. [PMID: 26329539 PMCID: PMC4626129 DOI: 10.3892/mmr.2015.4285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/05/2015] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate adenosine deaminase (ADA) and adenosine kinase (ADK) expression in human glioma and to explore its correlation with glioma-associated epilepsy. Tumor tissues (n=45) and peritumoral tissues (n=14) were obtained from glioma patients undergoing surgery. Normal control tissues (n=8) were obtained from brain trauma patients. The disease grade was determined by histological evaluation and the degree of tumor invasion was evaluated using immunofluorescence analyses. mRNA and protein expression of ADA and ADK were evaluated using reverse transcription quantitative polymerase chain reaction or western blot analysis, respectively. Based on histological evaluations, four cases were classified as Grade I gliomas, 18 cases as Grade II, 17 cases as Grade III and six cases were considered Grade IV. Increased ADA and ADK expression was observed in tumor tissues. ADA was predominantly distributed in the cytoplasm of tumor cells, whereas ADK was detected in the cytoplasm as well as in the nuclei. ADA and ADK levels were upregulated in patients with Grade II and Grade III gliomas compared to those in control subjects (p<0.05). In addition, tumor invasion was detected in peritumoral tissues. The number of ADA-positive or ADK-positive cells in tumor tissues was similar between glioma patients with and without epilepsy (p>0.05). However, ADA and ADK expression was upregulated in peritumoral tissues derived from patients with epilepsy compared to that in glioma patients without epilepsy. The results of the present study suggested that ADA and ADK are involved in glioma progression, and that increased ADA and ADK levels in peritumoral tissues may be associated with epilepsy in glioma patients.
Collapse
Affiliation(s)
- Jun Huang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yujiao He
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingna Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Du
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Guoliang Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Weiping Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Agadi S, Shetty AK. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy. Stem Cells 2015; 33:2093-103. [PMID: 25851047 DOI: 10.1002/stem.2029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Mononuclear cells (MNCs) and mesenchymal stem cells (MSCs) derived from the bone marrow and other sources have received significant attention as donor cells for treating various neurological disorders due to their robust neuroprotective and anti-inflammatory effects. Moreover, it is relatively easy to procure these cells from both autogenic and allogenic sources. Currently, there is considerable interest in examining the usefulness of these cells for conditions such as status epilepticus (SE) and chronic epilepsy. A prolonged seizure activity in SE triggers neurodegeneration in the limbic brain areas, which elicits epileptogenesis and evolves into a chronic epileptic state. Because of their potential for providing neuroprotection, diminishing inflammation and curbing epileptogenesis, early intervention with MNCs or MSCs appears attractive for treating SE as such effects may restrain the development of chronic epilepsy typified by spontaneous seizures and learning and memory impairments. Delayed administration of these cells after SE may also be useful for easing spontaneous seizures and cognitive dysfunction in chronic epilepsy. This concise review evaluates the current knowledge and outlook pertaining to MNC and MSC therapies for SE and chronic epilepsy. In the first section, the behavior of these cells in animal models of SE and their efficacy to restrain neurodegeneration, inflammation, and epileptogenesis are discussed. The competence of these cells for suppressing seizures and improving cognitive function in chronic epilepsy are conferred in the next section. The final segment ponders issues that need to be addressed to pave the way for clinical application of these cells for SE and chronic epilepsy.
Collapse
Affiliation(s)
- Satish Agadi
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Department of Pediatrics, McLane's Children's Hospital, Baylor Scott & White Health, Temple, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, Texas, USA.,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, USA
| |
Collapse
|