1
|
Weisbrod LJ, Nilles-Melchert TT, Bergjord JR, Surdell DL. Safety and Efficacy of Riluzole in Traumatic Spinal Cord Injury: A Systematic Review With Meta-Analyses. Neurotrauma Rep 2024; 5:117-127. [PMID: 38414779 PMCID: PMC10898229 DOI: 10.1089/neur.2023.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a cause of significant morbidity, often resulting in long-term disability. We aimed to compare outcomes after riluzole versus patients who received placebo or standard of care with no specific intervention. MEDLINE, Embase, Scopus, and Cochrane Library database searches yielded 92 records, and five met the study inclusion criteria. Fixed-effect and random-effects models were used to establish odds ratios (ORs) and mean difference (MD) with 95% confidence intervals (CIs) for each outcome. The results of the pooled analysis showed that in patients with acute traumatic SCI, riluzole resulted in increased American Spinal Injury Association (ASIA) motor scores at 3 months (MD 0.26, 95% CI [-0.10,0.61], I2 = 0%; p = 0.157) and 6 months (MD 0.21, 95% CI [-0.17,0.60], I2 = 0%; p = 0.280) and change in ASIA Impairment Scale (AIS) at 3 months (OR 0.59, 95% CI [-0.12,1.30], I2 = 0%, p = 0.101) and 6 months (OR 0.28, 95% CI [-0.50,1.06], I2 = 0%, p = 0.479) in comparison to the control groups, though not to a level of statistical significance. Riluzole resulted in fewer adverse events than the control groups (OR -0.12, 95% CI [-1.59,1.35], I2 = 0%, p = 0.874) and lower mortality (OR -0.20, 95% CI [-1.03,0.63], I2 = 0%, p = 0.640), though also not to a level of statistical significance. These meta-analyses suggest that riluzole for the treatment of traumatic SCI is safe and results in improved neurological outcomes when compared to controls, though not to a level of statistical significance. More robust prospective, randomized studies are necessary to help inform the safety and efficacy of riluzole for traumatic SCI.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Daniel L Surdell
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Choo S, Phillips R, White J, Nuelle JAV. Neuromodulators can promote nerve regeneration and accelerate functional recovery after peripheral nerve injury: A systematic review. J Orthop 2024; 47:122-147. [PMID: 38074194 PMCID: PMC10700834 DOI: 10.1016/j.jor.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2025] Open
Abstract
Peripheral nerve injuries (PNIs) are debilitating injuries that are also challenging to treat. With several different techniques being investigated to optimize nerve regeneration, we performed this systematic review aiming to evaluate and synthesize the available peer-reviewed literature regarding PNIs and the research that has been done to optimize peripheral nerve regeneration. Two research databases were searched, and abstracts were reviewed for relevance. The abstracts that met screening criteria then underwent full-text review. Out of 6,128 unique citations, 164 publications were ultimately included in this review. Evidence supports many potential options for the management of PNIs, including surgical treatment and systemic and local administration of various pharmacological agents. Some of the reported benefits of treatment with such agents include faster nerve regeneration, improved functional recovery, neuroma prevention, and decreased scar formation. However, much of the research reviewed has been performed in animal models, not human trails. Additionally, the safety profile of some agents makes systemic treatment difficult. Further translational and clinical studies are needed to fill these remaining gaps in knowledge to make evidence-based recommendations regarding the most effective treatment for PNIs.
Collapse
Affiliation(s)
- Stephanie Choo
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - Rachel Phillips
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - James White
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| | - Julia AV Nuelle
- University of Missouri, 1100 Virginia Ave, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Kumarasamy D, Viswanathan VK, Shetty AP, Pratheep GK, Kanna RM, Rajasekaran S. The Role of Riluzole in Acute Traumatic Cervical Spinal Cord Injury with Incomplete Neurological Deficit: A Prospective, Randomised Controlled Study. Indian J Orthop 2022; 56:2160-2168. [PMID: 36507215 PMCID: PMC9705651 DOI: 10.1007/s43465-022-00758-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Introduction Riluzole, a benzothiazole sodium channel blocker is acknowledged as a neuroprotective agent in spinal cord injury (SCI). Most of this evidence is based on pre-clinical studies and its effectiveness in clinical setting is undetermined, heretofore. Methods A prospective, randomised-controlled study was conducted between April 2019 and March 2020 at a tertiary-level centre. Patients aged 18-65 years with sub-axial cervical spine injury, who presented within 72 h of injury with incomplete neuro-deficit, were included. They were randomised into groups A (riluzole was administered) and B (no adjuvants). All patients were followed up at 6 weeks/3/6/12 months, and clinical [ASIA motor/sensory scores/grade, SCIM3, and NRS (neuropathic pain)] and radiological evaluation was performed. Results Twenty-three and 20 patients were included in groups A and B. Two in group A were females, while others were males (p = 0.49). Mean age in groups A and B was 47.7 ± 14.8 and 51.2 ± 14.1 years (p = 0.44). Five patients died prior to 6th-week follow-up. Among the others, there was significant improvement in all neurological parameters in both groups (post-injury vs 1-year; motor score: p < 0.001, sensory score: p < 0.001, SCIM3: p < 0.001, NRS: p < 0.001). In both groups, initial significant improvement was noticed even at the 6th-week follow-up, which further continued until the end of 1 year. There was no statistically significant difference between groups A and B with respect to these neurological parameters (motor: p = 0.15, sensory: p = 0.39, SCIM3: p = 0.68, NRS: p = 0.06). Conclusion Administration of riluzole did not significantly improve neurological outcome/neuropathic pain in our cohort. Nevertheless, both our groups demonstrated an overall improvement in neurological outcome at 1 year, as compared with immediate post-injury status.
Collapse
Affiliation(s)
- Dinesh Kumarasamy
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| | - Vibhu Krishnan Viswanathan
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
- Department of Orthopaedics and Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| | - Guna K. Pratheep
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| | - Rishi Mukesh Kanna
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| | - S. Rajasekaran
- Department of Spine Surgery, Ganga Medical Centre and Hospital, 313, Mettupalayam Road, Sai Baba Colony, Coimbatore, Tamil Nadu 641001 India
| |
Collapse
|
4
|
Kartha S, Ghimire P, Winkelstein BA. Inhibiting spinal secretory phospholipase A 2 after painful nerve root injury attenuates established pain and spinal neuronal hyperexcitability by altering spinal glutamatergic signaling. Mol Pain 2021; 17:17448069211066221. [PMID: 34919471 PMCID: PMC8721705 DOI: 10.1177/17448069211066221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neuropathic injury is accompanied by chronic inflammation contributing to the onset and maintenance of pain after an initial insult. In addition to their roles in promoting immune cell activation, inflammatory mediators like secretory phospholipase A2 (sPLA2) modulate nociceptive and excitatory neuronal signaling during the initiation of pain through hydrolytic activity. Despite having a known role in glial activation and cytokine release, it is unknown if sPLA2 contributes to the maintenance of painful neuropathy and spinal hyperexcitability later after neural injury. Using a well-established model of painful nerve root compression, this study investigated if inhibiting spinal sPLA2 7 days after painful injury modulates the behavioral sensitivity and/or spinal dorsal horn excitability that is typically evident. The effects of sPLA2 inhibition on altered spinal glutamatergic signaling was also probed by measuring spinal intracellular glutamate levels and spinal glutamate transporter (GLAST and GLT1) and receptor (mGluR5, GluR1, and NR1) expression. Spinal sPLA2 inhibition at day 7 abolishes behavioral sensitivity, reduces both evoked and spontaneous neuronal firing in the spinal cord, and restores the distribution of neuronal phenotypes to those of control conditions. Inhibiting spinal sPLA2 also increases intracellular glutamate concentrations and restores spinal expression of GLAST, GLT1, mGluR5, and GluR1 to uninjured expression with no effect on NR1. These findings establish a role for spinal sPLA2 in maintaining pain and central sensitization after neural injury and suggest this may be via exacerbating glutamate excitotoxicity in the spinal cord.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Prabesh Ghimire
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Synthetic Secoisolariciresinol Diglucoside Attenuates Established Pain, Oxidative Stress and Neuroinflammation in a Rodent Model of Painful Radiculopathy. Antioxidants (Basel) 2020; 9:antiox9121209. [PMID: 33266301 PMCID: PMC7761466 DOI: 10.3390/antiox9121209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Painful cervical radiculopathy is characterized by chronic neuroinflammation that lowers endogenous antioxidant responses leading to the development of oxidative stress and pain after neural trauma. Therefore, antioxidants such as secoisolariciresinol diglucoside (SDG), that promote antioxidant signaling and reduce oxidative damage may also provide pain relief. This study investigated if repeated systemic administration of synthetic SDG after a painful root compression reduces the established pain, oxidative stress and spinal glial activation that are typically evident. SDG was administered on days 1-3 after compression and the extent of oxidative damage in the dorsal root ganglia (DRG) and spinal cord was measured at day 7 using the oxidative stress markers 8-hydroxguanosine (8-OHG) and nitrotyrosine. Spinal microglial and astrocytic activation were also separately evaluated at day 7 after compression. In addition to reducing pain, SDG treatment reduced both spinal 8-OHG and nitrotyrosine, as well as peripheral 8-OHG in the DRG. Moreover, SDG selectively reduced glial activation by decreasing the extent of astrocytic but not microglial activation. These findings suggest that synthetic SDG may attenuate existing radicular pain by suppressing the oxidative stress and astrocytic activation that develop after painful injury, possibly identifying it as a potent therapeutic for painful radiculopathies.
Collapse
|
6
|
Fang J, Li L, Zhai H, Qin B, Quan D, Shi E, Zhu M, Yang J, Liu X, Gu L. Local Riluzole Release from a Thermosensitive Hydrogel Rescues Injured Motoneurons through Nerve Root Stumps in a Brachial Plexus Injury Rat Model. Neurochem Res 2020; 45:2800-2813. [PMID: 32986187 DOI: 10.1007/s11064-020-03120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and can thus be used as donors for nerve repair. A BPI rat model with C5-C6 nerve root stumps has been established in our previous work. The aim of this study was to test whether riluzole loaded into a thermosensitive hydrogel could applied locally in the nerve root stumps of this BPI rat model, thus increasing the reparative effect of the nerve root stumps. Nile red (a hydrophobic dye) was used as a substitute for riluzole since riluzole itself does not emit light. Nile red, loaded into a thermosensitive hydrogel, was added to the nerve root stumps of the BPI rat model. Additionally, eighteen rats, with operation on right brachial plexus, were evenly divided into three groups: control (Con), thermosensitive hydrogel (Gel) and thermosensitive hydrogel loaded with riluzole (Gel + Ri) groups. Direct nerve repair was performed after local riluzole release for two weeks. Functional and electrophysiological evaluations and histological assessments were used to evaluate the reparative effect 8 weeks after nerve repair. Nile red was slowly released from the thermosensitive hydrogel and retrograde transport through the nerve root stumps to the motoneurons, according to immunofluorescence. Discernible functional recovery began earlier in the Gel + Ri group. The compound muscle action potential, ChAT-expressing motoneurons, positivity for neurofilaments and S100, diameter of regenerating axons, myelin sheath thickness and density of myelinated fibers were markedly increased in the Gel + Ri group compared with the Con and Gel groups. Our results indicate that the local administration of riluzole could undergo retrograde transportation through C5-C6 nerve root stumps, thereby promoting neuroprotection and increasing nerve regeneration.
Collapse
Affiliation(s)
- Jintao Fang
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Liang Li
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.,Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Hong Zhai
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Bengang Qin
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Enxian Shi
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Menghai Zhu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Jiantao Yang
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China
| | - Xiaolin Liu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.
| | - Liqiang Gu
- Department of Microsurgery & Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Quindlen-Hotek JC, Kent AR, De Anda P, Kartha S, Benison AM, Winkelstein BA. Changes in Neuronal Activity in the Anterior Cingulate Cortex and Primary Somatosensory Cortex With Nonlinear Burst and Tonic Spinal Cord Stimulation. Neuromodulation 2020; 23:594-604. [PMID: 32027444 DOI: 10.1111/ner.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Although nonlinear burst and tonic SCS are believed to treat neuropathic pain via distinct pain pathways, the effectiveness of these modalities on brain activity in vivo has not been investigated. This study compared neuronal firing patterns in the brain after nonlinear burst and tonic SCS in a rat model of painful radiculopathy. METHODS Neuronal activity was recorded in the ACC or S1 before and after nonlinear burst or tonic SCS on day 7 following painful cervical nerve root compression (NRC) or sham surgery. The amplitude of nonlinear burst SCS was set at 60% and 90% motor threshold to investigate the effect of lower amplitude SCS on brain activity. Neuronal activity was recorded during and immediately following light brush and noxious pinch of the paw. Change in neuron firing was measured as the percent change in spikes post-SCS relative to pre-SCS baseline. RESULTS ACC activity decreases during brush after 60% nonlinear burst compared to tonic (p < 0.05) after NRC and compared to 90% nonlinear burst (p < 0.04) and pre-SCS baseline (p < 0.03) after sham. ACC neuron activity decreases (p < 0.01) during pinch after 60% and 90% nonlinear burst compared to tonic for NRC. The 60% of nonlinear burst decreases (p < 0.02) ACC firing during pinch in both groups compared to baseline. In NRC S1 neurons, tonic SCS decreases (p < 0.01) firing from baseline during light brush; 60% nonlinear burst decreases (p < 0.01) firing from baseline during brush and pinch. CONCLUSIONS Nonlinear burst SCS reduces firing in the ACC from a painful stimulus; a lower amplitude nonlinear burst appears to have the greatest effect. Tonic and nonlinear burst SCS may have comparable effects in S1.
Collapse
Affiliation(s)
| | | | - Patrisia De Anda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Kerckhove N, Busserolles J, Stanbury T, Pereira B, Plence V, Bonnetain F, Krakowski I, Eschalier A, Pezet D, Balayssac D. Effectiveness assessment of riluzole in the prevention of oxaliplatin-induced peripheral neuropathy: RILUZOX-01: protocol of a randomised, parallel, controlled, double-blind and multicentre study by the UNICANCER-AFSOS Supportive Care intergroup. BMJ Open 2019; 9:e027770. [PMID: 31182448 PMCID: PMC6561607 DOI: 10.1136/bmjopen-2018-027770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Most patients (>70%) experience acute neuropathic symptoms shortly after oxaliplatin infusions. These symptoms are not always resolved between infusions. Overall, 30%-50% of patients suffer from chronic oxaliplatin-induced peripheral neuropathy (OIPN). This cumulative and dose-dependent sensory neuropathy limits compliance or results in oxaliplatin-based chemotherapies to be substituted with less neurotoxic agents. These treatment changes impair clinical outcomes, and may be associated with comorbidities, such as distress, depression and anxiety. Currently, no drug used to prevent or treat OIPN is sufficiently effective to be used routinely in clinical practice. There is, thus, an unmet therapeutic need to reduce the intensity of and/or prevent OIPN. We hypothesised that riluzole would be an excellent candidate to address this public health issue. Riluzole is approved for treating amyotrophic lateral sclerosis. In animals, there is a beneficial effect on sensorimotor and pain disorders, as well as related comorbidities, after repeated administration of oxaliplatin. In humans, riluzole has shown neuroprotective, anxiolytic and antidepressive effects. METHODS AND ANALYSIS RILUZOX-01 trial was designed as a randomised, controlled, double-blind study to evaluate the efficacy of riluzole to prevent OIPN. Patients with colorectal cancer and initiating adjuvant oxaliplatin-based chemotherapy are eligible. Patients (n=210) will be randomly assigned to either riluzole or placebo, concomitantly with chemotherapy. The primary endpoint is the change in OIPN intensity, assessed by the sensory scale of the QLQ-CIPN20, after six 2-week cycles of chemotherapy. Secondary endpoints include incidence and severity of neuropathy, grade of sensory neuropathy, intensity and features of neuropathic pain, health-related quality of life, disease-free survival, overall survival and safety. ETHICS AND DESSIMINATION The study was approved by a French ethics committee (ref:39/18_1, 'Comité de Protection des Personnes' Ouest-IV, France) and plans to start enroling patients in September 2019. The trial is registered in EudraCT and clinicaltrials.gov. TRIAL REGISTRATION NUMBER N°2017-002320-25; NCT03722680.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- Medical pharmacology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Jérome Busserolles
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | | | - Bruno Pereira
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | | | | | | | - Alain Eschalier
- Institut Analgesia, Faculty of medicine, Clermont-Ferrand, France
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
| | - Denis Pezet
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- University Hospital of Clermont-Ferrand, Digestive and hepatobiliary surgery, Clermont-Ferrand, France
| | - David Balayssac
- INSERM 1107, NEURO-DOL Basic and Clinical Pharmacology of Pain, University Clermont Auvergne, Clermont-Ferrand, France
- DRCI, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
9
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Zhang X, Gao Y, Wang Q, Du S, He X, Gu N, Lu Y. Riluzole induces LTD of spinal nociceptive signaling via postsynaptic GluR2 receptors. J Pain Res 2018; 11:2577-2586. [PMID: 30464577 PMCID: PMC6209077 DOI: 10.2147/jpr.s169686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Riluzole - a major therapeutic medicine for patients with amyotrophic lateral sclerosis - reportedly has anti-nociceptive and anti-allodynic efficacies in neuropathic pain models. However, little is known about its effect on neurotransmission in the spinal superficial dorsal horn (SDH). The present study aims to investigate the effects of riluzole on the synaptic transmission of SDH nociceptive pathways in both physiological and pathological conditions. Materials and methods Spinal nerve ligation was used to produce a neuropathic pain model. Mechanical allodynia behavior was assessed with Von Frey filaments. Riluzole's effects on nociceptive synaptic transmission under both physiological and pathological conditions were examined by patch-clamp recordings in rat SDH neurons. Results The principal findings of the present study are three-fold. First, we affirm that riluzole has a remarkable long-lasting analgesic effect on both in vitro and in vivo pathological pain models. Second, the prolonged inhibitory effects of riluzole on spinal nociceptive signaling are mediated by both presynaptic and postsynaptic mechanisms. Finally, endocytosis of post-synaptic GluR2 contributes to the riluzole-induced long-term depression (LTD) of the spinal nociceptive pathway. Conclusion The present study finds that riluzole induces LTD of nociceptive signaling in the SDH and produces long-lasting anti-allodynia effects in nerve injury-induced neuropathic pain conditions via postsynaptic AMPA receptors associated with the endocytosis of GluR2.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yandong Gao
- Department of Anesthesiology, First Hospital of Yulin City, Yulin 719000, China
| | - Qun Wang
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Shibin Du
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Xiaolan He
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Nan Gu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| | - Yan Lu
- Department of Pain Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China, ;
| |
Collapse
|
11
|
Kartha S, Weisshaar CL, Philips BH, Winkelstein BA. Pre-treatment with Meloxicam Prevents the Spinal Inflammation and Oxidative Stress in DRG Neurons that Accompany Painful Cervical Radiculopathy. Neuroscience 2018; 388:393-404. [PMID: 30086368 PMCID: PMC6132222 DOI: 10.1016/j.neuroscience.2018.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/15/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Painful neuropathic injuries are accompanied by robust inflammatory and oxidative stress responses that contribute to the development and maintenance of pain. After neural trauma the inflammatory enzyme cyclooxygenase-2 (COX-2) increases concurrent with pain onset. Although pre-treatment with the COX-2 inhibitor, meloxicam, before a painful nerve root compression prevents the development of pain, the pathophysiological mechanisms are unknown. This study evaluated if pre-treatment with meloxicam prior to painful root injury prevents pain by reducing spinal inflammation and peripheral oxidative stress. Glial activation and expression of the inflammatory mediator secreted phospholipase A2 (sPLA2) in the spinal cord were assessed at day 7 using immunohistochemistry. The extent of oxidative damage was measured using the oxidative stress marker, 8-hydroxyguanosine (8-OHG) and localization of 8-OHG with neurons, microglia and astrocytes in the spinal cord and peripherally in the dorsal root ganglion (DRG) at day 7. In addition to reducing pain, meloxicam reduced both spinal microglial and astrocytic activation at day 7 after nerve root compression. Spinal sPLA2 was also reduced with meloxicam treatment, with decreased production in neurons, microglia and astrocytes. Oxidative damage following nerve root compression was found predominantly in neurons rather than glial cells. The expression of 8-OHG in DRG neurons at day 7 was reduced with meloxicam. These findings suggest that meloxicam may prevent the onset of pain following nerve root compression by suppressing inflammation and oxidative stress both centrally in the spinal cord and peripherally in the DRG.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 415 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 415 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Blythe H Philips
- University Laboratory Animal Resources, University of Pennsylvania, 3800 Spruce Street, Old Vet Quad, Suite 177E, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 415 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Müller P, Draguhn A, Egorov AV. Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem 2018; 146:446-458. [PMID: 29863287 DOI: 10.1111/jnc.14479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Axonal excitability is an important determinant for the accuracy, direction, and velocity of neuronal signaling. The mechanisms underlying spike generation in the axonal initial segment and transmitter release from presynaptic terminals have been intensely studied and revealed a role for several specific ionic conductances, including the persistent sodium current (INaP ). Recent evidence indicates that action potentials can also be generated at remote locations along the axonal fiber, giving rise to ectopic action potentials during physiological states (e.g., fast network oscillations) or in pathological situations (e.g., following demyelination). Here, we investigated how ectopic axonal excitability of mouse hippocampal CA1 pyramidal neurons is regulated by INaP . Recordings of field potentials and intracellular voltage in brain slices revealed that electrically evoked antidromic spikes were readily suppressed by two different blockers of INaP , riluzole and phenytoin. The effect was mediated by a reduction of the probability of ectopic spike generation while latency was unaffected. Interestingly, the contribution of INaP to excitability was much more pronounced in axonal branches heading toward the entorhinal cortex compared with the opposite fiber direction toward fimbria. Thus, excitability of distal CA1 pyramidal cell axons is affected by persistent sodium currents in a direction-selective manner. This mechanism may be of importance for ectopic spike generation in oscillating network states as well as in pathological situations.
Collapse
Affiliation(s)
- Peter Müller
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Wu XL, Liu L, Li YJ, Luo J, Gai DW, Lu TL, Mei QB. Synthesis, crystal structure, and antinociceptive effects of some new riluzole derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Kartha S, Yan L, Weisshaar CL, Ita ME, Shuvaev VV, Muzykantov VR, Tsourkas A, Winkelstein BA, Cheng Z. Superoxide Dismutase-Loaded Porous Polymersomes as Highly Efficient Antioxidants for Treating Neuropathic Pain. Adv Healthc Mater 2017; 6:10.1002/adhm.201700500. [PMID: 28671302 PMCID: PMC5591629 DOI: 10.1002/adhm.201700500] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/15/2017] [Indexed: 01/27/2023]
Abstract
A highly efficient antioxidant is developed by encapsulating superoxide dismutase (SOD) within the aqueous interior of porous polymersomes. The porous polymersomes provide a permeable membrane that allows free superoxide radicals to pass into the aqueous interior and interact with the encapsulated antioxidant enzyme SOD. In vivo studies in the rat demonstrate that administration of SOD-encapsulated porous polymersomes can prevent neuropathic pain after nerve root compression more effectively than treatment with free antioxidant enzyme alone.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Sajjad J, Felice VD, Golubeva AV, Cryan JF, O’Mahony SM. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle. Neuroscience 2016; 333:311-9. [DOI: 10.1016/j.neuroscience.2016.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
|
17
|
Zeeman ME, Kartha S, Winkelstein BA. Whole-body vibration induces pain and lumbar spinal inflammation responses in the rat that vary with the vibration profile. J Orthop Res 2016; 34:1439-46. [PMID: 27571442 DOI: 10.1002/jor.23243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Whole-body vibration (WBV) is linked epidemiologically to neck and back pain in humans, and to forepaw mechanical allodynia and cervical neuroinflammation in a rodent model of WBV, but the response of the low back and lumbar spine to WBV is unknown. A rat model of WBV was used to determine the effect of different WBV exposures on hind paw behavioral sensitivity and neuroinflammation in the lumbar spinal cord. Rats were exposed to 30 min of WBV at either 8 or 15 Hz on days 0 and 7, with the lumbar spinal cord assayed using immunohistochemistry at day 14. Behavioral sensitivity was measured using mechanical stimulation of the hind paws to determine the onset, persistence, and/or recovery of allodynia. Both WBV exposures induce mechanical allodynia 1 day following WBV, but only the 8 Hz WBV induces a sustained decrease in the withdrawal threshold through day 14. Similarly, increased activation of microglia, macrophages, and astrocytes in the superficial dorsal horn of the lumbar spinal cord is only evident after the painful 8 Hz WBV. Moreover, extracellular signal-regulated kinase (ERK)-phosphorylation is most robust in neurons and astrocytes of the dorsal horn, with the most ERK phosphorylation occurring in the 8 Hz group. These findings indicate that a WBV exposure that induces persistent pain also induces a host of neuroimmune cellular activation responses that are also sustained. This work indicates there is an injury-dependent response that is based on the vibration parameters, providing a potentially useful platform for studying mechanisms of painful spinal injuries. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1439-1446, 2016.
Collapse
Affiliation(s)
- Martha E Zeeman
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, Pennsylvania, 19104-6321
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, Pennsylvania, 19104-6321
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, Pennsylvania, 19104-6321
| |
Collapse
|
18
|
Relevant Anatomic and Morphological Measurements of the Rat Spine: Considerations for Rodent Models of Human Spine Trauma. Spine (Phila Pa 1976) 2015; 40:E1084-92. [PMID: 26731709 DOI: 10.1097/brs.0000000000001021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic science study measuring anatomical features of the cervical and lumbar spine in rat with normalized comparison with the human. OBJECTIVE The goal of this study is to comprehensively compare the rat and human cervical and lumbar spines to investigate whether the rat is an appropriate model for spine biomechanics investigations. SUMMARY OF BACKGROUND DATA Animal models have been used for a long time to investigate the effects of trauma, degenerative changes, and mechanical loading on the structure and function of the spine. Comparative studies have reported some mechanical properties and/or anatomical dimensions of the spine to be similar between various species. However, those studies are largely limited to the lumbar spine, and a comprehensive comparison of the rat and human spines is lacking. METHODS Spines were harvested from male Holtzman rats (n = 5) and were scanned using micro- computed tomography and digitally rendered in 3 dimensions to quantify the spinal bony anatomy, including the lateral width and anteroposterior depth of the vertebra, vertebral body, and spinal canal, as well as the vertebral body and intervertebral disc heights. Normalized measurements of the vertebra, vertebral body, and spinal canal of the rat were computed and compared with corresponding measurements from the literature for the human in the cervical and lumbar spinal regions. RESULTS The vertebral dimensions of the rat spine vary more between spinal levels than in humans. Rat vertebrae are more slender than human vertebrae, but the width-to-depth axial aspect ratios are very similar in both species in both the cervical and lumbar regions, especially for the spinal canal. CONCLUSION The similar spinal morphology in the axial plane between rats and humans supports using the rat spine as an appropriate surrogate for modeling axial and shear loading of the human spine.
Collapse
|
19
|
Kras JV, Weisshaar CL, Pall PS, Winkelstein BA. Pain from intra-articular NGF or joint injury in the rat requires contributions from peptidergic joint afferents. Neurosci Lett 2015; 604:193-8. [PMID: 26240991 DOI: 10.1016/j.neulet.2015.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 02/06/2023]
Abstract
Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis.
Collapse
Affiliation(s)
- Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine L Weisshaar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parul S Pall
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Crosby ND, Weisshaar CL, Smith JR, Zeeman ME, Goodman-Keiser MD, Winkelstein BA. Burst and Tonic Spinal Cord Stimulation Differentially Activate GABAergic Mechanisms to Attenuate Pain in a Rat Model of Cervical Radiculopathy. IEEE Trans Biomed Eng 2015; 62:1604-13. [PMID: 25667344 DOI: 10.1109/tbme.2015.2399374] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) is widely used to treat neuropathic pain. Burst SCS, an alternative mode of stimulation, reduces neuropathic pain without paresthesia. However, the effects and mechanisms of burst SCS have not been compared to conventional tonic SCS in controlled investigations. This study compares the attenuation of spinal neuronal activity and tactile allodynia, and the role of γ-aminobutyric acid (GABA) signaling during burst or tonic SCS in a rat model of cervical radiculopathy. METHODS The effects of burst and tonic SCS were compared by recording neuronal firing before and after each mode of stimulation at day 7 following a painful cervical nerve root compression. Neuronal firing was also recorded before and after burst and tonic SCS in the presence of the GABAB receptor antagonist, CGP35348. RESULTS Burst and tonic SCS both reduce neuronal firing. The effect of tonic SCS, but not burst SCS, is blocked by CGP35348. In a separate study, spinal cord stimulators were implanted to deliver burst or tonic SCS beginning on day 4 after painful nerve root compression; allodynia and serum GABA concentration were measured through day 14. Burst and tonic SCS both reduce allodynia. Tonic SCS attenuates injury-induced decreases in serum GABA, but GABA remains decreased from baseline during burst SCS. CONCLUSION AND SIGNIFICANCE Together, these studies suggest that burst SCS does not act via spinal GABAergic mechanisms, despite its attenuation of spinal hyperexcitability and allodynia similar to that of tonic SCS; understanding other potential spinal inhibitory mechanisms may lead to enhanced analgesia during burst stimulation.
Collapse
|
21
|
Gegelashvili G, Bjerrum OJ. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem 2014; 131:712-30. [DOI: 10.1111/jnc.12957] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Institute of Chemical Biology; Ilia State University; Tbilisi Georgia
| | - Ole J. Bjerrum
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
22
|
Zhang S, Nicholson KJ, Smith JR, Gilliland TM, Syré PP, Winkelstein BA. The roles of mechanical compression and chemical irritation in regulating spinal neuronal signaling in painful cervical nerve root injury. STAPP CAR CRASH JOURNAL 2013; 57:219-242. [PMID: 24435733 DOI: 10.4271/2013-22-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Both traumatic and slow-onset disc herniation can directly compress and/or chemically irritate cervical nerve roots, and both types of root injury elicit pain in animal models of radiculopathy. This study investigated the relative contributions of mechanical compression and chemical irritation of the nerve root to spinal regulation of neuronal activity using several outcomes. Modifications of two proteins known to regulate neurotransmission in the spinal cord, the neuropeptide calcitonin gene-related peptide (CGRP) and glutamate transporter 1 (GLT-1), were assessed in a rat model after painful cervical nerve root injuries using a mechanical compression, chemical irritation or their combination of injury. Only injuries with compression induced sustained behavioral hypersensitivity (p≤0.05) for two weeks and significant decreases (p<0.037) in CGRP and GLT-1 immunoreactivity to nearly half that of sham levels in the superficial dorsal horn. Because modification of spinal CGRP and GLT-1 is associated with enhanced excitatory signaling in the spinal cord, a second study evaluated the electrophysiological properties of neurons in the superficial and deeper dorsal horn at day 7 after a painful root compression. The evoked firing rate was significantly increased (p=0.045) after compression and only in the deeper lamina. The painful compression also induced a significant (p=0.002) shift in the percentage of neurons in the superficial lamina classified as low- threshold mechanoreceptive (sham 38%; compression 10%) to those classified as wide dynamic range neurons (sham 43%; compression 74%). Together, these studies highlight mechanical compression as a key modulator of spinal neuronal signaling in the context of radicular injury and pain.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania
| | | | - Jenell R Smith
- Department of Bioengineering, University of Pennsylvania
| | | | - Peter P Syré
- Department of Neurosurgery, University of Pennsylvania
| | - Beth A Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania
| |
Collapse
|