1
|
Zhang N, Wu P, Mu M, Niu C, Hu S. Exosomal circZNF800 Derived from Glioma Stem-like Cells Regulates Glioblastoma Tumorigenicity via the PIEZO1/Akt Axis. Mol Neurobiol 2024; 61:6556-6571. [PMID: 38324181 PMCID: PMC11338982 DOI: 10.1007/s12035-024-04002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Exosomes play a crucial role in regulating crosstalk between tumor and tumor stem-like cells through their cargo molecules. Circular RNAs (circRNAs) have recently been demonstrated to be critical factors in tumorigenesis. This study focuses on the molecular mechanism by which circRNAs from glioma stem-like cell (GSLC) exosomes regulate glioblastoma (GBM) tumorigenicity. In this study, we validated that GSLC exosomes accelerated the malignant phenotype of GBM. Subsequently, we found that circZNF800 was highly expressed in GSLC exosomes and was negatively associated with GBM patients. CircZNF800 promoted GBM cell proliferation and migration and inhibited GBM cell apoptosis in vitro. Silencing circZNF800 could improve the GBM xenograft model survival rate. Mechanistic studies revealed that circZNF800 activated the PIEZO1/Akt signaling pathway by sponging miR-139-5p. CircZNF800 derived from GSLC exosomes promoted GBM cell tumorigenicity and predicted poor prognosis in GBM patients. CircZNF800 has the potential to serve as a promising target for further therapeutic exploration.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
2
|
Kubelt C, Hellmold D, Esser D, Ahmeti H, Synowitz M, Held-Feindt J. Insights into Gene Regulation under Temozolomide-Promoted Cellular Dormancy and Its Connection to Stemness in Human Glioblastoma. Cells 2023; 12:1491. [PMID: 37296610 PMCID: PMC10252797 DOI: 10.3390/cells12111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The aggressive features of glioblastoma (GBM) are associated with dormancy. Our previous transcriptome analysis revealed that several genes were regulated during temozolomide (TMZ)-promoted dormancy in GBM. Focusing on genes involved in cancer progression, Chemokine (C-C motif) Receptor-Like (CCRL)1, Schlafen (SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl Enzyme Substrate (Cables)1, and Dachsous Cadherin-Related (DCHS)1 were selected for further validation. All showed clear expression and individual regulatory patterns under TMZ-promoted dormancy in human GBM cell lines, patient-derived primary cultures, glioma stem-like cells (GSCs), and human GBM ex vivo samples. All genes exhibited complex co-staining patterns with different stemness markers and with each other, as examined by immunofluorescence staining and underscored by correlation analyses. Neurosphere formation assays revealed higher numbers of spheres during TMZ treatment, and gene set enrichment analysis of transcriptome data revealed significant regulation of several GO terms, including stemness-associated ones, indicating an association between stemness and dormancy with the involvement of SKI. Consistently, inhibition of SKI during TMZ treatment resulted in higher cytotoxicity, proliferation inhibition, and lower neurosphere formation capacity compared to TMZ alone. Overall, our study suggests the involvement of CCRL1, SLFN13, SKI, Cables1, and DCHS1 in TMZ-promoted dormancy and demonstrates their link to stemness, with SKI being particularly important.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Daniela Esser
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| |
Collapse
|
3
|
In Silico Identification of Key Genes and Immune Infiltration Characteristics in Epicardial Adipose Tissue from Patients with Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5610317. [PMID: 36345357 PMCID: PMC9637040 DOI: 10.1155/2022/5610317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Background The present study is aimed at identifying the differentially expressed genes (DEGs) and relevant biological processes and pathways associated with epicardial adipose tissue (EAT) from patients with coronary artery disease (CAD). We also explored potential biomarkers using two machine-learning algorithms and calculated the immune cell infiltration in EAT. Materials and Methods Three datasets (GSE120774, GSE64554, and GSE24425) were obtained from the Gene Expression Omnibus (GEO) database. The GSE120774 dataset was used to evaluate DEGs between EAT of CAD patients and the control group. Functional enrichment analyses were conducted to study associated biological functions and mechanisms using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA). After this, the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) were performed to identify the feature genes related to CAD. The expression level of the feature genes was validated in GSE64554 and GSE24425. Finally, we calculated the immune cell infiltration and evaluated the correlation between the feature genes and immune cells using CIBERSORT. Results We identified a total of 130 upregulated and 107 downregulated genes in GSE120774. Functional enrichment analysis revealed that DEGs are associated with several pathways, including the calcium signaling pathway, complement and coagulation cascades, ferroptosis, fluid shear stress and atherosclerosis, lipid and atherosclerosis, and regulation of lipolysis in adipocytes. TCF21, CDH19, XG, and NNAT were identified as feature genes and validated in the GSE64554 and GSE24425 datasets. Immune cell infiltration analysis showed plasma cells are significantly more numerous in EAT than in the control group (p = 0.001), whereas macrophage M0 (p = 0.024) and resting mast cells (p = 0.036) were significantly less numerous. TCF21, CDH19, XG, and NNAT were correlated with immune cells, including plasma cells, M0 macrophages, and resting mast cells. Conclusion TCF21, CDH19, XG, and NNAT might serve as feature genes for CAD, providing new insights for future research on the pathogenesis of cardiovascular diseases.
Collapse
|
4
|
Baik SH, Selvaraji S, Fann DY, Poh L, Jo DG, Herr DR, Zhang SR, Kim HA, Silva MD, Lai MK, Chen CLH, Drummond GR, Lim KL, Sobey CG, Arumugam TV. Hippocampal transcriptome profiling reveals common disease pathways in chronic hypoperfusion and aging. Aging (Albany NY) 2021; 13:14651-14674. [PMID: 34074801 PMCID: PMC8221317 DOI: 10.18632/aging.203123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Vascular dementia (VaD) is a progressive cognitive impairment of vascular etiology. VaD is characterized by cerebral hypoperfusion, increased blood-brain barrier permeability and white matter lesions. An increased burden of VaD is expected in rapidly aging populations. The hippocampus is particularly susceptible to hypoperfusion, and the resulting memory impairment may play a crucial role in VaD. Here we have investigated the hippocampal gene expression profile of young and old mice subjected to cerebral hypoperfusion by bilateral common carotid artery stenosis (BCAS). Our data in sham-operated young and aged mice reveal an age-associated decline in cerebral blood flow and differential gene expression. In fact, BCAS and aging caused broadly similar effects. However, BCAS-induced changes in hippocampal gene expression differed between young and aged mice. Specifically, transcriptomic analysis indicated that in comparison to young sham mice, many pathways altered by BCAS in young mice resembled those already present in sham aged mice. Over 30 days, BCAS in aged mice had minimal effect on either cerebral blood flow or hippocampal gene expression. Immunoblot analyses confirmed these findings. Finally, relative to young sham mice the cell type-specific profile of genes in both young BCAS and old sham animals further revealed common cell-specific genes. Our data provide a genetic-based molecular framework for hypoperfusion-induced hippocampal damage and reveal common cellular signaling pathways likely to be important in the pathophysiology of VaD.
Collapse
Affiliation(s)
- Sang-Ha Baik
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sharmelee Selvaraji
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore
| | - David Y. Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Deron R. Herr
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Shenpeng R. Zhang
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Mitchell K.P. Lai
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grant R. Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Christopher G. Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Mutharasu G, Murugesan A, Konda Mani S, Yli-Harja O, Kandhavelu M. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. J Biomol Struct Dyn 2020; 40:2586-2599. [PMID: 33140689 DOI: 10.1080/07391102.2020.1841029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive malignant tumors in the central nervous system, which arises due to the failure or crosstalk in the signaling networks. GPR17, an orphan G protein-coupled receptor is anticipated to be associated with the biology of the GBM disease progression. In the present study, we have identified the differential expressions of around 170 genes along with GPR17 through the RNA-Seq analysis of 169 GBM samples. Coordinated expression patterns of all other gene products with this receptor were analysed using gene ontology and protein-protein interaction data. Several crucial signaling components and genes that play a significant role in tumor progression have been identified among which GPR17 was found to be significantly interacting with about 30 different pathways. High-throughput molecular docking of GPR17 by homology-based model against differentially expressed proteins, showed effective recognition and binding of PX, SH3, and Ig-like domains besides Gi protein. Pathways of PI3, Src, Ptdn, Ras, cytoplasmic tyrosine kinases, phospholipases, nexins and other proteins possessing these structural domains are identified as critical signaling components of the complex GBM signaling network. Our findings also provide a mechanistic insight of GPR17-T0510-3657 interaction, which potentially regulates the interaction of PX domain and helical mPTS recognition domain-containing proteins. Overall, our results demonstrate that GPR17 mediated signaling networks could be used as a therapeutic target for GBM.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gnanavel Mutharasu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Akshaya Murugesan
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Saravanan Konda Mani
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Olli Yli-Harja
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, WA, USA
| | - Meenakshisundaram Kandhavelu
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Molecular Signalling Lab, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Science Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
7
|
Oliphant MUJ, Vincent MY, Galbraith MD, Pandey A, Zaberezhnyy V, Rudra P, Johnson KR, Costello JC, Ghosh D, DeGregori J, Espinosa JM, Ford HL. SIX2 Mediates Late-Stage Metastasis via Direct Regulation of SOX2 and Induction of a Cancer Stem Cell Program. Cancer Res 2019; 79:720-734. [PMID: 30606720 DOI: 10.1158/0008-5472.can-18-1791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/06/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
The capacity for tumor cells to metastasize efficiently is directly linked to their ability to colonize secondary sites. Here we identify Six2, a developmental transcription factor, as a critical regulator of a breast cancer stem cell program that enables metastatic colonization. In several triple-negative breast cancer (TNBC) models, Six2 enhanced the expression of genes associated with embryonic stem cell programs. Six2 directly bound the Sox2 Srr2 enhancer, promoting Sox2 expression and downstream expression of Nanog, which are both key pluripotency factors. Regulation of Sox2 by Six2 enhanced cancer stem cell properties and increased metastatic colonization. Six2 and Sox2 expression correlated highly in breast cancers including TNBC, where a Six2 expression signature was predictive of metastatic burden and poor clinical outcome. Our findings demonstrate that a SIX2/SOX2 axis is required for efficient metastatic colonization, underscoring a key role for stemness factors in outgrowth at secondary sites. SIGNIFICANCE: These findings provide novel mechanistic insight into stemness and the metastatic outgrowth of triple-negative breast cancer cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/720/F1.large.jpg.
Collapse
Affiliation(s)
- Michael U J Oliphant
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katherine R Johnson
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
8
|
Zorniak M, Clark PA, Umlauf BJ, Cho Y, Shusta EV, Kuo JS. Yeast display biopanning identifies human antibodies targeting glioblastoma stem-like cells. Sci Rep 2017; 7:15840. [PMID: 29158489 PMCID: PMC5696472 DOI: 10.1038/s41598-017-16066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma stem-like cells (GSC) are hypothesized to evade current therapies and cause tumor recurrence, contributing to poor patient survival. Existing cell surface markers for GSC are developed from embryonic or neural stem cell systems; however, currently available GSC markers are suboptimal in sensitivity and specificity. We hypothesized that the GSC cell surface proteome could be mined with a yeast display antibody library to reveal novel immunophenotypes. We isolated an extensive collection of antibodies that were differentially selective for GSC. A single domain antibody VH-9.7 showed selectivity for five distinct patient-derived GSC lines and visualized orthotopic GBM xenografts in vivo after conjugation with a near-infrared dye. These findings demonstrate a previously unexplored high-throughput strategy for GSC-selective antibody discovery, to aid in GSC isolation, diagnostic imaging, and therapeutic targeting.
Collapse
Affiliation(s)
- Michael Zorniak
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Paul A Clark
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Benjamin J Umlauf
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Yongku Cho
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.
| | - John S Kuo
- Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792-8660, USA.
| |
Collapse
|
9
|
Saravanan KM, Palanivel S, Yli-Harja O, Kandhavelu M. Identification of novel GPR17-agonists by structural bioinformatics and signaling activation. Int J Biol Macromol 2017; 106:901-907. [PMID: 28827203 DOI: 10.1016/j.ijbiomac.2017.08.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
G Protein-coupled Receptor 17 (GPR17) is phylogenetically related to the purinergic receptors emerged as a potential drug target for multiple sclerosis, Parkinson disease, Alzheimer disease and cancer. Unfortunately, the crystal structure of GPR17 is unresolved. With the interest in structure-based ligand discovery, we modeled the structure of GPR17. The model allowed us to identify two novel agonists, AC1MLNKK and T0510.3657 that selectively activate GPR17 which exhibit better interaction properties than previously known ligand, MDL29951. We report detailed protein-ligand interactions and the dynamics of GPR17-ligand interaction by molecular docking and molecular dynamics experiments. Ex vivo validation of GPR17-ligand interaction provides evidence that ligand T0510-3657 and AC1MLNKK inhibit the cAMP levels in GPR17-HEK293T cells, with a pEC50 of 4.79 and 4.64, respectively. In silico and ex vivo validation experiments provided the deep understanding of ligand binding with GPR17 and the present findings reported here may lead to use these two compounds as a potential activator of GPR17 for therapeutic intervention.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Chennai, 600 025, India
| | - Suresh Palanivel
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland
| | - Olli Yli-Harja
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland; Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Lab, Computational Systems Biology Research Group, Signal Processing Department, Tampere University of Technology, P.O. Box 553, 33101, Tampere, Finland.
| |
Collapse
|
10
|
The effects of tumor treating fields and temozolomide in MGMT expressing and non-expressing patient-derived glioblastoma cells. J Clin Neurosci 2016; 36:120-124. [PMID: 27865821 DOI: 10.1016/j.jocn.2016.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
Abstract
A recent Phase 3 study of newly diagnosed glioblastoma (GBM) demonstrated the addition of tumor treating fields (TTFields) to temozolomide (TMZ) after combined radiation/TMZ significantly increased survival and progression free survival. Preliminary data suggested benefit with both methylated and unmethylated O-6-methylguanine-DNA methyl-transferase (MGMT) promoter status. To date, however, there have been no studies to address the potential interactions of TTFields and TMZ. Thus, the effects of TTFields and TMZ were studied in vitro using patient-derived GBM stem-like cells (GSCs) including MGMT expressing (TMZ resistant: 12.1 and 22GSC) and non-MGMT expressing (TMZ sensitive: 33 and 114GSC) lines. Dose-response curves were constructed using cell proliferation and sphere-forming assays. Results demonstrated a ⩾10-fold increase in TMZ resistance of MGMT-expressing (12.1GSCs: IC50=160μM; 22GSCs: IC50=44μM) compared to MGMT non-expressing (33GSCs: IC50=1.5μM; 114GSCs: IC50=5.2μM) lines. TTFields inhibited 12.1 GSC proliferation at all tested doses (50-500kHz) with an optimal frequency of 200kHz. At 200kHz, TTFields inhibited proliferation and tumor sphere formation of both MGMT GSC subtypes at comparable levels (12.1GSC: 74±2.9% and 38±3.2%, respectively; 22GSC: 61±11% and 38±2.6%, respectively; 33GSC: 56±9.5% and 60±7.1%, respectively; 114 GSC: 79±3.5% and 41±4.3%, respectively). In combination, TTFields (200kHz) and TMZ showed an additive anti-neoplastic effect with equal efficacy for TTFields in both cell types (i.e., ± MGMT expression) with no effect on TMZ resistance. This is the first demonstration of the effects of TTFields on cancer stem cells. The expansion of such studies may have clinical implications.
Collapse
|
11
|
Turaga SM, Lathia JD. Adhering towards tumorigenicity: altered adhesion mechanisms in glioblastoma cancer stem cells. CNS Oncol 2016; 5:251-9. [PMID: 27616054 DOI: 10.2217/cns-2016-0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults with a high recurrence and mortality rate. GBM tumors contain a high degree of cellular heterogeneity, with cells exhibiting stem-like properties (cancer stem cells; CSCs) that are highly efficient at tumor initiation and are resistant to conventional therapies. CSCs interact with their tumor microenvironment by a large group of diverse cell adhesion molecules (CAMs) that participate in intercellular, intracellular and cell-extracellular matrix interactions. Despite the initial description of CAMs as tumor suppressors, recent work has highlighted specific CAMs that are essential for CSC maintenance and tumor progression. This review will highlight recent findings that provide support for a context-specific role of CAMs in CSC function and GBM progression.
Collapse
Affiliation(s)
- Soumya M Turaga
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin D Lathia
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|