1
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
8
|
Todeschi J, Bund C, Cebula H, Chibbaro S, Lhermitte B, Pin Y, Lefebvre F, Namer IJ, Proust F. Diagnostic value of fusion of metabolic and structural images for stereotactic biopsy of brain tumors without enhancement after contrast medium injection. Neurochirurgie 2019; 65:357-364. [PMID: 31560911 DOI: 10.1016/j.neuchi.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/04/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND The heterogeneous nature of glioma makes it difficult to select a target for stereotactic biopsy that will be representative of grade severity on non-contrast-enhanced lesion imaging. The objective of this study was to evaluate the benefit of fusion of metabolic images (PET 18F-DOPA) with magnetic resonance imaging (MRI) morphological images for cerebral biopsy under stereotactic conditions of glioma without contrast enhancement. PATIENTS AND METHODS This single-center prospective observational study conducted between January 2016 and April 2018 included 20 consecutive patients (mean age: 45±19.5 years; range, 9-80 years) who underwent cerebral biopsy for a tumor without MRI enhancement but with hypermetabolism on 18F-FDOPA PET (positron emission tomography). Standard 18F-FDOPA uptake value (SUVmax) was determined for diagnosis of high-grade glioma, with comparison to histomolecular results. RESULTS Histological diagnosis was made in all patients (100%). Samples from hypermetabolism areas revealed high-grade glial tumor in 16 patients (80%). For a SUVmax threshold of 1.75, sensitivity was 81.2%, specificity 50%, PPV 86.7% and VPN 40% for diagnosis of high-grade glioma. No significant association between SUVmax and histomolecular mutation was found. CONCLUSION 18F-FDOPA metabolic imaging is an aid in choosing the target to be biopsied under stereotactic conditions in tumors without MR enhancement. Nevertheless, despite good sensitivity, 18F-FDOPA PET is insufficient for definitive diagnosis of high-grade tumor.
Collapse
Affiliation(s)
- J Todeschi
- Department of neurosurgery, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France.
| | - C Bund
- Department of nuclear medicine, hôpital de Hautepierre, 67200 Strasbourg, France
| | - H Cebula
- Department of neurosurgery, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - S Chibbaro
- Department of neurosurgery, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - B Lhermitte
- Department of pathology, hôpital de Hautepierre, 67200 Strasbourg, France
| | - Y Pin
- Department of radiotherapy, Centre Paul Strauss, 67065 Strasbourg, France
| | - F Lefebvre
- Department of public health, hôpitaux universitaires, 67200 Strasbourg, France
| | - I J Namer
- Department of nuclear medicine, hôpital de Hautepierre, 67200 Strasbourg, France
| | - F Proust
- Department of neurosurgery, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
9
|
Jin T, Ren Y, Zhang H, Xie Q, Yao Z, Feng X. Application of MRS- and ASL-guided navigation for biopsy of intracranial tumors. Acta Radiol 2019; 60:374-381. [PMID: 29958510 DOI: 10.1177/0284185118780906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The diagnosis of a tumor depends on accurate identification of the target area for biopsy. However, tumor heterogeneity and the inability of conventional structural data for identifying the most malignant areas can reduce this accuracy. PURPOSE To evaluate the feasibility and practicality of magnetic resonance spectroscopy (MRS)- and arterial spin labeling (ASL)-guided MRI navigation for needle biopsy of intracranial tumors. MATERIAL AND METHODS Thirty patients with intracranial tumors who underwent intraoperative stereotactic biopsy were retrospectively analyzed. Contrast-enhanced 3D-BRAVO or 3D-T2FLAIR structural data, combined with MRS and ASL data, were used to identify the target area for biopsy. High-choline or high-perfusion sites were chosen preferentially, and then the puncture trajectory was optimized to obtain specimens for histopathologic examination. RESULTS Twenty-two specimens were collected from 20 glioma patients (two specimens each were collected from two patients) and ten specimens were collected from ten lymphoma patients. The diagnosis rate after the biopsy was 93.3% (28/30). Two gliomas were initially diagnosed as gliosis and subsequently diagnosed correctly after the collection of a second biopsy specimen. Combined MRS and ASL helped target selection in 23 cases (76.7%), including three cases each of low-enhancing and non-enhancing gliomas. In two cases, the target selection decision was changed because the areas initially chosen on the basis of positron emission tomography data did not match the high-perfusion areas identified with ASL. CONCLUSION Compared with conventional MRI, combined MRS and ASL improved the accuracy of target selection for the stereotactic biopsy of intracranial tumors.
Collapse
Affiliation(s)
- Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qian Xie
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|