1
|
Armengou-Garcia L, Sanchez-Catasus CA, Aviles-Olmos I, Jiménez-Huete A, Montoya-Murillo G, Gorospe A, Martin-Bastida A, Gonzalez-Quarante LH, Guridi J, Rodriguez-Oroz MC. Unilateral Magnetic Resonance-Guided Focused Ultrasound Lesion of the Subthalamic Nucleus in Parkinson's Disease: A Prospective Study. Mov Disord 2024. [PMID: 39295191 DOI: 10.1002/mds.30020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Unilateral subthalamic nucleus (STN) ablation using magnetic resonance-guided focused ultrasound (MRgFUS) is being explored as a new treatment for asymmetric Parkinson's disease (PD). OBJECTIVES The aims were to study the efficacy and safety of this treatment in asymmetric PD patients and to characterize the lesions. METHODS This prospective, single-center, open-label study evaluated asymmetric PD patients at 6 (n = 20) and 12 months (n = 12) after MRgFUS lesion of the STN. The primary outcome was the change in the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, Part III (MDS-UPDRS III), score in off medication on the treated side and the adverse events (AEs) at 6-month follow-up. We also evaluated cognitive-neuropsychological changes, self-assessment of clinical improvement, and the correlation of the lesion volume with the motor outcomes. RESULTS On the treated side, the MDS-UPDRS III score (mean difference = 13.8) and the scores in rigidity, bradykinesia, and tremor improved (P < 0.001) throughout the follow-up compared to baseline (at 6 months: rigidity mean difference = 2.8, improvement: 83.5%; bradykinesia mean difference = 6.0, improvement: 69.4%; tremor mean difference = 4.7, improvement: 91.5%). One patient had severe weakness in the treated hemibody, 1 had moderate dyskinesia, and 1 was in moderate confusional state that became mild (weakness) or completely resolved (dyskinesia and confusional state) at 6 months. The rest of the AEs were mild. We observed no clinically relevant changes in cognitive-neuropsychological tests. The percentage of ablation of the STN correlated with the improvement in the total MDS-UPDRS III and contralateral tremor scores (P < 0.05). CONCLUSION Unilateral MRgFUS lesion of the STN resulted in a significant motor improvement. We observed no persistent severe AEs, although mild, mostly transient AEs were frequent. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Carlos A Sanchez-Catasus
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Iciar Aviles-Olmos
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neuroscience, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | | | | | - Arantza Gorospe
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Jorge Guridi
- Department of Neurosurgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maria C Rodriguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Neuroscience, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Zong R, Li X, Yin C, He J, Zhang D, Bian X, Huang L, Zhou J, Ling Z, Ma L, Lou X, Pan L, Yu X. Magnetic resonance-guided focused ultrasound for essential tremor: a prospective, single center, single-arm study. Neural Regen Res 2024; 19:2075-2080. [PMID: 38227538 DOI: 10.4103/1673-5374.391192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/04/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00041/figure1/v/2024-01-16T170235Z/r/image-tiff The safety and effectiveness of magnetic resonance-guided focused ultrasound thalamotomy has been broadly established and validated for the treatment of essential tremor. In 2018, the first magnetic resonance-guided focused ultrasound system in Chinese mainland was installed at the First Medical Center of the PLA General Hospital. This prospective, single center, open-label, single-arm study was part of a worldwide prospective multicenter clinical trial (ClinicalTrials.gov Identifier: NCT03253991) conducted to confirm the safety and efficacy of magnetic resonance-guided focused ultrasound for treating essential tremor in the local population. From 2019 to 2020, 10 patients with medication refractory essential tremor were recruited into this open-label, single arm study. The treatment efficacy was determined using the Clinical Rating Scale for Tremor. Safety was evaluated according to the incidence and severity of adverse events. All of the subjects underwent a unilateral thalamotomy targeting the ventral intermediate nucleus. At the baseline assessment, the estimated marginal mean of the Clinical Rating Scale for Tremor total score was 58.3 ± 3.6, and this improved after treatment to 23.1 ± 6.4 at a 12-month follow-up assessment. A total of 50 adverse events were recorded, and 2 were defined as serious. The most common intraoperative adverse events were nausea and headache. The most frequent postoperative adverse events were paresthesia and equilibrium disorder. Most of the adverse events were mild and usually disappeared within a few days. Our findings suggest that magnetic resonance-guided focused ultrasound for the treatment of essential tremor is effective, with a good safety profile, for patients in Chinese mainland.
Collapse
Affiliation(s)
- Rui Zong
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Xuemei Li
- Clinics of Cadre, Department of Outpatient, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Chunyu Yin
- Clinics of Cadre, Department of Outpatient, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Jianfeng He
- Department of Radiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Dekang Zhang
- Department of Radiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangbing Bian
- Department of Radiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Lichao Huang
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Jiayou Zhou
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Lin Ma
- Department of Radiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| | - Xinguang Yu
- Seniro Department of Neurosurgery, The First Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Gironell A, Marín-Lahoz J, Póveda S. [Essential Tremor: Update of Therapeutic Strategies]. Med Clin (Barc) 2024; 162:599-605. [PMID: 38553256 DOI: 10.1016/j.medcli.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 06/18/2024]
Abstract
In the last decades there has been progress in the treatment of essential tremor (TE) especially in the surgical field and to a lesser extent in the pharmacological field. We carry out a review of the currently available treatments. The first intervention is the use of non-pharmacological and non-surgical strategies (general advice, occupational therapy, speech therapy, psychotherapy). With discrete advances, the pharmacological treatment is not very satisfactory. Only 30-60% of patients have a positive response, and in these the anti-tremor effectiveness is 40-60%. The first-line drugs are still propranolol and primidone. In cases with severe tremor we will consider a surgical option, the method of choice being thalamotomy using high-intensity focused ultrasound. In the future we must continue to study the pathophysiology of TE, develop drugs specifically designed for TE and improve the technology of available invasive techniques.
Collapse
Affiliation(s)
- Alexandre Gironell
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Barcelona, España.
| | - Juan Marín-Lahoz
- Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, España; Grupo de Neurociencias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, España
| | - Santiago Póveda
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| |
Collapse
|
4
|
Stoycheva T, Jameel A, Bain P, Nandi D, Jones B, Honeyfield L, Gedroyc W, Moore J. 'Am I fixed, am I better now?': undergoing MR-guided focused ultrasound for essential tremor: an interpretative phenomenological analysis. Front Neurol 2024; 15:1352581. [PMID: 38390595 PMCID: PMC10882628 DOI: 10.3389/fneur.2024.1352581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Essential tremor (ET) is characterised by postural and intentional tremor typically affecting the upper limbs, which can negatively impact functionality and quality of life. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a novel and promising non-invasive treatment for ET which offers instantaneous results. Methods Using interpretative phenomenological analysis we explored the experience of undergoing MRgFUS in six ET patients as well as their experiences pre- and post-procedure. Results One-time, retrospective semi-structured interviews were conducted and six themes emerged: Life pre-treatment: "It's everyday tasks that get you down" and "Most people who understand, they are okay. Some people aren't"; MRgFUS: Treatment day: "Going into the unknown" and "There's no way I was going to press that button"; and Life post-treatment: "One is good. Two is better" and "Am I fixed, am I better now?." Discussion The findings point to a significant period of adjustment associated with living with ET and the effects of undergoing ET MRgFUS treatment. As ET progressed, participants struggled to cope with increasing symptoms and had to develop coping strategies to manage life with ET. The procedure itself was perceived as strange and extraordinary and despite some immediate adverse effects participants were determined to go through with it. Post procedure, all participants reported tremor suppression which was life changing. While some participants still felt burdened by ET, others expressed it took them a while to psychologically adjust to what essentially was their new body. This study has highlighted the need for patients to be supported at all stages of their ET journey.
Collapse
Affiliation(s)
- Tsvetina Stoycheva
- Imperial College Healthcare NHS Trust, London, United Kingdom
- King's College London, London, England, United Kingdom
| | - Ayesha Jameel
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Peter Bain
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Dipankar Nandi
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | - Brynmor Jones
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Wladyslaw Gedroyc
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College London, London, England, United Kingdom
| | | |
Collapse
|
5
|
Tewari AR, Grogan DP, Maragkos GA, Elias WJ, Moosa S. A New Era for Lesioning in Parkinson Disease. World Neurosurg 2023; 179:236-237. [PMID: 37716815 DOI: 10.1016/j.wneu.2023.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Affiliation(s)
- Anant R Tewari
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Dayton P Grogan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Georgios A Maragkos
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Shayan Moosa
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Maragkos GA, Kosyakovsky J, Zhao P, Kearns KN, Rush-Evans S, Moosa S, Elias WJ. Patient-Reported Outcomes After Focused Ultrasound Thalamotomy for Tremor-Predominant Parkinson's Disease. Neurosurgery 2023; 93:884-891. [PMID: 37133259 DOI: 10.1227/neu.0000000000002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) has emerged as a precise, incisionless approach to cerebral lesioning and an alternative to neuromodulation in movement disorders. Despite rigorous clinical trials, long-term patient-centered outcome data after MRgFUS for tremor-predominant Parkinson's Disease (TPPD) are relatively lacking. OBJECTIVE To report long-term data on patient satisfaction and quality of life after MRgFUS thalamotomy for TPPD. METHODS In a retrospective study of patients who underwent MRgFUS thalamotomy for TPPD at our institution between 2015 and 2022, a patient survey was administered to collect self-reported measures of tremor improvement, recurrence, Patients' Global Impression of Change (PGIC), and side effects. Patient demographics, FUS parameters, and lesion characteristics were analyzed. RESULTS A total of 29 patients were included with a median follow-up of 16 months. Immediate tremor improvement was achieved in 96% of patients. Sustained improvement was achieved in 63% of patients at last follow-up. Complete tremor recurrence to baseline occurred for 17% of patients. Life quality improvement denoted by a PGIC of 1 to 2 was reported by 69% of patients. Long-term side effects were reported by 38% of patients and were mostly mild. Performing a secondary anteromedial lesion to target the ventralis oralis anterior/posterior nucleus was associated with higher rates of speech-related side effects (56% vs 12%), without significant improvement in tremor outcomes. CONCLUSION Patient satisfaction with FUS thalamotomy for tremor-predominant PD was very high, even at longer term. Extended lesioning to target the motor thalamus did not improve tremor control and may contribute to greater frequency of postoperative motor- and speech-related side effects.
Collapse
Affiliation(s)
- Georgios A Maragkos
- Department of Neurosurgery, University of Virginia Health System, Charlottesville , Virginia , USA
| | - Jacob Kosyakovsky
- University of Virginia School of Medicine, Charlottesville , Virginia , USA
| | - Patricia Zhao
- University of Virginia School of Medicine, Charlottesville , Virginia , USA
| | - Kathryn N Kearns
- Department of Neurosurgery, University of Virginia Health System, Charlottesville , Virginia , USA
| | - Shelly Rush-Evans
- Department of Neurosurgery, University of Virginia Health System, Charlottesville , Virginia , USA
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia Health System, Charlottesville , Virginia , USA
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia Health System, Charlottesville , Virginia , USA
| |
Collapse
|
7
|
Holcomb JM, Chopra R, Feltrin FS, Elkurd M, El-Nazer R, McKenzie L, O’Suilleabhain P, Maldjian JA, Dauer W, Shah BR. Improving tremor response to focused ultrasound thalamotomy. Brain Commun 2023; 5:fcad165. [PMID: 37533544 PMCID: PMC10390385 DOI: 10.1093/braincomms/fcad165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 08/04/2023] Open
Abstract
MRI-guided high-intensity focused ultrasound thalamotomy is an incisionless therapy for essential tremor. To reduce adverse effects, the field has migrated to treating at 2 mm above the anterior commissure-posterior commissure plane. We perform MRI-guided high-intensity focused ultrasound with an advanced imaging targeting technique, four-tract tractography. Four-tract tractography uses diffusion tensor imaging to identify the critical white matter targets for tremor control, the decussating and non-decussating dentatorubrothalamic tracts, while the corticospinal tract and medial lemniscus are identified to be avoided. In some patients, four-tract tractography identified a risk of damaging the medial lemniscus or corticospinal tract if treated at 2 mm superior to the anterior commissure-posterior commissure plane. In these patients, we chose to target 1.2-1.5 mm superior to the anterior commissure-posterior commissure plane. In these patients, post-operative imaging revealed that the focused ultrasound lesion extended into the posterior subthalamic area. This study sought to determine if patients with focused ultrasound lesions that extend into the posterior subthalamic area have a differnce in tremor improvement than those without. Twenty essential tremor patients underwent MRI-guided high-intensity focused ultrasound and were retrospectively classified into two groups. Group 1 included patients with an extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. Group 2 included patients without extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. For each patient, the percent change in postural tremor, kinetic tremor and Archimedes spiral scores were calculated between baseline and a 3-month follow-up. Two-tailed Wilcoxon rank-sum tests were used to compare the improvement in tremor scores, the total number of sonications, thermal dose to achieve initial tremor response, and skull density ratio between groups. Group 1 had significantly greater postural, kinetic, and Archimedes spiral score percent improvement than Group 2 (P values: 5.41 × 10-5, 4.87 × 10-4, and 5.41 × 10-5, respectively). Group 1 also required significantly fewer total sonications to control the tremor and a significantly lower thermal dose to achieve tremor response (P values: 6.60 × 10-4 and 1.08 × 10-5, respectively). No significant group differences in skull density ratio were observed (P = 1.0). We do not advocate directly targeting the posterior subthalamic area with MRI-guided high-intensity focused ultrasound because the shape of the focused ultrasound lesion can result in a high risk of adverse effects. However, when focused ultrasound lesions naturally extend from the thalamus into the posterior subthalamic area, they provide greater tremor control than those that only involve the thalamus.
Collapse
Affiliation(s)
- James M Holcomb
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Fabricio S Feltrin
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Mazen Elkurd
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rasheda El-Nazer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Lauren McKenzie
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | | | - Joseph A Maldjian
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - William Dauer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Correspondence to: Bhavya R. Shah Department of Radiology, UTSW Medical Center, 1801 Inwood Rd Dallas, TX 75235, USA E-mail:
| |
Collapse
|
8
|
Abstract
Modern transcranial magnetic resonance-guided focused ultrasound is an incisionless, ablative treatment modality for a growing number of neurologic disorders. This procedure selectively destroys a targeted volume of cerebral tissue and relies on real-time MR thermography to monitor tissue temperatures. By focusing on a submillimeter target through a hemispheric phased array of transducers, ultrasound waves pass through the skull and avoid overheating and brain damage. High-intensity focused ultrasound techniques are increasingly used to create safe and effective stereotactic ablations for medication-refractory movement and other neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Pomeraniec
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA.
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Yuen J, Goyal A, Kaufmann TJ, Jackson LM, Miller KJ, Klassen BT, Dhawan N, Lee KH, Lehman VT. Comparison of the impact of skull density ratio with alternative skull metrics on magnetic resonance-guided focused ultrasound thalamotomy for tremor. J Neurosurg 2023; 138:50-57. [PMID: 35901729 DOI: 10.3171/2022.5.jns22350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVE One of the key metrics that is used to predict the likelihood of success of MR-guided focused ultrasound (MRgFUS) thalamotomy is the overall calvarial skull density ratio (SDR). However, this measure does not fully predict the sonication parameters that would be required or the technical success rates. The authors aimed to assess other skull characteristics that may also contribute to technical success. METHODS The authors retrospectively studied consecutive patients with essential tremor who were treated by MRgFUS at their center between 2017 and 2021. They evaluated the correlation between the different treatment parameters, particularly maximum power and energy delivered, with a range of patients' skull metrics and demographics. Machine learning algorithms were applied to investigate whether sonication parameters could be predicted from skull density metrics alone and whether including combined local transducer SDRs with overall calvarial SDR would increase model accuracy. RESULTS A total of 62 patients were included in the study. The mean age was 77.1 (SD 9.2) years, and 78% of treatments (49/63) were performed in males. The mean SDR was 0.51 (SD 0.10). Among the evaluated metrics, SDR had the highest correlation with the maximum power used in treatment (ρ = -0.626, p < 0.001; proportion of local SDR values ≤ 0.8 group also had ρ = +0.626, p < 0.001) and maximum energy delivered (ρ = -0.680, p < 0.001). Machine learning algorithms achieved a moderate ability to predict maximum power and energy required from the local and overall SDRs (accuracy of approximately 80% for maximum power and approximately 55% for maximum energy), and high ability to predict average maximum temperature reached from the local and overall SDRs (approximately 95% accuracy). CONCLUSIONS The authors compared a number of skull metrics against SDR and showed that SDR was one of the best indicators of treatment parameters when used alone. In addition, a number of other machine learning algorithms are proposed that may be explored to improve its accuracy when additional data are obtained. Additional metrics related to eventual sonication parameters should also be identified and explored.
Collapse
Affiliation(s)
- Jason Yuen
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Abhinav Goyal
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Kai J Miller
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - Kendall H Lee
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Vance T Lehman
- 4Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Du nouveau dans le traitement du tremblement essentiel. ACTUALITES PHARMACEUTIQUES 2022. [DOI: 10.1016/j.actpha.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Feltrin FS, Chopra R, Pouratian N, Elkurd M, El-Nazer R, Lanford L, Dauer W, Shah BR. Focused ultrasound using a novel targeting method four-tract tractography for magnetic resonance-guided high-intensity focused ultrasound targeting. Brain Commun 2022; 4:fcac273. [PMID: 36751499 PMCID: PMC9897190 DOI: 10.1093/braincomms/fcac273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance-guided high-intensity focused ultrasound thalamotomy is a Food and Drug Administration-approved treatment for essential tremor. The target, the ventral intermediate nucleus of the thalamus, is not visualized on standard, anatomic MRI sequences. Several recent reports have used diffusion tensor imaging to target the dentato-rubro-thalamic-tract. There is considerable variability in fibre tracking algorithms and what fibres are tracked. Targeting discrete white matter tracts with magnetic resonance-guided high-intensity focused ultrasound is an emerging precision medicine technique that has the promise to improve patient outcomes and reduce treatment times. We provide a technical overview and clinical benefits of our novel, easily implemented advanced tractography method: four-tract tractography. Our method is novel because it targets both the decussating and non-decussating dentato-rubro-thalamic-tracts while avoiding the medial lemniscus and corticospinal tracts. Our method utilizes Food and Drug Administration-approved software and is easily implementable into existing workflows. Initial experience using this approach suggests that it improves patient outcomes by reducing the incidence of adverse effects.
Collapse
Affiliation(s)
- Fabricio S Feltrin
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UTSW Medical Center, Dallas, TX 75235, USA,O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA
| | - Mazen Elkurd
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rasheda El-Nazer
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Lauren Lanford
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - William Dauer
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA,Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Correspondence to: Bhavya R. Shah UTSW Medical Center 1801 Inwood Rd, Dallas, TX 75235, USA E-mail:
| |
Collapse
|
12
|
Optical Property Measurement and Temperature Monitoring in High-Intensity Focused Ultrasound Therapy by Diffuse Optical Tomography: A Correlation Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we propose a new approach utilizing diffuse optical tomography (DOT) to monitoring the changes in tissues’ optical properties and temperature in high-intensity focused ultrasound (HIFU) therapy. By correlating the tissue reduced scattering coefficient (μs’) reconstructed by DOT and the temperature measured by a thermocouple, the quantitative relationship between μs’ and temperature in HIFU treatment was explored. The experiments were conducted using porcine and chicken breast muscle tissues during HIFU; the temperature of each tissue sample was recorded using a thermocouple. To incorporate the temperature dependency of tissue optical properties, both polynomial and exponential models were utilized to fit the experimental data. The results show that the change of μs’ during HIFU treatment could be detected in real-time using DOT and that this change of μs’ is quantitatively correlated with tissue temperature. Furthermore, while the tissue-type-dependent relationship between μs’ and temperature is non-linear in nature, it is stable and repeatable. Therefore, our approach has the potential to be used to predict temperature of tissue during HIFU treatment.
Collapse
|
13
|
Neuropathology of Parkinson's disease after focused ultrasound thalamotomy. NPJ Parkinsons Dis 2022; 8:59. [PMID: 35550514 PMCID: PMC9098516 DOI: 10.1038/s41531-022-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 11/08/2022] Open
Abstract
Focused ultrasound (FUS) thalamotomy is an emerging treatment for tremor-dominant Parkinson's disease (PD). We report the first postmortem neuropathologic study of FUS thalamotomy in a 68-year-old man with tremor-dominant PD, which was performed seven months before he died. Although the peak voxel temperature at the target was <54 °C, his tremor improved on intraoperative and postoperative assessments. Additionally, postoperative MRI demonstrated a thalamic lesion. Lewy body-related pathology consistent with PD was detected. There was also a 5-mm lesion in the ventral lateral thalamus characterized by demyelination and neuropil loss, with many lipid-laden macrophages, but no lymphocytic infiltrates and relatively preserved neurons and axons. Additional pathological assessments after FUS thalamotomy are needed to determine if the observed brain changes are typical of this procedure.
Collapse
|
14
|
Barbato G, Nisticò R, Triaca V. Exploiting Focused Ultrasound to Aid Intranasal Drug Delivery for Brain Therapy. Front Pharmacol 2022; 13:786475. [PMID: 35496270 PMCID: PMC9046653 DOI: 10.3389/fphar.2022.786475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Novel effective therapeutic strategies are needed to treat brain neurodegenerative diseases and to improve the quality of life of patients affected by Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic Lateral sclerosis (ALS) as well as other brain conditions. At present no effective treatment options are available; current therapeutics for neurodegenerative diseases (NDs) improve cognitive symptoms only transiently and in a minor number of patients. Further, most of the amyloid-based phase III clinical trials recently failed in AD, in spite of promising preclinical and phase I-II clinical trials, further pinpointing the need for a better knowledge of the early mechanisms of disease as well as of more effective routes of drug administration. In fact, beyond common pathological events and molecular substrates, each of these diseases preferentially affect defined subpopulations of neurons in specific neuronal circuits (selective neuronal vulnerability), leading to the typical age-related clinical profile. In this perspective, key to successful drug discovery is a robust and reproducible biological validation of potential new molecular targets together with a concomitant set up of protocols/tools for efficient and targeted brain delivery to a specific area of interest. Here we propose and discuss Focused UltraSound aided drug administration as a specific and novel technical approach to achieve optimal concentration of the drug at the target area of interest. We will focus on drug delivery to the brain through the nasal route coupled to FUS as a promising approach to achieve neuroprotection and rescue of cognitive decline in several NDs.
Collapse
Affiliation(s)
- Gaetano Barbato
- Inno-Sol Srl, Rome, Italy
- Department of Biology, School of Pharmacy, University of Tor Vergata, Rome, Italy
- *Correspondence: Gaetano Barbato, ; Robert Nisticò, ; Viviana Triaca,
| | - Robert Nisticò
- Department of Biology, School of Pharmacy, University of Tor Vergata, Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, Fondazione EBRI Rita Levi Montalcini, Rome, Italy
- *Correspondence: Gaetano Barbato, ; Robert Nisticò, ; Viviana Triaca,
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), International Campus A. Buzzati-Traverso, Rome, Italy
- *Correspondence: Gaetano Barbato, ; Robert Nisticò, ; Viviana Triaca,
| |
Collapse
|
15
|
Yuen J, Miller KJ, Klassen BT, Lehman VT, Lee KH, Kaufmann TJ. Hyperostosis in Combination With Low Skull Density Ratio: A Potential Contraindication for Magnetic Resonance Imaging-Guided Focused Ultrasound Thalamotomy. Mayo Clin Proc Innov Qual Outcomes 2022; 6:10-15. [PMID: 34977470 PMCID: PMC8704442 DOI: 10.1016/j.mayocpiqo.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since its approval in treating a number of movement disorders, magnetic resonance imaging–guided focused ultrasound (MRgFUS) has been adopted rapidly as one of the standard treatment modalities internationally. However, the efficiency of the energy delivered by the ultrasonic waves is largely determined by the highly variable bone morphology and density characteristics of the skull. One of the widely accepted indices used to facilitate patient selection is the skull density ratio (SDR). Earlier literature suggested that an SDR of less than 0.4 would be unfavorable for MRgFUS treatment. Some prior studies have excluded patients with hyperostosis. However, there is little published data regarding the impact of other skull features such as hyperostosis on treatment success. We present the case of a 66-year-old man with medically refractory essential tremor who had an SDR of 0.38 and extensive hyperostosis frontalis interna and underwent attempted MRgFUS thalamotomy treatment. However, intraoperatively the treatment was unsuccessful in generating sufficiently elevated temperature to create a lesion of the usual desired volume, and as expected, there was minimal clinical improvement. For comparison, we also summarize a case series of 4 other patients with an SDR of less than 0.4 who had successful outcomes. We believe that SDR should not be used as the only means of selecting patients for MRgFUS. Instead, important factors such as hyperostosis should be taken into consideration for patient selection and pretreatment counseling.
Collapse
|
16
|
Davidson B, Hamani C, Huang Y, Jones RM, Meng Y, Giacobbe P, Lipsman N. Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Oper Neurosurg (Hagerstown) 2021; 19:741-749. [PMID: 32735671 DOI: 10.1093/ons/opaa240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Psychiatric surgery is an important domain of functional neurosurgery and involves deep brain stimulation (DBS) or lesional procedures performed for treatment-resistant psychiatric illness. It has recently become possible to use magnetic-guided focused ultrasound (MRgFUS) to perform bilateral capsulotomy, a lesional technique commonly carried out with surgical radiofrequency ablation or stereotactic radiosurgery. MRgFUS offers several advantages, including improved safety and real-time imaging of the lesions. OBJECTIVE To describe the clinical and technical aspects of performing bilateral MRgFUS capsulotomy in patients with severe refractory depression and obsessive-compulsive disorder. METHODS We describe the clinical and technical considerations of performing MRgFUS capsulotomy. Topics discussed include patient selection, headframe application, targeting, sonication strategies, and follow-up procedures. RESULTS MRgFUS capsulotomy was performed in 16 patients without serious clinical or radiographic adverse events. CONCLUSION MRgFUS allows for a safe, less invasive technique for performing a well-studied psychiatric surgery procedure-the anterior capsulotomy.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ryan M Jones
- Sunnybrook Research Institute, Toronto Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada.,Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada.,Sunnybrook Research Institute, Toronto Canada
| |
Collapse
|
17
|
Bruno F, Catalucci A, Arrigoni F, Gagliardi A, Campanozzi E, Corridore A, Tommasino E, Pagliei V, Pertici L, Palumbo P, Sucapane P, Cerone D, Pistoia F, Di Cesare E, Barile A, Ricci A, Marini C, Splendiani A, Masciocchi C. Comprehensive Evaluation of Factors Affecting Tremor Relapse after MRgFUS Thalamotomy: A Case-Control Study. Brain Sci 2021; 11:brainsci11091183. [PMID: 34573204 PMCID: PMC8472207 DOI: 10.3390/brainsci11091183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To identify possible relevant factors contributing to tremor relapse after MRgFUS thalamotomy in patients with essential tremor (ET) and Parkinson's disease (PD). METHODS We identified patients with tremor relapse from a series of 79 treatments in a single institution. The demographic and clinical characteristics of the study group patients were compared to those of patients who did not relapse in the same follow-up period. Imaging and procedural factors were compared using a control group matched for clinical and demographic characteristics. RESULTS Concerning clinical and demographic characteristics, we did not find statistically significant differences in gender and age. Seventy-three percent of patients with tremor relapse were Parkinson's disease patients. Using MRI, we found larger thalamotomy lesions at the 1-year follow-up in the control group with stable outcomes, compared to patients with tremor relapse. In the tractography evaluation, we found a more frequent eccentric position of the DRTt in patients with tremor relapse. CONCLUSIONS The most relevant determining factors for tremor relapse after MRgFUS thalamotomy appear to be tremor from Parkinson's disease and inaccurate thalamic targeting. Size of the thalamotomy lesion can also influence the outcome of treatment.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy;
- Correspondence:
| | - Alessia Catalucci
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy; (A.C.); (E.D.C.)
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Alessio Gagliardi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Elena Campanozzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Antonella Corridore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Emanuele Tommasino
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Valeria Pagliei
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Leonardo Pertici
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy;
| | - Patrizia Sucapane
- Neurology, San Salvatore Hospital, 67100 L’Aquila, Italy; (P.S.); (D.C.)
| | - Davide Cerone
- Neurology, San Salvatore Hospital, 67100 L’Aquila, Italy; (P.S.); (D.C.)
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Ernesto Di Cesare
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, 67100 L’Aquila, Italy; (A.C.); (E.D.C.)
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | | | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.A.); (A.G.); (E.C.); (A.C.); (E.T.); (V.P.); (L.P.); (F.P.); (A.B.); (C.M.); (A.S.); (C.M.)
| |
Collapse
|
18
|
Xiong Y, Han D, He J, Zong R, Bian X, Duan C, Zhang D, Zhou X, Pan L, Lou X. Correlation of visual area with tremor improvement after MRgFUS thalamotomy in Parkinson's disease. J Neurosurg 2021; 136:681-688. [PMID: 34479209 DOI: 10.3171/2021.3.jns204329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MRI-guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive alternative for medication-refractory tremor in Parkinson's disease (PD). However, the impact of MRgFUS thalamotomy on spontaneous neuronal activity in PD remains unclear. The purpose of the current study was to evaluate the effects of MRgFUS thalamotomy on local fluctuations in neuronal activity as measured by the fractional amplitude of low-frequency fluctuations (fALFF) in patients with PD. METHODS Participants with PD undergoing MRgFUS thalamotomy were recruited. Tremor scores were assessed before and 3 and 12 months after treatment using the Clinical Rating Scale for Tremor. MRI data were collected before and 1 day, 1 week, 1 month, 3 months, and 12 months after thalamotomy. The fALFF was calculated. A whole-brain voxel-wise paired t-test was used to identify significant changes in fALFF at 12 months after treatment compared to baseline. Then fALFF in the regions with significant differences were extracted from fALFF maps of patients for further one-way repeated-measures ANOVA to investigate its dynamic alterations. The association between fALFF changes induced by thalamotomy and tremor improvement were evaluated using the nonparametric Spearman rank test. RESULTS Nine participants with PD (mean age ± SD 64.7 ± 6.1 years, 8 males) were evaluated. Voxel-based analysis showed that fALFF in the left occipital cortex (Brodmann area 17 [BA17]) significantly decreased at 12 months after thalamotomy compared to baseline (voxel p < 0.001, cluster p < 0.05 family-wise error [FWE] corrected). At baseline, fALFF in the left occipital BA17 in patients was elevated compared with that in 9 age- and gender-matched healthy subjects (p < 0.05). Longitudinal analysis displayed the dynamic changes of fALFF in this region (F (5,40) = 3.61, p = 0.009). There was a significant positive correlation between the falling trend in fALFF in the left occipital BA17 and hand tremor improvement after treatment over 3 time points (Spearman's rho = 0.44, p = 0.02). CONCLUSIONS The present study investigated the impact of MRgFUS ventral intermediate nucleus thalamotomy on spontaneous neural activity in medication-refractory tremor-dominant PD. The visual area is, for the first time, reported as relevant to tremor improvement in PD after MRgFUS thalamotomy, suggesting a distant effect of MRgFUS thalamotomy and the involvement of specific visuomotor networks in tremor control in PD.
Collapse
Affiliation(s)
- Yongqin Xiong
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dongshan Han
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng He
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Rui Zong
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China; and
| | - Xiangbing Bian
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dekang Zhang
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhou
- 3Innovation Academy for Precision Measurement Science and Technology, The Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Longsheng Pan
- 2Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China; and
| | - Xin Lou
- 1Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
19
|
Ge Y, Wang Z, Gu F, Yang X, Chen Z, Dong W, Wang Z. Clinical application of magnetic resonance-guided focused ultrasound in Parkinson's disease: a meta-analysis of randomized clinical trials. Neurol Sci 2021; 42:3595-3604. [PMID: 34216307 DOI: 10.1007/s10072-021-05443-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND To evaluate the safety and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) in the treatment of Parkinson's disease (PD). METHODS The databases of Medline, EMBASE, and the Cochrane Library were searched for eligible randomized controlled trials comparing focused ultrasound surgery (FUS) group vs. sham procedure group in PD. Weighted mean differences and standardized mean differences with corresponding 95% confidence intervals were used to summarize the primary outcome, namely, the effect of MRgFUS to improve limb tremor in PD patients and adverse events, and the secondary outcome, which is the effect of MRgFUS in improving the quality of life, activities of daily living, and non-motor symptoms. RESULTS The pooled analysis comprised 2 studies. The blinded phase lasted for 4 months in one experiment and up to 3 months in the other. The FUS group showed significant improvement in limb tremor on the treated side (SMD: - 1.20; 95% CI: - 2.06, - 0.34) and the ability to perform daily activities (SMD: - 0.86; 95% CI: - 1.41, - 0.32) compared to the sham group, but there were no significant group differences in other indicators. Of the process-related adverse events, dizziness (OR: 4.68; 95% CI: 1.20, 18.23) was more common in the treatment group, with no group differences in the remaining adverse events. CONCLUSIONS These findings suggest beneficial effects of MRgFUS in PD patients with no serious side effects. Larger multicenter studies are needed in the future to select the most appropriate target and surgical device setup parameters.
Collapse
Affiliation(s)
- Yi Ge
- Department of Neurology, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Zilan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Feng Gu
- First Clinical Medical School, Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Xingyu Yang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China.
- Department of Neurology, Dushuhu Public Hospital Affiliated To Soochow University, Jiangsu Province, Suzhou, 215006, China.
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Jiangsu Province, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
20
|
Pooja NA, Pahuja SK, Veer K. Significance of MRI Guided Focused Ultrasound Thalamotomy for Parkinson's Disease: A Review. Curr Med Imaging 2021; 17:714-719. [PMID: 33357197 DOI: 10.2174/1573405616666201223142505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Magnetic-Resonance guided Focused Ultrasound (FUS) thalamotomy is a new and less invasive surgical technique for treating Parkinson's disease (PD). During therapy, the required part of the cerebral (as STN, Internal Globus Pallidus, and Ventral Intermediate Nucleus) is ablated with less possibility of infection and brain hemorrhage as it normally happens in invasive procedures. INTRODUCTION New advancement in the technique enables it for transcranial transportation of US. Nowadays, US coupling with MRI confirms the accurate energy transferring and monitoring. So, MRI guided FUS lesioning is discovered for various psychiatric and brain disorders. METHODS A technical overview of non-invasive MRI-FUS thalamotomy to treat various tremors is described here. Research, review articles, and book chapters are extracted from online resources using related search strings from the year 1994-2020. RESULTS MRgFUS is concluded a non-invasive, satisfactory, and safe technique to reduce the tremor. Conlusion: MRgFUS is comparatively a new method that is being explored as a non-invasive cerebral ablation to solve the problems of movement disorder.
Collapse
Affiliation(s)
- N A Pooja
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - S K Pahuja
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - K Veer
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
21
|
Tsai KWK, Chen JC, Lai HC, Chang WC, Taira T, Chang JW, Wei CY. The Distribution of Skull Score and Skull Density Ratio in Tremor Patients for MR-Guided Focused Ultrasound Thalamotomy. Front Neurosci 2021; 15:612940. [PMID: 34079434 PMCID: PMC8165389 DOI: 10.3389/fnins.2021.612940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Magnetic resonance-guided focused ultrasound (MRgFUS) is a minimum-invasive surgical approach to non-incisionally cause the thermos-coagulation inside the human brain. The skull score (SS) has already been approved as one of the most dominant factors related to a successful MRgFUS treatment. In this study, we first reveal the SS distribution of the tremor patients, and correlate the SS with the image feature from customized skull density ratio (cSDR). This correlation might give a direction to future clinical studies for improving the SS. Methods Two hundred and forty-six patients received a computed tomography (CT) scan of the brain, and a bone-enhanced filter was applied and reconstructed to a high spatial resolution CT images. The SS of all patients would be estimated by the MRgFUS system after importing the reconstructed CT images into the MRgFUS system. The histogram and the cumulative distribution of the SS from all the patients were calculated to show the percentage of the patients whose SS lower than 0.3 and 0.4. The same CT images of all patients were utilized to calculated the cSDR by first segmented the trabecular bone and the cortical bone from the CT images and divided the average trabecular bone intensity (aTBI) by the average cortical bone intensity (aCBI). The Pearson’s correlations between the SS and the cSDR, aTBI, and the aCBI were calculated, respectively. Results There were 19.19 and 50% of the patient who had the SS lower than the empirical threshold 0.3 and 0.4, respectively. The Pearson’s correlation between the SS and the cSDR, aCBI, and the aTBI were R = 0.8145, 0.5723, and 0.8842. Conclusion Half of the patients were eligible for the MRgFUS thalamotomy based on the SS, and nearly 20% of patients were empirically difficult to achieve a therapeutic temperature during MRgFUS. The SS and our cSDR are highly correlated, and the SS had a higher correlation with aTBI than with aCBI. This is the first report to explicitly reveal the SS population and indicate a potential way to increase the chance to achieve a therapeutic temperature for those who originally have low SS.
Collapse
Affiliation(s)
- Kevin Wen-Kai Tsai
- MR-guided Focused Ultrasound Center, Chang Bing Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan.,Department of Neurology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Hui-Chin Lai
- MR-guided Focused Ultrasound Center, Chang Bing Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Wei-Chieh Chang
- MR-guided Focused Ultrasound Center, Chang Bing Show Chwan Memorial Hospital, Changhua City, Taiwan.,Department of Neurosurgery, Chang Bing Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan.,Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua City, Taiwan
| |
Collapse
|
22
|
Preoperative imaging findings in patients undergoing transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy. Sci Rep 2021; 11:2524. [PMID: 33510338 PMCID: PMC7843629 DOI: 10.1038/s41598-021-82271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/01/2021] [Indexed: 11/09/2022] Open
Abstract
The prevalence and impact of imaging findings detected during screening procedures in patients undergoing transcranial MR-guided Focused Ultrasound (tcMRgFUS) thalamotomy for functional neurological disorders has not been assessed yet. This study included 90 patients who fully completed clinical and neuroradiological screenings for tcMRgFUS in a single-center. The presence and location of preoperative imaging findings that could impact the treatment were recorded and classified in three different groups according to their relevance for the eligibility and treatment planning. Furthermore, tcMRgFUS treatments were reviewed to evaluate the number of transducer elements turned off after marking as no pass regions the depicted imaging finding. A total of 146 preoperative imaging findings in 79 (87.8%) patients were detected in the screening population, with a significant correlation with patients' age (rho = 483, p < 0.001). With regard of the group classification, 119 (81.5%), 26 (17.8%) were classified as group 1 or 2, respectively. One patient had group 3 finding and was considered ineligible. No complications related to the preoperative imaging findings occurred in treated patients. Preoperative neuroradiological findings are frequent in candidates to tcMRgFUS and their identification may require the placement of additional no-pass regions to prevent harmful non-targeted heating.
Collapse
|
23
|
Chang KW, Rachmilevitch I, Chang WS, Jung HH, Zadicario E, Prus O, Chang JW. Safety and Efficacy of Magnetic Resonance-Guided Focused Ultrasound Surgery With Autofocusing Echo Imaging. Front Neurosci 2021; 14:592763. [PMID: 33510610 PMCID: PMC7835836 DOI: 10.3389/fnins.2020.592763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/30/2020] [Indexed: 02/01/2023] Open
Abstract
Objective Magnetic resonance-guided focused ultrasound surgery (MRgFUS) lesioning is a new treatment for brain disorders. However, the skull is a major barrier of ultrasound sonication in MRgFUS because it has an irregular surface and varies its size and shape among individuals. We recently developed the concept of skull density ratio (SDR) to select candidates for MRgFUS from among patients with essential tremor (ET). However, SDR is not the only factor contributing to successful MRgFUS lesioning treatment-refining the target through exact measurement of the ultrasonic echo in the transducer also improves treatment efficacy. In the present study, we carried out MRgFUS lesioning using an autofocusing echo imaging technique. We aimed to evaluate the safety and efficacy of this new approach, especially in patients with low SDR in whom previous focusing methods have failed. Methods From December 2019 to March 2020, we recruited 10 patients with ET or Parkinson's disease (PD) who had a low SDR. Two patients dropped out of the trial due to the screening failure of other medical diseases. In total, eight patients were included: six with ET who underwent MRgFUS thalamotomy and two with PD who underwent MRgFUS pallidotomy. The autofocusing echo imaging technique was used in all cases. Results The mean SDR of the patients with ET was 0.34 (range: 0.29-0.39), while that of the patients with PD was 0.41 (range: 0.38-0.44). The mean skull volume of patients with ET was 280.57 cm3 (range: 227-319 cm3), while that of the patients with PD was 287.13 cm3 (range: 271-303 cm3). During MRgFUS, a mean of 15 sonications were performed, among which a mean of 5.63 used the autofocusing technique. The mean maximal temperature (Tmax) achieved was 55.88°C (range: 52-59°C), while the mean energy delivered was 34.75 kJ (range: 20-42 kJ) among all patients. No serious adverse events occurred during or after treatment. Tmax or sonication factors (skull volume, SDR, sonication number, autofocusing score, similarity score, energy range, and power) were not correlated with autofocusing technique (p > 0.05, autofocusing score showed a p-value of 0.071). Conclusion Using autofocusing echo imaging lesioning, a safe and efficient MRgFUS treatment, is available even for patients with a low SDR. Therefore, the indications for MRgFUS lesioning could be expanded to include patients with ET who have an SDR < 0.4 and those with PD who have an SDR < 0.45. Clinical Trial Registration clinicaltrials.gov, identifier: NCT03935581.
Collapse
Affiliation(s)
- Kyung Won Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound with a 1.5 Tesla Scanner: A Prospective Intraindividual Comparison Study of Intraoperative Imaging. Brain Sci 2021; 11:brainsci11010046. [PMID: 33406708 PMCID: PMC7823499 DOI: 10.3390/brainsci11010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND High-quality intraoperative imaging is needed for optimal monitoring of patients undergoing transcranial MR-guided Focused Ultrasound (tcMRgFUS) thalamotomy. In this paper, we compare the intraoperative imaging obtained with dedicated FUS-Head coil and standard body radiofrequency coil in tcMRgFUS thalamotomy using 1.5-T MR scanner. METHODS This prospective study included adult patients undergoing tcMRgFUS for treatment of essential tremor. Intraoperative T2-weighted FRFSE sequences were acquired after the last high-energy sonication using a dedicated two-channel FUS-Head (2ch-FUS) coil and body radiofrequency (body-RF) coil. Postoperative follow-ups were performed at 48 h using an eight-channel phased-array (8ch-HEAD) coil. Two readers independently assessed the signal-to-noise ratio (SNR) and evaluated the presence of concentric lesional zones (zone I, II and III). Intraindividual differences in SNR and lesional findings were compared using the Wilcoxon signed rank sum test and McNemar test. RESULTS Eight patients underwent tcMRgFUS thalamotomy. Intraoperative T2-weighted FRFSE images acquired using the 2ch-FUS coil demonstrated significantly higher SNR (R1 median SNR: 10.54; R2: 9.52) compared to the body-RF coil (R1: 2.96, p < 0.001; R2: 2.99, p < 0.001). The SNR was lower compared to the 48-h follow-up (p < 0.001 for both readers). Intraoperative zone I and zone II were more commonly visualized using the 2ch-FUS coil (R1, p = 0.031 and p = 0.008, R2, p = 0.016, p = 0.008), without significant differences with 48-h follow-up (p ≥ 0.063). The inter-reader agreement was almost perfect for both SNR (ICC: 0.85) and lesional findings (k: 0.82-0.91). CONCLUSIONS In the study population, the dedicated 2ch-FUS coil significantly improved the SNR and visualization of lesional zones on intraoperative imaging during tcMRgFUS performed with a 1.5-T MR scanner.
Collapse
|
25
|
Abstract
Essential tremor is one of the most common tremor syndromes. According to the recent tremor classification, tremor as a symptom is defined as an involuntary, rhythmic, oscillatory movement of a body part and is classified along two axes: axis 1-defining syndromes based on the clinical features such as historical features, tremor characteristics, associated signs, and laboratory tests; and axis 2-classifying the etiology (Bhatia et al., Mov Disord 33:75-87, 2018). The management of this condition has two major approaches. The first is to exclude treatable etiologies, as particularly during the onset of this condition the presentation of a variety of etiologies can be with monosymptomatic tremor. Once the few etiologies with causal treatments are excluded, all further treatment is symptomatic. Shared decision-making with enabling the patient to knowledgeably choose treatment options is needed to customize the management. Mild to moderate tremor severity can sometimes be controlled with occupational treatment, speech therapy of psychotherapy, or adaptation of coping strategy. First-line pharmacological treatments include symptomatic treatment with propranolol, primidone, and topiramate. Botulinum toxin is for selected cases. Invasive treatments for essential tremor should be considered for severe tremors. They are generally accepted as the most powerful interventions and provide not only improvement of tremor but also a significant improvement of life quality. The current standard is deep brain stimulation (DBS) of the thalamic and subthalamic region. Focused ultrasound thalamotomy is a new therapy attracting increasing interest. Radiofrequency lesioning is only rarely done if DBS or focused ultrasound is not possible. Radiosurgery is not well established. We present our treatment algorithm.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Rosalind-Fraenklinstr. 10, 24105, Kiel, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Rosalind-Fraenklinstr. 10, 24105, Kiel, Germany.
| |
Collapse
|
26
|
Boutet A, Gwun D, Gramer R, Ranjan M, Elias GJB, Tilden D, Huang Y, Li SX, Davidson B, Lu H, Tyrrell P, Jones RM, Fasano A, Hynynen K, Kucharczyk W, Schwartz ML, Lozano AM. The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg 2020; 132:1785-1791. [PMID: 31051458 DOI: 10.3171/2019.2.jns182571] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Transcranial MR-guided focused ultrasound (MRgFUS) is a minimally invasive treatment for movement disorders. Considerable interpatient variability in skull transmission efficiency exists with the current clinical devices, which is thought to be dependent on each patient's specific skull morphology. Lower skull density ratio (SDR) values are thought to impede acoustic energy transmission across the skull, attenuating or preventing the therapeutic benefits of MRgFUS. Patients with SDR values below 0.4 have traditionally been deemed poor candidates for MRgFUS. Although considerable anecdotal evidence has suggested that SDR is a reliable determinant of procedural and clinical success, relationships between SDR and clinical outcomes have yet to be formally investigated. Moreover, as transcranial MRgFUS is becoming an increasingly widespread procedure, knowledge of SDR distribution in the general population may enable improved preoperative counseling and preparedness. METHODS A total of 98 patients who underwent MRgFUS thalamotomy at the authors' institutions between 2012 and 2018 were analyzed (cohort 1). The authors retrospectively assessed the relationships between SDR and various clinical outcomes, including tremor improvement and adverse effects, as well as procedural factors such as sonication parameters. An SDR was also prospectively obtained in 163 random emergency department patients who required a head CT scan for various clinical indications (cohort 2). Patients' age and sex were used to explore relationships with SDR. RESULTS In the MRgFUS treatment group, 17 patients with a thalamotomy lesion had an SDR below 0.4. Patients with lower SDRs required more sonication energy; however, their low SDR did not influence their clinical outcomes. In the emergency department patient group, about one-third of the patients had a low SDR (< 0.4). SDR did not correlate with age or sex. CONCLUSIONS Although lower SDR values correlated with higher energy requirements during MRgFUS thalamotomy, within the range of this study population, the SDR did not appreciably impact or provide the ability to predict the resulting clinical outcomes. Sampling of the general population suggests that age and sex have no relationship with SDR. Other variables, such as local variances in bone density, should also be carefully reviewed to build a comprehensive appraisal of a patient's suitability for MRgFUS treatment.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | | | | | | | | | | | - Yuexi Huang
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | | | | | - Hua Lu
- 6Joint Department of Medical Imaging, University of Toronto
| | - Pascal Tyrrell
- 5Department of Statistical Sciences, University of Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Ryan M Jones
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
| | - Alfonso Fasano
- 2Krembil Research Institute, Toronto
- 7Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto
| | - Kullervo Hynynen
- 4Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto
- 8Department of Medical Biophysics, University of Toronto
- 9Institute of Biomaterials and Biomedical Engineering, University of Toronto
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 6Joint Department of Medical Imaging, University of Toronto
| | - Michael L Schwartz
- 10Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada; and
| | | |
Collapse
|
27
|
D'Souza M, Chen KS, Rosenberg J, Elias WJ, Eisenberg HM, Gwinn R, Taira T, Chang JW, Lipsman N, Krishna V, Igase K, Yamada K, Kishima H, Cosgrove R, Rumià J, Kaplitt MG, Hirabayashi H, Nandi D, Henderson JM, Butts Pauly K, Dayan M, Halpern CH, Ghanouni P. Impact of skull density ratio on efficacy and safety of magnetic resonance-guided focused ultrasound treatment of essential tremor. J Neurosurg 2020; 132:1392-1397. [PMID: 31026836 DOI: 10.3171/2019.2.jns183517] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Skull density ratio (SDR) assesses the transparency of the skull to ultrasound. Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy in essential tremor (ET) patients with a lower SDR may be less effective, and the risk for complications may be increased. To address these questions, the authors analyzed clinical outcomes of MRgFUS thalamotomy based on SDRs. METHODS In 189 patients, 3 outcomes were correlated with SDRs. Efficacy was based on improvement in Clinical Rating Scale for Tremor (CRST) scores 1 year after MRgFUS. Procedural efficiency was determined by the ease of achieving a peak voxel temperature of 54°C. Safety was based on the rate of the most severe procedure-related adverse event. SDRs were categorized at thresholds of 0.45 and 0.40, selected based on published criteria. RESULTS Of 189 patients, 53 (28%) had an SDR < 0.45 and 20 (11%) had an SDR < 0.40. There was no significant difference in improvement in CRST scores between those with an SDR ≥ 0.45 (58% ± 24%), 0.40 ≤ SDR < 0.45 (i.e., SDR ≥ 0.40 but < 0.45) (63% ± 27%), and SDR < 0.40 (49% ± 28%; p = 0.0744). Target temperature was achieved more often in those with an SDR ≥ 0.45 (p < 0.001). Rates of adverse events were lower in the groups with an SDR < 0.45 (p = 0.013), with no severe adverse events in these groups. CONCLUSIONS MRgFUS treatment of ET can be effectively and safely performed in patients with an SDR < 0.45 and an SDR < 0.40, although the procedure is more efficient when SDR ≥ 0.45.
Collapse
Affiliation(s)
| | | | - Jarrett Rosenberg
- 2Radiology, Stanford University School of Medicine, Stanford, California
| | - W Jeffrey Elias
- 3Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | | | - Ryder Gwinn
- 5Swedish Neuroscience Institute, Seattle, Washington
| | | | - Jin Woo Chang
- 7Yonsei University College of Medicine, Seoul, Korea
| | - Nir Lipsman
- 8Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Vibhor Krishna
- 9The Ohio State University Medical Center, Columbus, Ohio
| | - Keiji Igase
- 10Washoukai Sadamoto Hospital, Matsuyama City, Japan
| | | | | | - Rees Cosgrove
- 13Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Kim Butts Pauly
- 2Radiology, Stanford University School of Medicine, Stanford, California
| | | | | | - Pejman Ghanouni
- 2Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Bhansali AP, Gwinn RP. Ablation: Radiofrequency, Laser, and HIFU. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Essential Tremor: Lesions. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Moosa S, Martínez-Fernández R, Elias WJ, Del Alamo M, Eisenberg HM, Fishman PS. The role of high-intensity focused ultrasound as a symptomatic treatment for Parkinson's disease. Mov Disord 2019; 34:1243-1251. [PMID: 31291491 DOI: 10.1002/mds.27779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
MR-guided focused ultrasound is a novel, minimally invasive surgical procedure for symptomatic treatment of PD. With this technology, the ventral intermediate nucleus, STN, and internal globus pallidus have been targeted for therapeutic cerebral ablation, while also minimizing the risk of hemorrhage and infection from more invasive neurosurgical procedures. In a double-blinded, prospective, sham-controlled randomized controlled trial of MR-guided focused ultrasound thalamotomy for treatment of tremor-dominant PD, 62% of treated patients demonstrated improvement in tremor scores from baseline to 3 months postoperatively, as compared to 22% in the sham group. There has been only one open-label trial of MR-guided focused ultrasound subthalamotomy for patients with PD, demonstrating improvements of 71% for rigidity, 36% for akinesia, and 77% for tremor 6 months after treatment. Among the two open-label trials of MR-guided focused ultrasound pallidotomy for patients with PD, dyskinesia and overall motor scores improved up to 52% and 45% at 6 months postoperatively. Although MR-guided focused ultrasound thalamotomy is now approved by the U.S. Food and Drug Administration for treatment of parkinsonian tremor, additional high-quality randomized controlled trials are warranted and are underway to determine the safety and efficacy of MR-guided focused ultrasound subthalamotomy and pallidotomy for treatment of the cardinal features of PD. These studies will be paramount to aid clinicians to determine the ideal ablative target for individual patients. Additional work will be required to assess the durability of MR-guided focused ultrasound lesions, ideal timing of MR-guided focused ultrasound ablation in the course of PD, and the safety of performing bilateral lesions. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shayan Moosa
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raul Martínez-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - W Jeffrey Elias
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Marta Del Alamo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | | | - Paul S Fishman
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Prada F, Kalani MYS, Yagmurlu K, Norat P, Del Bene M, DiMeco F, Kassell NF. Applications of Focused Ultrasound in Cerebrovascular Diseases and Brain Tumors. Neurotherapeutics 2019; 16:67-87. [PMID: 30406382 PMCID: PMC6361053 DOI: 10.1007/s13311-018-00683-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncology and cerebrovascular disease constitute two of the most common diseases afflicting the central nervous system. Standard of treatment of these pathologies is based on multidisciplinary approaches encompassing combination of interventional procedures such as open and endovascular surgeries, drugs (chemotherapies, anti-coagulants, anti-platelet therapies, thrombolytics), and radiation therapies. In this context, therapeutic ultrasound could represent a novel diagnostic/therapeutic in the armamentarium of the surgeon to treat these diseases. Ultrasound relies on mechanical energy to induce numerous physical and biological effects. The application of this technology in neurology has been limited due to the challenges with penetrating the skull, thus limiting a prompt translation as has been seen in treating pathologies in other organs, such as breast and abdomen. Thanks to pivotal adjuncts such as multiconvergent transducers, magnetic resonance imaging (MRI) guidance, MRI thermometry, implantable transducers, and acoustic windows, focused ultrasound (FUS) is ready for prime-time applications in oncology and cerebrovascular neurology. In this review, we analyze the evolution of FUS from the beginning in 1950s to current state-of-the-art. We provide an overall picture of actual and future applications of FUS in oncology and cerebrovascular neurology reporting for each application the principal existing evidences.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA.
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA.
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia, USA
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland, USA
| | - Neal F Kassell
- Focused Ultrasound Foundation, Charlottesville, Virginia, USA
| |
Collapse
|
32
|
Gagliardo C, Midiri M, Cannella R, Napoli A, Wragg P, Collura G, Marrale M, Bartolotta TV, Catalano C, Lagalla R. Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: a technical note. Neuroradiol J 2018; 32:132-138. [PMID: 30561246 DOI: 10.1177/1971400918818743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound is one of the emerging non-invasive technologies offering both image guidance and thermal monitoring. In recent years transcranial application of this technology is starting to impact heavily the neuroscience field. We present here the imaging protocol and the technological methods successfully used with a transcranial magnetic resonance-guided focused ultrasound system certified for clinical treatments of functional neurological disorders, integrated for the first time with a 1.5T magnetic resonance scanner. Compared to the body radiofrequency coil (the one commonly used with transcranial magnetic resonance-guided focused ultrasound system integrated with 3T magnetic resonance scanners), the use of a dedicated two channel coil enabled a signal-to-noise ratio gain up to five times higher.
Collapse
Affiliation(s)
- Cesare Gagliardo
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Massimo Midiri
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Roberto Cannella
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| | - Alessandro Napoli
- 2 Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Italy
| | - Paul Wragg
- 3 InSightec Ltd., Israel, European Applications, UK
| | - Giorgio Collura
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy.,4 Department of Physics and Chemistry, University of Palermo, Italy
| | - Maurizio Marrale
- 4 Department of Physics and Chemistry, University of Palermo, Italy
| | | | - Carlo Catalano
- 2 Department of Radiological, Oncological and Anatomopathological Sciences, 'Sapienza' University of Rome, Italy
| | - Roberto Lagalla
- 1 Department of Biopathology and Medical Biotechnologies, University of Palermo, Italy
| |
Collapse
|