1
|
Swartwood SM, Bollo RJ, Sweney MT, Wilson CA, Sandoval Karamian AG, Kaur H, Orton K, Baker M, Espinoza AC. Responsive Neurostimulation in Pediatric and Young Adult Patients With Drug-Resistant Focal, Multifocal, and Generalized Epilepsy: A Single-Center Experience. Pediatr Neurol 2024; 161:247-254. [PMID: 39454224 DOI: 10.1016/j.pediatrneurol.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Responsive neurostimulation (RNS) is used off-label in pediatric patients with drug-resistant epilepsy (DRE). Our study aims to assess the safety and efficacy of RNS in pediatric and young adult patients with focal, multifocal, and generalized DRE. METHODS All patients who underwent RNS implantation at Primary Children's Hospital in Salt Lake City, UT, between December 2017 and 2022. RESULTS A total of 47 patients were retrospectively identified, of which 32 patients were included in the final analysis. Patients ranged in age from five to 21 years (pediatric n = 22, young adult n = 10) at the time of RNS implantation with focal (20 [63%]), multifocal (8 [25%]), and generalized (4 [12%]) DRE. Operative complications (3 [9%]) and negative side effects (6 [19%]) were minor. At the time of most recent clinic visit (mean 18.6 months, S.D. 13.9), 19 of 32 patients (59%) were responders with ≥50% reduction in seizure frequency (pediatric n = 14, young adult n = 5). The rate of responders increased with prolonged activation of RNS stimulation, reaching 71% (five of seven patients) after 24 months. Antiseizure medication was reduced in five (16%) patients, and seizure rescue medication usage was reduced in 10 (31%) patients. Quality of life improved in 15 (47%) patients. CONCLUSIONS RNS implantation resulted in a sustained reduction in seizure frequency with minimal side effects in a majority of patients. Taken together, our data suggest that RNS is an effective and safe treatment option for focal, multifocal, and potentially generalized DRE in the pediatric and young adult population.
Collapse
Affiliation(s)
- Shanna M Swartwood
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah.
| | - Robert J Bollo
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Division of Pediatric Neurosurgery, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T Sweney
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Carey A Wilson
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Amanda G Sandoval Karamian
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Harsheen Kaur
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Kimberly Orton
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| | - Monika Baker
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Audie C Espinoza
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; Department of Pediatrics, Intermountain Healthcare, Salt Lake City, Utah
| |
Collapse
|
2
|
Salama H, Salama A, Oscher L, Jallo GI, Shimony N. The role of neuromodulation in the management of drug-resistant epilepsy. Neurol Sci 2024; 45:4243-4268. [PMID: 38642321 DOI: 10.1007/s10072-024-07513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.
Collapse
Affiliation(s)
- HusamEddin Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Ahmed Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Logan Oscher
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| |
Collapse
|
3
|
Rosenberg A, Wang R, Petchpradub M, Beaudreault C, Sacknovitz A, Cozzi FM, Wolf SM, McGoldrick PE, Muh CR. Responsive neurostimulation in pediatric epilepsy: a systematic review and individual patient meta-analysis supplemented by a single institution case series in 105 aggregated patients. Childs Nerv Syst 2024:10.1007/s00381-024-06546-x. [PMID: 39060746 DOI: 10.1007/s00381-024-06546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE To assess responsive neurostimulation (RNS) efficacy in pediatric patients with drug-resistant epilepsy, comparing response (≥ 50% reduction in seizure frequency) rates between patients with two or fewer seizure foci and those with multifocal or generalized epilepsy. This study seeks to address the gap in knowledge regarding RNS effectiveness in pediatric populations. METHODS A systematic review and meta-analysis included data from PubMed, Embase, and Web of Science through November 2023, including 17 retrospective studies and a case series of 24 patients from our practice for a total of 105 aggregated patients. The inclusion criteria of patients were age ≤ 18 and diagnosis of DRE. Exclusion criteria were nonhuman subjects and cases where RNS was not utilized to treat DRE. Study inclusion criteria were detailing the use of RNS and comparing patients with ≤ 2 foci with other focalities. Study exclusion criteria were failure to specify RNS lead placement or type of epilepsy. The risk of bias was assessed using the ROBINS-I tool for all non-randomized studies. Effect sizes and variances were aggregated to provide a comprehensive measure of RNS efficacy, and heterogeneity among the studies was assessed using I2 statistics and Cochran's Q test to evaluate the consistency of the findings. Statistical analyses were conducted using IBM SPSS. We analyzed demographics, epilepsy history, treatment outcomes, and RNS details using descriptive and inferential statistics, including Wilcoxon-Mann-Whitney, Fisher's exact, and chi-squared tests. This systematic review was not registered. RESULTS Seventeen retrospective studies and a single-institution case series, encompassing 105 pediatric patients, were analyzed. Effect sizes and confidence intervals were calculated to quantify treatment effects. Analyses revealed that RNS reduces seizure frequency across a spectrum of pediatric epilepsy syndromes, irrespective of the seizures' focal, multifocal, or generalized origins. The effectiveness of RNS was not influenced by the patient's sex, age at epilepsy onset, or presence of neurological and psychiatric comorbidities. Prior vagus nerve stimulation surgery and the presence of an epileptic syndrome were factors associated with a lower likelihood of near-complete seizure remission with RNS, underscoring the complexities of treating patients with generalized epilepsies or previous interventional failures. The necessity of further research into individualized surgical strategies for patients was underscored by the mixed results of comparisons of electrode characteristics with responder rates. Limitations of our study include its reliance on retrospective studies, which introduces potential bias and limits the ability to infer causality. DISCUSSION RNS is a safe and effective treatment in pediatric patients with DRE across demographic, comorbidity, and focality variability. FDA age and focality restrictions, along with patient and physician hesitancy, may be limiting the potential for effective treatment of pediatric DRE with RNS. Prospective randomized trials are recommended to validate these findings.
Collapse
Affiliation(s)
- A Rosenberg
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| | - R Wang
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - M Petchpradub
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - C Beaudreault
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - A Sacknovitz
- School of Medicine, New York Medical College, Valhalla, NY, USA
| | - F M Cozzi
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - S M Wolf
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Maria Fareri Children's Hospital, Valhalla, NY, USA
- Boston Children's Hospital Physicians, Hawthorne, NY, USA
| | - P E McGoldrick
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Maria Fareri Children's Hospital, Valhalla, NY, USA
- Boston Children's Hospital Physicians, Hawthorne, NY, USA
| | - C R Muh
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
4
|
Gouveia FV, Warsi NM, Suresh H, Matin R, Ibrahim GM. Neurostimulation treatments for epilepsy: Deep brain stimulation, responsive neurostimulation and vagus nerve stimulation. Neurotherapeutics 2024; 21:e00308. [PMID: 38177025 PMCID: PMC11103217 DOI: 10.1016/j.neurot.2023.e00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Epilepsy is a common and debilitating neurological disorder, and approximately one-third of affected individuals have ongoing seizures despite appropriate trials of two anti-seizure medications. This population with drug-resistant epilepsy (DRE) may benefit from neurostimulation approaches, such as vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). In some patient populations, these techniques are FDA-approved for treating DRE. VNS is used as adjuvant therapy for children and adults. Acting via the vagus afferent network, VNS modulates thalamocortical circuits, reducing seizures in approximately 50 % of patients. RNS uses an adaptive (closed-loop) system that records intracranial EEG patterns to activate the stimulation at the appropriate time, being particularly well-suited to treat seizures arising within eloquent cortex. For DBS, the most promising therapeutic targets are the anterior and centromedian nuclei of the thalamus, with anterior nucleus DBS being used for treating focal and secondarily generalized forms of DRE and centromedian nucleus DBS being applied for treating generalized epilepsies such as Lennox-Gastaut syndrome. Here, we discuss the indications, advantages and limitations of VNS, DBS and RNS in treating DRE and summarize the spatial distribution of neuroimaging observations related to epilepsy and stimulation using NeuroQuery and NeuroSynth.
Collapse
Affiliation(s)
| | - Nebras M Warsi
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hrishikesh Suresh
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George M Ibrahim
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Sharma A, Parfyonov M, Tiefenbach J, Hogue O, Nero N, Jehi L, Serletis D, Bingaman W, Gupta A, Rammo R. Predictors of therapeutic response following thalamic neuromodulation for drug-resistant pediatric epilepsy: A systematic review and individual patient data meta-analysis. Epilepsia 2024; 65:542-555. [PMID: 38265348 DOI: 10.1111/epi.17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
We sought to perform a systematic review and individual participant data meta-analysis to identify predictors of treatment response following thalamic neuromodulation in pediatric patients with medically refractory epilepsy. Electronic databases (MEDLINE, Ovid, Embase, and Cochrane) were searched, with no language or data restriction, to identify studies reporting seizure outcomes in pediatric populations following deep brain stimulation (DBS) or responsive neurostimulation (RNS) implantation in thalamic nuclei. Studies featuring individual participant data of patients with primary or secondary generalized drug-resistant epilepsy were included. Response to therapy was defined as >50% reduction in seizure frequency from baseline. Of 417 citations, 21 articles reporting on 88 participants were eligible. Mean age at implantation was 13.07 ± 3.49 years. Fifty (57%) patients underwent DBS, and 38 (43%) RNS. Sixty (68%) patients were implanted in centromedian nucleus and 23 (26%) in anterior thalamic nucleus, and five (6%) had both targets implanted. Seventy-four (84%) patients were implanted bilaterally. The median time to last follow-up was 12 months (interquartile range = 6.75-26.25). Sixty-nine percent of patients achieved response to treatment. Age, target, modality, and laterality had no significant association with response in univariate logistic regression. Until thalamic neuromodulation gains widespread approval for use in pediatric patients, data on efficacy will continue to be limited to small retrospective cohorts and case series. The inherent bias of these studies can be overcome by using individual participant data. Thalamic neuromodulation appears to be a safe and effective treatment for epilepsy. Larger, prolonged prospective, multicenter studies are warranted to further evaluate the efficacy of DBS over RNS in this patient population where resection for curative intent is not a safe option.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Maksim Parfyonov
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jakov Tiefenbach
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Neil Nero
- Education Institute, Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Demitre Serletis
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Ajay Gupta
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard Rammo
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Cleveland Clinic Epilepsy Center, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Center for Neurologic Restoration, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Katlowitz KA, Curry DJ, Weiner HL. Novel Surgical Approaches in Childhood Epilepsy: Laser, Brain Stimulation, and Focused Ultrasound. Adv Tech Stand Neurosurg 2024; 49:291-306. [PMID: 38700689 DOI: 10.1007/978-3-031-42398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Pediatric epilepsy has a worldwide prevalence of approximately 1% (Berg et al., Handb Clin Neurol 111:391-398, 2013) and is associated with not only lower quality of life but also long-term deficits in executive function, significant psychosocial stressors, poor cognitive outcomes, and developmental delays (Schraegle and Titus, Epilepsy Behav 62:20-26, 2016; Puka and Smith, Epilepsia 56:873-881, 2015). With approximately one-third of patients resistant to medical control, surgical intervention can offer a cure or palliation to decrease the disease burden and improve neurological development. Despite its potential, epilepsy surgery is drastically underutilized. Even today only 1% of the millions of epilepsy patients are referred annually for neurosurgical evaluation, and the average delay between diagnosis of Drug Resistant Epilepsy (DRE) and surgical intervention is approximately 20 years in adults and 5 years in children (Solli et al., Epilepsia 61:1352-1364, 2020). It is still estimated that only one-third of surgical candidates undergo operative intervention (Pestana Knight et al., Epilepsia 56:375, 2015). In contrast to the stable to declining rates of adult epilepsy surgery (Englot et al., Neurology 78:1200-1206, 2012; Neligan et al., Epilepsia 54:e62-e65, 2013), rates of pediatric surgery are rising (Pestana Knight et al., Epilepsia 56:375, 2015). Innovations in surgical approaches to epilepsy not only minimize potential complications but also expand the definition of a surgical candidate. In this chapter, three alternatives to classical resection are presented. First, laser ablation provides a minimally invasive approach to focal lesions. Next, both central and peripheral nervous system stimulation can interrupt seizure networks without creating permanent lesions. Lastly, focused ultrasound is discussed as a potential new avenue not only for ablation but also modulation of small, deep foci within seizure networks. A better understanding of the potential surgical options can guide patients and providers to explore all treatment avenues.
Collapse
Affiliation(s)
- Kalman A Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Daniel J Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neurosurgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Ghatan S. Pediatric Neurostimulation and Practice Evolution. Neurosurg Clin N Am 2024; 35:1-15. [PMID: 38000833 DOI: 10.1016/j.nec.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Since the late nineteenth century, the prevailing view of epilepsy surgery has been to identify a seizure focus in a medically refractory patient and eradicate it. Sadly, only a select number of the many who suffer from uncontrolled seizures benefit from this approach. With the development of safe, efficient stereotactic methods and targeted surgical therapies that can affect deep structures and modulate broad networks in diverse disorders, epilepsy surgery in children has undergone a paradigmatic evolutionary change. With modern diagnostic techniques such as stereo electroencephalography combined with closed loop neuromodulatory systems, pediatric epilepsy surgery can reach a much broader population of underserved patients.
Collapse
Affiliation(s)
- Saadi Ghatan
- Neurological Surgery Icahn School of Medicine at Mt Sinai, New York, NY 10128, USA.
| |
Collapse
|
8
|
Enner S, El-Hallal M, Hogan K, Rodgers S, Karkare S, Kothare S. Safety & feasibility of responsive neurostimulation in children with refractory epilepsy: A single-center experience. Seizure 2024; 114:121-124. [PMID: 38141494 DOI: 10.1016/j.seizure.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVES Responsive neurostimulation (RNS) is a relatively recent addition to the epilepsy surgery armory, gaining FDA approval in 2013 for use in adults with intractable focal epilepsy. Data for the use of RNS system in patients less than 18 years of age is limited. We aim to determine the safety and feasibility of RNS in children with refractory epilepsy. METHODS A retrospective chart review was conducted for all patients who underwent RNS implantation at an urban tertiary children's hospital. Demographics of the patients were obtained, including age at the time of implant, MRI findings, seizure onset zone identification, and RNS targets. RESULTS Out of a fourteen patient cohort, one patient had a post-operative complication of infection at surgical site requiring explantation. Thirteen out of 14 patients had immediate post-operative head imaging that was negative for hemorrhage, infarction, or skull fracture; one patient did not undergo head imaging. No patients reported a worsening clinical seizure frequency at a 6-month follow up visit. In the subset of patients who were implanted with RNS and did not undergo concurrent resections, there was a statistically significant reduction in the average number of long episodes at the most recent visit when compared to the 1-month post-operative visit (p = 0.0268). CONCLUSIONS RNS is a feasible and safe option for children as young as six years with refractory epilepsy when appropriate seizure focus identification has been performed with stereo CT and stereo EEG evaluations, and can be used in conjunction with other surgical epilepsy treatment modalities. Two canister RNS placement is achievable for patients with a broad epileptogenic network or multifocal seizure onset zones.
Collapse
Affiliation(s)
- Stephanie Enner
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Avenue Suite W290, Lake Success, NY 11042, United States.
| | - Maria El-Hallal
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Avenue Suite W290, Lake Success, NY 11042, United States
| | - Katherine Hogan
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Avenue Suite W290, Lake Success, NY 11042, United States
| | - Shaun Rodgers
- Division of Pediatric Neurosurgery, Department of Pediatrics, Cohen Children's Medical Center, 410 Lakeville Road, New Hyde Park, NY, United States
| | - Shefali Karkare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Avenue Suite W290, Lake Success, NY 11042, United States
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Avenue Suite W290, Lake Success, NY 11042, United States
| |
Collapse
|
9
|
Piazza MG, Varga G, Welch W, Abel TJ. The Utility of Responsive Neurostimulation for the Treatment of Pediatric Drug-Resistant Epilepsy. Brain Sci 2023; 13:1455. [PMID: 37891823 PMCID: PMC10605851 DOI: 10.3390/brainsci13101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Drug-resistant epilepsy (DRE) has a strongly negative impact on quality of life, as well as the development of pediatric patients. Surgical treatments have evolved over time, including more invasive craniotomies for resection or disconnection. More recently, neuromodulation techniques have been employed as a less invasive option for patients. Responsive neurostimulation (RNS) is the first closed-loop technology that allows for both treatment and device data collection, which allows for an internal assessment of the efficacy of treatment. This novel technology has been approved in adults and has been used off label in pediatrics. This review seeks to describe this technology, its history, and future directions.
Collapse
Affiliation(s)
- Martin G. Piazza
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| | - Gregory Varga
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| | - William Welch
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.G.P.); (G.V.)
| |
Collapse
|
10
|
Karakas C, Houck K, Handoko M, Trandafir C, Coorg R, Haneef Z, Riviello JJ, Weiner HL, Curry D, Ali I. Responsive Neurostimulation for the Treatment of Children With Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. Pediatr Neurol 2023; 145:97-101. [PMID: 37302216 DOI: 10.1016/j.pediatrneurol.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND To review seizure outcomes in children with tuberous sclerosis complex (TSC) and drug-resistant epilepsy (DRE) treated with the responsive neurostimulation (RNS) System. METHODS We retrospectively reviewed children (<21 years old) with TSC implanted with the RNS System at Texas Children's Hospital between July 2016 and May 2022. RESULTS Five patients meeting the search criteria were identified (all female). The median age of the RNS implantation was 13 years (range: 5 to 20 years). The median epilepsy duration before the RNS implantation was 13 years (range: 5 to 20 years). Surgeries before RNS implantation included vagus nerve stimulator placement (n = 2), left parietal resection (n = 1), and corpus callosotomy (n = 1). The median number of antiseizure medications tried before RNS was 8 (range: 5 to 12). The rationale for the RNS System implantation included seizure onset in eloquent cortex (n = 3) and multifocal seizures (n = 2). The maximum current density for each patient ranged between 1.8 and 3.5 μC/cm2, with an average daily stimulation of 2240 (range: 400 to 4200). There was an 86% median seizure reduction (range 0% to 99%) at a median follow-up duration of 25 months (range: 17 to 25 months). No patient experienced implantation or stimulation-related complications. CONCLUSIONS We observed a favorable improvement in seizure frequency in pediatric patients with DRE secondary to TSC treated with the RNS System. The RNS System may be a safe and effective treatment for DRE in children with TSC.
Collapse
Affiliation(s)
- Cemal Karakas
- Norton Children's Medical Group, The University of Louisville, Louisville, Kentucky
| | - Kimberly Houck
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Maureen Handoko
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cristina Trandafir
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Rohini Coorg
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Zulfi Haneef
- Neurology Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - James J Riviello
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Howard L Weiner
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Daniel Curry
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Irfan Ali
- Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
11
|
Singh RK, Eschbach K, Samanta D, Perry MS, Liu G, Alexander AL, Wong-Kisiel L, Ostendorf A, Tatachar P, Reddy SB, McCormack MJ, Manuel CM, Gonzalez-Giraldo E, Numis AL, Wolf S, Karia S, Karakas C, Olaya J, Shrey D, Auguste KI, Depositario-Cabacar D. Responsive Neurostimulation in Drug-Resistant Pediatric Epilepsy: Findings From the Epilepsy Surgery Subgroup of the Pediatric Epilepsy Research Consortium. Pediatr Neurol 2023; 143:106-112. [PMID: 37084698 DOI: 10.1016/j.pediatrneurol.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/22/2023] [Accepted: 03/02/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Responsive neurostimulation (RNS), a closed-loop intracranial electrical stimulation system, is a palliative surgical option for patients with drug-resistant epilepsy (DRE). RNS is approved by the US Food and Drug Administration for patients aged ≥18 years with pharmacoresistant partial seizures. The published experience of RNS in children is limited. METHODS This is a combined prospective and retrospective study of patients aged ≤18 years undergoing RNS placement. Patients were identified from the multicenter Pediatric Epilepsy Research Consortium Surgery Registry from January 2018 to December 2021, and additional data relevant to this study were retrospectively collected and analyzed. RESULTS Fifty-six patients received RNS during the study period. The mean age at implantation was 14.9 years; the mean duration of epilepsy, 8.1 years; and the mean number of previously trialed antiseizure medications, 4.2. Five patients (9%) previously trialed dietary therapy, and 19 patients (34%) underwent prior surgery. Most patients (70%) underwent invasive electroencephalography evaluation before RNS implantation. Complications occurred in three patients (5.3%) including malpositioned leads or transient weakness. Follow-up (mean 11.7 months) was available for 55 patients (one lost), and four were seizure-free with RNS off. Outcome analysis of stimulation efficacy was available for 51 patients: 33 patients (65%) were responders (≥50% reduction in seizure frequency), including five patients (10%) who were seizure free at follow-up. CONCLUSIONS For young patients with focal DRE who are not candidates for surgical resection, neuromodulation should be considered. Although RNS is off-label for patients aged <18 years, this multicenter study suggests that it is a safe and effective palliative option for children with focal DRE.
Collapse
Affiliation(s)
- Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's Hospital, Charlotte, North Carolina; Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| | - Krista Eschbach
- Section of Neurology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
| | - Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Alaska
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Center, Cook Children's Medical Center, Ft Worth, Texas
| | - Gang Liu
- Department of Pediatrics, Atrium Health-Levine Children's Hospital, Charlotte, North Carolina
| | - Allyson L Alexander
- Department of Neurosurgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, Colorado; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, Colorado
| | | | - Adam Ostendorf
- Division of Neurology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| | | | - Shilpa B Reddy
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael J McCormack
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad M Manuel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Adam L Numis
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Steven Wolf
- Department of Pediatrics, Boston Children's Health Physicians, New York, New York
| | - Samir Karia
- Division of Child Neurology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Cemal Karakas
- Division of Child Neurology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Joffre Olaya
- Department of Neurosurgery, Children's Hospital Orange County, Orange, California
| | - Daniel Shrey
- Department of Neurosciences, Children's Hospital Orange County, Orange, California
| | - Kurtis I Auguste
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
12
|
Zheng B, Liu DD, Theyel BB, Abdulrazeq H, Kimata AR, Lauro PM, Asaad WF. Thalamic neuromodulation in epilepsy: A primer for emerging circuit-based therapies. Expert Rev Neurother 2023; 23:123-140. [PMID: 36731858 DOI: 10.1080/14737175.2023.2176752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Epilepsy is a common, often debilitating disease of hyperexcitable neural networks. While medically intractable cases may benefit from surgery, there may be no single, well-localized focus for resection or ablation. In such cases, approaching the disease from a network-based perspective may be beneficial. AREAS COVERED Herein, the authors provide a narrative review of normal thalamic anatomy and physiology and propose general strategies for preventing and/or aborting seizures by modulating this structure. Additionally, they make specific recommendations for targeting the thalamus within different contexts, motivated by a more detailed discussion of its distinct nuclei and their respective connectivity. By describing important principles governing thalamic function and its involvement in seizure networks, the authors aim to provide a primer for those now entering this fast-growing field of thalamic neuromodulation for epilepsy. EXPERT OPINION The thalamus is critically involved with the function of many cortical and subcortical areas, suggesting it may serve as a compelling node for preventing or aborting seizures, and so it has increasingly been targeted for the surgical treatment of epilepsy. As various thalamic neuromodulation strategies for seizure control are developed, there is a need to ground such interventions in a mechanistic, circuit-based framework.
Collapse
Affiliation(s)
- Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - David D Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brian B Theyel
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Hael Abdulrazeq
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Anna R Kimata
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA
| | - Peter M Lauro
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA.,Department of Neuroscience, Brown University, Providence, RI, USA.,The Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
13
|
Ali I, Houck KM, Sully K. Neuromodulation in Children with Drug-Resistant Epilepsy. JOURNAL OF PEDIATRIC EPILEPSY 2023. [DOI: 10.1055/s-0042-1760293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThe introduction of neuromodulation was a revolutionary advancement in the antiseizure armamentarium for refractory epilepsy. The basic principle of neuromodulation is to deliver an electrical stimulation to the desired neuronal site to modify the neuronal functions not only at the site of delivery but also at distant sites by complex neuronal processes like disrupting the neuronal circuitry and amplifying the functions of marginally functional neurons. The modality is considered open-loop when electrical stimulation is provided at a set time interval or closed-loop when delivered in response to an incipient seizure. Neuromodulation in individuals older than 18 years with epilepsy has proven efficacious and safe. The use of neuromodulation is extended off-label to pediatric patients with epilepsy and the results are promising. Vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS) are Food and Drug Administration-approved therapeutic techniques. The VNS provides retrograde signaling to the central nervous system, whereas DBS and RNS are more target specific in the central nervous system. While DBS is open-loop and approved for stimulation of the anterior nucleus of the thalamus, the RNS is closed-loop and can stimulate any cortical or subcortical structure. We will review different modalities and their clinical efficacy in individuals with epilepsy, with a focus on pediatric patients.
Collapse
Affiliation(s)
- Irfan Ali
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kimberly M. Houck
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krystal Sully
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
14
|
Kuchenbuch M, Chiron C, Milh M. Overview of therapeutic options for epilepsy. Arch Pediatr 2022; 29:5S14-5S19. [PMID: 36585066 DOI: 10.1016/s0929-693x(22)00285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuberous sclerosis (TSC) epilepsy includes infantile spasms and focal seizures before the age of 2 years, whereas focal seizures are predominant over 2 years and generalized seizures may occasionally be part of Lennox-Gastaut syndrome. The better and earlier the seizure control, the better the child's subsequent cognitive and behavioral prognosis. As for epilepsy of other causes, therapeutic options depend on the type of seizure/epilepsy, age and drug resistance, but there are significant specificities for TSC. (1) As first-line treatment, vigabatrin is unanimously recommended for infantile spasms and focal seizures before 2 years and is also widely used for seizures over 2 years, as are levetiracetam and carbamazepine. (2) If seizures persist (about 40% of children and adolescents), cannabidiol and everolimus, an inhibitor of the mTOR pathway, have recently been approved as adjunctive therapy to the arsenal of antiseizure medications authorized for this age group and to the ketogenic diet. (3) Surgery is an essential treatment option in cases of drug resistance and should be discussed as soon as two treatments have failed. Presurgical investigations and operating techniques have recently progressed spectacularly, for example laser thermocoagulation with stereotactic location. A particularity of TSC is the possibility of sequential interventions on several epileptogenic tubers. (4) Finally, the innovative principle of initiating "pre-seizure" treatment with vigabatrin from the first months of life has just proven effective on the subsequent development of epilepsy in TSC. © 2022 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- M Kuchenbuch
- Département de Pédiatrie et Génétique, CHU de Nancy, France.
| | - C Chiron
- Inserm U1141 et APHP, Service de Neurologie pédiatrique, Hôpital Necker-Enfants Malades, Paris, France; Service de Neurologie Pédiatrique, Necker Enfants Malades, APHP, centre de référence épilepsies rares, Paris, France
| | - M Milh
- Service de Neurologie pédiatrique, Hôpital de la Timone, CHU de Marseille, France
| |
Collapse
|
15
|
Almojuela A, Xu Q, O'Carroll A, Ritchie L, Serletis D. Paediatric epilepsy surgery: Techniques and outcomes. J Paediatr Child Health 2022; 58:1952-1957. [PMID: 36197046 DOI: 10.1111/jpc.16236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Epilepsy is a neurological condition characterised by recurrent and persistent seizures. For paediatric patients, achieving early seizure freedom can have positive impacts on cognition, development, social integration and mental health, leading to improved quality of life. In general, one third of patients with epilepsy are refractory to medication; for these patients, epilepsy surgery may offer the only chance for improved seizure control. Epilepsy surgery as a therapeutic intervention has become increasingly accepted in the past few decades, with more diverse options available (including neuromodulatory and minimally invasive techniques). In this context, we discuss here the pre-operative workup for paediatric patients with medically refractory epilepsy and provide an updated review on current and emerging surgical therapies for this condition. We also discuss the clinical, neuropsychological, quality of life and economic impacts of epilepsy surgery.
Collapse
Affiliation(s)
- Alysa Almojuela
- Section of Neurosurgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Qi Xu
- Section of Pediatric Neurology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Aoife O'Carroll
- Section of Pediatric Neurology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Lesley Ritchie
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, Canada
| | - Demitre Serletis
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, United States.,Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland, Ohio, United States
| |
Collapse
|
16
|
Hartnett SM, Greiner HM, Arya R, Tenney JR, Aungaroon G, Holland K, Leach JL, Air EL, Skoch J, Mangano FT. Responsive neurostimulation device therapy in pediatric patients with complex medically refractory epilepsy. J Neurosurg Pediatr 2022; 30:499-506. [PMID: 36029267 DOI: 10.3171/2022.7.peds2281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Pediatric epilepsy is characterized as drug resistant in 20%-30% of patients and defined as persistent seizures despite adequate treatment with two first-line antiepileptic medications. The American Academy of Neurology advocates surgical options earlier in the treatment of epilepsy to provide long-term seizure reduction. The new development of minimally invasive approaches has recently allowed for surgical options to patients not previously deemed surgical candidates. These may include patients with bilateral, deep, eloquent, or poorly localizing epileptogenic foci. To this end, responsive neurostimulation (RNS) is an FDA-approved closed-loop neuromodulation device for adjuvant treatment of adults with medically intractable epilepsy arising from one or multiple foci. METHODS In this study, the authors describe their initial institutional experience with the use of RNS in pediatric patients with drug-resistant epilepsy. An IRB-approved retrospective review was conducted of 8 pediatric patients who underwent RNS implantation at Cincinnati Children's Hospital Medical Center between 2019 and 2021. RESULTS Eight patients met the inclusion criteria for the study. The average age at the time of surgery was 14.7 years (range 8-18 years) with a mean follow-up of 16.5 months. All patients underwent invasive monitoring with stereo-EEG, subdural grid placement, or a combination of both. All patients had either bilateral or eloquent cortex targets. Trajectories were based on noninvasive (phase 1) and invasive (phase 2) seizure onset zone localization data. Four (50%) of the 8 patients underwent surgical intervention for epilepsy prior to RNS placement. RNS electrodes were placed with robot-assisted guidance in a hybrid operating room with intraoperative CT and electrocorticography. The authors demonstrated individualized RNS electrode trajectory and placement with targets in the amygdala/hippocampus, bilateral insula, bilateral parietal and occipital targets, and frontoparietal regions for a total of 14 implanted electrodes. One adverse event occurred, a wound infection requiring return to the operating room for removal of the RNS implant. All patients demonstrated a reduction in seizure frequency. All patients achieved > 50% reduction in seizure frequency at last follow-up. CONCLUSIONS RNS implantation in carefully selected pediatric patients appears safe and efficacious in reducing seizure burden with a low rate of operative complications.
Collapse
Affiliation(s)
- Sara M Hartnett
- 1Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hansel M Greiner
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ravindra Arya
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey R Tenney
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gewalin Aungaroon
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine Holland
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James L Leach
- 2Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ellen L Air
- 4Department of Neurological Surgery, Henry Ford Medical Center, Detroit, Michigan; and
| | - Jesse Skoch
- 1Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 5Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Francesco T Mangano
- 1Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- 3Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- 5Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
17
|
Curtis K, Hect JL, Harford E, Welch WP, Abel TJ. Responsive neurostimulation for pediatric patients with drug-resistant epilepsy: a case series and review of the literature. Neurosurg Focus 2022; 53:E10. [PMID: 36183183 DOI: 10.3171/2022.7.focus22331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Responsive neurostimulation (RNS) is a promising treatment for pediatric patients with drug-resistant epilepsy for whom resective surgery is not an option. The relative indications and risk for pediatric patients undergoing RNS therapy require further investigation. Here, the authors report their experience with RNS implantation and therapy in pediatric patients. METHODS The authors performed a retrospective chart review to identify patients implanted with RNS depth or strip electrodes for the treatment of drug-resistant epilepsy at their institution between 2020 and 2022. Patient demographics, surgical variables, and patient seizure outcomes (Engel class and International League Against Epilepsy [ILAE] reporting) were evaluated. RESULTS The authors identified 20 pediatric patients ranging in age from 8 to 21 years (mean 15 [SD 4] years), who underwent RNS implantation, including depth electrodes (n = 15), strip electrodes (n = 2), or both (n = 3). Patient seizure semiology, onset, and implantation strategy were heterogeneous, including bilateral centromedian nucleus (n = 5), mesial temporal lobe (n = 4), motor cortex or supplementary motor area (n = 7), or within an extratemporal epileptogenic zone (n = 4). There were no acute complications of RNS implantation (hemorrhage or stroke) or device malfunctions. One patient required rehospitalization for postoperative infection. At the longest follow-up (mean 10 [SD 7] months), 13% patients had Engel class IIB, 38% had Engel class IIIA, 6% had Engel class IIIB, 19% had Engel class IVA, 19% had Engel class IVB, and 6% had Engel class IVC outcomes. Using ILAE metrics, 6% were ILAE class 3, 25% were ILAE class 4, and 69% were ILAE class 5. CONCLUSIONS This case series supports current literature suggesting that RNS is a safe and potentially effective surgical intervention for pediatric patients with drug-resistant epilepsy. The authors report comparable rates of serious adverse events to current RNS literature in pediatric and adult populations. Seizure outcomes may continue to improve with follow-up as stimulation strategy is refined and the chronic neuromodulatory effect evolves, as previously described in patients with RNS. Further large-scale, multicenter case series of RNS in pediatric patients with drug-resistant epilepsy are required to determine long-term pediatric safety and effectiveness.
Collapse
Affiliation(s)
- Kendall Curtis
- 1Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh
| | - Jasmine L Hect
- 1Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh
| | - Emily Harford
- 1Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh
| | - William P Welch
- 2Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh; and
| | - Taylor J Abel
- 1Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh
- 3Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Shlobin NA, Wang A, Phillips HW, Yan H, Ibrahim GM, Elkaim LM, Wang S, Liu X, Cai L, Nguyen DK, Fallah A, Weil AG. Sensorimotor outcomes after resection for perirolandic drug-resistant epilepsy: a systematic review and individual patient data meta-analysis. J Neurosurg Pediatr 2022; 30:410-427. [PMID: 35932272 DOI: 10.3171/2022.6.peds22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The prevalence of long-term postoperative sensorimotor deficits in children undergoing perirolandic resective epilepsy surgery is unclear. The risk of developing these deficits must be weighed against the potential reduction in seizure frequency after surgery. In this study, the authors investigated the prevalence of sensorimotor deficits after resective surgery at ≥ 1 year postoperatively. METHODS A systematic review and individual patient data meta-analysis was conducted using PubMed, Embase, and Scopus databases. Subgroups of patients were identified and categorized according to their outcomes as follows: group A patients were denoted as seizure free with no postoperative sensorimotor deficits; group B patients experienced seizure recurrence with no deficit; group C patients were seizure free with deficits; and group D patients were not seizure free and with deficits. Rates of sensory deficits were examined in patients undergoing postcentral gyrus resection, and rates of motor deficits were aggregated in patients undergoing precentral gyrus resection. RESULTS Of 797 articles resulting from the database searches, 6 articles including 164 pediatric patients at a mean age of 7.7 ± 5.2 years with resection for drug-resistant perirolandic epilepsy were included in the study. Seizure freedom was observed in 118 (72.9%) patients at a mean follow-up of 3.4 ± 1.8 years. In total, 109 (66.5%) patients did not develop sensorimotor deficits at last follow-up, while 55 (33.5%) had permanent deficits. Ten (14.3%) of 70 patients with postcentral gyrus resection had permanent sensory deficits. Of the postcentral gyrus resection patients, 41 (58.6%) patients were included in group A, 19 (27.1%) in group B, 7 (10.0%) in group C, and 3 (4.3%) in group D. Forty (37.7%) of 106 patients with precentral resections had permanent motor deficits. Of the precentral gyrus resection patients, 50 (47.2%) patients were in group A, 16 (15.1%) in group B, 24 (22.6%) in group C, and 16 (15.1%) in group D. Patients without focal cortical dysplasia were more likely to have permanent motor deficits relative to those with focal cortical dysplasia in the precentral surgery cohort (p = 0.02). CONCLUSIONS In total, 58.6% of patients were seizure free without deficit, 27.1% were not seizure free and without deficit, 10.0% were seizure free but with deficit, and 4.3% were not seizure free and with deficit. Future studies with functional and quality-of-life data, particularly for patients who experience seizure recurrence with no deficits (as in group B in the present study) and those who are seizure free with deficits (as in group C) after treatment, are necessary to guide surgical decision-making.
Collapse
Affiliation(s)
- Nathan A Shlobin
- 1Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew Wang
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - H Westley Phillips
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Han Yan
- 3Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario
| | - George M Ibrahim
- 3Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario
| | - Lior M Elkaim
- 4Division of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Shuang Wang
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- 5Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Dang K Nguyen
- 6Division of Neurology, University of Montreal Hospital Centre (CHUM), Montreal
- 7CHUM Research Centre, Montreal
- 9Department of Neuroscience, University of Montreal; and
| | - Aria Fallah
- 2Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alexander G Weil
- 8Division of Neurosurgery, Sainte-Justine University Hospital and University of Montreal Hospital Centre (CHUM), Montreal
- 9Department of Neuroscience, University of Montreal; and
- 10Sainte-Justine Research Centre, University of Montreal, Quebec, Canada
| |
Collapse
|
19
|
Falls N, Arango JI, Adelson PD. Responsive neurostimulation in pediatric patients with drug-resistant epilepsy. Neurosurg Focus 2022; 53:E9. [DOI: 10.3171/2022.7.focus22339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Medically refractory epilepsy remains a therapeutic challenge when resective surgery is not a practical option and indirect neurostimulation efficacy may be limited. In these instances responsive neurostimulation (RNS) has been used in adults, with good outcomes in most patients. However, the utility of RNS in children and young adults has not been systematically explored. In this study, the authors present a single institution’s experience with RNS in pediatric patients.
METHODS
A single-center retrospective chart review of patients who underwent RNS implantation at Phoenix Children’s Hospital during the 4-year period between January 2018 and December 2021 was performed.
RESULTS
Following evaluation for epilepsy surgery, 22 patients underwent RNS implantation using different anatomical targets depending on the predetermined epileptic focus/network. In the cohort, 59% of patients were male, the mean age at implantation was 16.4 years (range 6–22 years), and the mean follow-up time was 2.7 years (range 1.0–4.3 years). All patients had a preoperative noninvasive evaluation that included MRI, video-electroencephalography, and resting-state functional MRI. Additionally, 13 patients underwent invasive monitoring with stereo-electroencephalography to help determine RNS targets. All patients had variable positive responses with reduction of seizure frequency and/or intensity. Overall, seizure frequency reduction of > 50% was seen in the majority (86%) of patients. There were two complications: one patient experienced transitory weakness and one generator failed, requiring replacement. A patient died of sudden unexpected death in epilepsy 3 years after implantation despite being seizure free during the previous year.
CONCLUSIONS
RNS used in children with medically refractory epilepsy improved seizure control after implantation, with decreases in seizure frequency > 50% from preoperative baseline in the majority of patients. Preliminary findings indicate that functional MRI and stereo-electroencephalography were helpful for RNS targeting and that RNS can be used safely even in young children.
Collapse
Affiliation(s)
- Nicole Falls
- Department of Neurosurgery, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix; and
- University of Arizona College of Medicine, Phoenix, Arizona
| | - Jorge I. Arango
- Department of Neurosurgery, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix; and
| | - P. David Adelson
- Department of Neurosurgery, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix; and
| |
Collapse
|
20
|
Shao B, Zheng B, Liu DD, Anderson MN, Svokos K, Bartolini L, Asaad WF. Seizure freedom after laser amygdalohippocampotomy guided by bilateral responsive neurostimulation in pediatric epilepsy: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 4:CASE22235. [PMID: 36051773 PMCID: PMC9426349 DOI: 10.3171/case22235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND
For patients with difficult-to-lateralize temporal lobe epilepsy, the use of chronic recordings as a diagnostic tool to inform subsequent surgical therapy is an emerging paradigm that has been reported in adults but not in children.
OBSERVATIONS
The authors reported the case of a 15-year-old girl with pharmacoresistant temporal lobe epilepsy who was found to have bitemporal epilepsy during a stereoelectroencephalography (sEEG) admission. She underwent placement of a responsive neurostimulator system with bilateral hippocampal depth electrodes. However, over many months, her responsive neurostimulation (RNS) recordings revealed that her typical, chronic seizures were right-sided only. This finding led to a subsequent right-sided laser amygdalohippocampotomy, resulting in seizure freedom.
LESSONS
In this case, RNS chronic recording provided real-world data that enabled more precise seizure localization than inpatient sEEG data, informing surgical decision-making that led to seizure freedom. The use of RNS chronic recordings as a diagnostic adjunct to seizure localization procedures and laser ablation therapies in children is an area with potential for future study.
Collapse
Affiliation(s)
| | | | | | | | - Konstantina Svokos
- Departments of Neurosurgery,
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, Rhode Island
| | - Luca Bartolini
- Departments of Neurosurgery,
- Neurology, Brown University Alpert Medical School, Providence, Rhode Island
| | - Wael F. Asaad
- Departments of Neurosurgery,
- Department of Neuroscience, Brown University, Providence, Rhode Island
- Norman Prince Neurosciences Institute, Rhode Island Hospital & Hasbro Children’s Hospital, Providence, Rhode Island
| |
Collapse
|
21
|
Feigen CM, Eskandar EN. Responsive Thalamic Neurostimulation: A Systematic Review of a Promising Approach for Refractory Epilepsy. Front Hum Neurosci 2022; 16:910345. [PMID: 35865353 PMCID: PMC9294465 DOI: 10.3389/fnhum.2022.910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Responsive neurostimulation is an evolving therapeutic option for patients with treatment-refractory epilepsy. Open-loop, continuous stimulation of the anterior thalamic nuclei is the only approved modality, yet chronic stimulation rarely induces complete seizure remission and is associated with neuropsychiatric adverse effects. Accounts of off-label responsive stimulation in thalamic nuclei describe significant improvements in patients who have failed multiple drug regimens, vagal nerve stimulation, and other invasive measures. This systematic review surveys the currently available data supporting the use of responsive thalamic neurostimulation in primary and secondary generalized, treatment-refractory epilepsy. Materials and Methods A systematic review was performed using the following combination of keywords and controlled vocabulary: (“Seizures”[Mesh] AND “Thalamus”[Mesh] AND “Deep Brain Stimulation”[Mesh]) OR (responsive neurostim* AND (thalamus[MeSH])) OR [responsive neurostimulation AND thalamus AND (epilepsy OR seizures)]. In addition, a search of the publications listed under the PubMed “cited by” tab was performed for all publications that passed title/abstract screening in addition to manually searching their reference lists. Results Ten publications were identified describing a total of 29 subjects with a broad range of epilepsy disorders treated with closed-loop thalamic neurostimulation. The median age of subjects was 31 years old (range 10–65 years). Of the 29 subjects, 15 were stimulated in the anterior, 11 in the centromedian, and 3 in the pulvinar nuclei. Excluding 5 subjects who were treated for 1 month or less, median time on stimulation was 19 months (range 2.4–54 months). Of these subjects, 17/24 experienced greater than or equal to 50%, 11/24 least 75%, and 9/24 at least 90% reduction in seizures. Although a minority of patients did not exhibit significant clinical improvement by follow-up, there was a general trend of increasing treatment efficacy with longer periods on closed-loop thalamic stimulation. Conclusion The data supporting off-label closed-loop thalamic stimulation for refractory epilepsy is limited to 29 adult and pediatric patients, many of whom experienced significant improvement in seizure duration and frequency. This encouraging progress must be verified in larger studies.
Collapse
|
22
|
Beaudreault CP, Muh CR, Naftchi A, Spirollari E, Das A, Vazquez S, Sukul VV, Overby PJ, Tobias ME, McGoldrick PE, Wolf SM. Responsive Neurostimulation Targeting the Anterior, Centromedian and Pulvinar Thalamic Nuclei and the Detection of Electrographic Seizures in Pediatric and Young Adult Patients. Front Hum Neurosci 2022; 16:876204. [PMID: 35496067 PMCID: PMC9039390 DOI: 10.3389/fnhum.2022.876204] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
BackgroundResponsive neurostimulation (RNS System) has been utilized as a treatment for intractable epilepsy. The RNS System delivers stimulation in response to detected abnormal activity, via leads covering the seizure foci, in response to detections of predefined epileptiform activity with the goal of decreasing seizure frequency and severity. While thalamic leads are often implanted in combination with cortical strip leads, implantation and stimulation with bilateral thalamic leads alone is less common, and the ability to detect electrographic seizures using RNS System thalamic leads is uncertain.ObjectiveThe present study retrospectively evaluated fourteen patients with RNS System depth leads implanted in the thalamus, with or without concomitant implantation of cortical strip leads, to determine the ability to detect electrographic seizures in the thalamus. Detailed patient presentations and lead trajectories were reviewed alongside electroencephalographic (ECoG) analyses.ResultsAnterior nucleus thalamic (ANT) leads, whether bilateral or unilateral and combined with a cortical strip lead, successfully detected and terminated epileptiform activity, as demonstrated by Cases 2 and 3. Similarly, bilateral centromedian thalamic (CMT) leads or a combination of one centromedian thalamic alongside a cortical strip lead also demonstrated the ability to detect electrographic seizures as seen in Cases 6 and 9. Bilateral pulvinar leads likewise produced reliable seizure detection in Patient 14. Detections of electrographic seizures in thalamic nuclei did not appear to be affected by whether the patient was pediatric or adult at the time of RNS System implantation. Sole thalamic leads paralleled the combination of thalamic and cortical strip leads in terms of preventing the propagation of electrographic seizures.ConclusionThalamic nuclei present a promising target for detection and stimulation via the RNS System for seizures with multifocal or generalized onsets. These areas provide a modifiable, reversible therapeutic option for patients who are not candidates for surgical resection or ablation.
Collapse
Affiliation(s)
| | - Carrie R. Muh
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | | | | | - Ankita Das
- New York Medical College, Valhalla, NY, United States
| | - Sima Vazquez
- New York Medical College, Valhalla, NY, United States
| | - Vishad V. Sukul
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Philip J. Overby
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Michael E. Tobias
- New York Medical College, Valhalla, NY, United States
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, United States
| | - Patricia E. McGoldrick
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
| | - Steven M. Wolf
- New York Medical College, Valhalla, NY, United States
- Division of Pediatric Neurology, Department of Pediatrics, Maria Fareri Children’s Hospital, Valhalla, NY, United States
- Boston Children’s Hospital Physicians, Hawthorne, NY, United States
- *Correspondence: Steven M. Wolf,
| |
Collapse
|
23
|
Kerezoudis P, Gyftopoulos A, Alexander AY, Keith Starnes D, Nickels KC, Worrell GA, Wirrell EC, Lundstrom BN, Van Gompel JJ, Miller KJ. Safety and efficacy of responsive neurostimulation in the pediatric population: Evidence from institutional review and patient-level meta-analysis. Epilepsy Behav 2022; 129:108646. [PMID: 35299087 DOI: 10.1016/j.yebeh.2022.108646] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Responsive neurostimulation (RNS) is a novel technology for drug-resistant epilepsy rising from bilateral hemispheres or eloquent cortex. Although recently approved for adults, its safety and efficacy for pediatric patients is under investigation. METHODS A comprehensive literature search (Pubmed/Medline, Scopus, Cochrane) was conducted for studies on RNS for pediatric epilepsy (<18 y/o) and supplemented by our institutional series (4 cases). Reduction in seizure frequency at last follow-up compared to preoperative baseline comprised the primary endpoint. RESULTS A total of 8 studies (49 patients) were analyzed. Median age at implant was 15 years (interquartile range [IQR] 12-17) and 63% were males. A lesional MRI was noted in 64% (14/22). Prior invasive EEG recording was performed in the majority of patients (90%) and the most common modality was stereoelectroencephalography (57%). The most common implant location (total of 94 RNS leads) was the frontal lobe (27%), followed by mesial temporal structures (23%) and thalamus (17%). At a median follow-up of 22 months, median seizure frequency reduction was 75% (IQR: 50-88%) and 80% were responders (>50% seizure reduction). Responses ranged from 50% for temporal lobe epilepsy to 81-93% for frontal, parietal, and multilobar epilepsy. Four infections were observed (8%) and there were no hematomas or postoperative neurological deficits. CONCLUSION Current evidence, albeit limited by potential publication bias, supports the promising safety and efficacy profile of RNS for medically refractory pediatric epilepsy. Randomized controlled trial data are needed to further establish the role of this intervention in preoperative discussions with patients and their families.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai J Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
24
|
Khan M, Paktiawal J, Piper RJ, Chari A, Tisdall MM. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review. J Neurosurg Pediatr 2022; 29:208-217. [PMID: 34678764 DOI: 10.3171/2021.8.peds21201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In children with drug-resistant epilepsy (DRE), resective, ablative, and disconnective surgery may not be feasible or may fail. Neuromodulation in the form of deep brain stimulation (DBS) and responsive neurostimulation (RNS) may be viable treatment options, however evidence for their efficacies in children is currently limited. This systematic review aimed to summarize the literature on DBS and RNS for the treatment of DRE in the pediatric population. Specifically, the authors focused on currently available data for reported indications, neuromodulation targets, clinical efficacy, and safety outcomes. METHODS PRISMA guidelines were followed throughout this systematic review (PROSPERO no. CRD42020180669). Electronic databases, including PubMed, Embase, Cochrane Library, OpenGrey, and CINAHL Plus, were searched from their inception to February 19, 2021. Inclusion criteria were 1) studies with at least 1 pediatric patient (age < 19 years) who underwent DBS and/or RNS for DRE; and 2) retrospective, prospective, randomized, or nonrandomized controlled studies, case series, and case reports. Exclusion criteria were 1) letters, commentaries, conference abstracts, and reviews; and 2) studies without full text available. Risk of bias of the included studies was assessed using the Cochrane ROBINS-I (Risk of Bias in Non-randomised Studies - of Interventions) tool. RESULTS A total of 35 studies were selected that identified 72 and 46 patients who underwent DBS and RNS, respectively (age range 4-18 years). Various epilepsy etiologies and seizure types were described in both cohorts. Overall, 75% of patients had seizure reduction > 50% after DBS (among whom 6 were seizure free) at a median (range) follow-up of 14 (1-100) months. In an exploratory univariate analysis of factors associated with favorable response, the follow-up duration was shorter in those patients with a favorable response (18 vs 33 months, p < 0.05). In the RNS cohort, 73.2% of patients had seizure reduction > 50% after RNS at a median (range) follow-up of 22 (5-39) months. On closer inspection, 83.3% of patients who had > 50% reduction in seizures actually had > 75% reduction, with 4 patients being seizure free. CONCLUSIONS Overall, both DBS and RNS showed favorable response rates, indicating that both techniques should be considered for pediatric patients with DRE. However, serious risks of overall bias were found in all included studies. Many research needs in this area would be addressed by conducting high-quality clinical trials and establishing an international registry of patients who have undergone pediatric neuromodulation, thereby ensuring robust prospective collection of predictive variables and outcomes.
Collapse
Affiliation(s)
- Mehdi Khan
- 1University College London Medical School, London, United Kingdom
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Jaber Paktiawal
- 2Medical University Pleven, Pleven, Bulgaria
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
| | - Rory J Piper
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Aswin Chari
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Martin M Tisdall
- 3Department of Neurosurgery, Great Ormond Street Hospital, London, United Kingdom; and
- 4Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
25
|
Nagahama Y, Zervos TM, Murata KK, Holman L, Karsonovich T, Parker JJ, Chen JS, Phillips HW, Fajardo M, Nariai H, Hussain SA, Porter BE, Grant GA, Ragheb J, Wang S, O'Neill BR, Alexander AL, Bollo RJ, Fallah A. Real-World Preliminary Experience With Responsive Neurostimulation in Pediatric Epilepsy: A Multicenter Retrospective Observational Study. Neurosurgery 2021; 89:997-1004. [PMID: 34528103 DOI: 10.1093/neuros/nyab343] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite the well-documented utility of responsive neurostimulation (RNS, NeuroPace) in adult epilepsy patients, literature on the use of RNS in children is limited. OBJECTIVE To determine the real-world efficacy and safety of RNS in pediatric epilepsy patients. METHODS Patients with childhood-onset drug-resistant epilepsy treated with RNS were retrospectively identified at 5 pediatric centers. Reduction of disabling seizures and complications were evaluated for children (<18 yr) and young adults (>18 yr) and compared with prior literature pertaining to adult patients. RESULTS Of 35 patients identified, 17 were <18 yr at the time of RNS implantation, including a 3-yr-old patient. Four patients (11%) had concurrent resection. Three complications, requiring additional surgical interventions, were noted in young adults (2 infections [6%] and 1 lead fracture [3%]). No complications were noted in children. Among the 32 patients with continued therapy, 2 (6%) achieved seizure freedom, 4 (13%) achieved ≥90% seizure reduction, 13 (41%) had ≥50% reduction, 8 (25%) had <50% reduction, and 5 (16%) experienced no improvement. The average follow-up duration was 1.7 yr (median 1.8 yr, range 0.3-4.8 yr). There was no statistically significant difference for seizure reduction and complications between children and young adults in our cohort or between our cohort and the adult literature. CONCLUSION These preliminary data suggest that RNS is well tolerated and an effective off-label surgical treatment of drug-resistant epilepsy in carefully selected pediatric patients as young as 3 yr of age. Data regarding long-term efficacy and safety in children will be critical to optimize patient selection.
Collapse
Affiliation(s)
- Yasunori Nagahama
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Thomas M Zervos
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Kristina K Murata
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Lynette Holman
- Division of Pediatric Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Torin Karsonovich
- Department of Neurosurgery, Carle BroMenn Medical Center, Normal, Illinois, USA
| | - Jonathon J Parker
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA
| | - Jia-Shu Chen
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - H Westley Phillips
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Marytery Fajardo
- Division of Neurology, Brain Institute, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Hiroki Nariai
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Shaun A Hussain
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Brenda E Porter
- Division of Pediatric Neurology, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA
| | - Gerald A Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA
| | - John Ragheb
- Division of Neurosurgery, Brain Institute, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Shelly Wang
- Division of Neurosurgery, Brain Institute, Nicklaus Children's Hospital, Miami, Florida, USA
| | - Brent R O'Neill
- Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Allyson L Alexander
- Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora, Colorado, USA.,Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Robert J Bollo
- Division of Pediatric Neurosurgery, Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Rao VR. Chronic electroencephalography in epilepsy with a responsive neurostimulation device: current status and future prospects. Expert Rev Med Devices 2021; 18:1093-1105. [PMID: 34696676 DOI: 10.1080/17434440.2021.1994388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Implanted neurostimulation devices are gaining traction as therapeutic options for people with certain forms of drug-resistant focal epilepsy. Some of these devices enable chronic electroencephalography (cEEG), which offers views of the dynamics of brain activity in epilepsy over unprecedented time horizons. AREAS COVERED This review focuses on clinical insights and basic neuroscience discoveries enabled by analyses of cEEG from an exemplar device, the NeuroPace RNS® System. Applications of RNS cEEG covered here include counting and lateralizing seizures, quantifying medication response, characterizing spells, forecasting seizures, and exploring mechanisms of cognition. Limitations of the RNS System are discussed in the context of next-generation devices in development. EXPERT OPINION The wide temporal lens of cEEG helps capture the dynamism of epilepsy, revealing phenomena that cannot be appreciated with short duration recordings. The RNS System is a vanguard device whose diagnostic utility rivals its therapeutic benefits, but emerging minimally invasive devices, including those with subscalp recording electrodes, promise to be more applicable within a broad population of people with epilepsy. Epileptology is on the precipice of a paradigm shift in which cEEG is a standard part of diagnostic evaluations and clinical management is predicated on quantitative observations integrated over long timescales.
Collapse
Affiliation(s)
- Vikram R Rao
- Associate Professor of Clinical Neurology, Chief, Epilepsy Division, Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
Matern TS, DeCarlo R, Ciliberto MA, Singh RK. Palliative Epilepsy Surgery Procedures in Children. Semin Pediatr Neurol 2021; 39:100912. [PMID: 34620461 DOI: 10.1016/j.spen.2021.100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Surgical treatment of epilepsy typically focuses on identification of a seizure focus with subsequent resection and/or disconnection to "cure" the patient's epilepsy and achieve seizure freedom. Palliative epilepsy surgery modalities are efficacious in improving seizure frequency, severity, and quality of life. In this paper, we review palliative epilepsy surgical options for children: vagus nerve stimulation, responsive neurostimulation, deep brain stimulation, hemispherotomy, corpus callosotomy, lobectomy and/or lesionectomy and multiple subpial transection. Reoperation after surgical resection should also be considered. If curative resection is not a viable option for seizure freedom, these methods should be considered with equal emphasis and urgency in the treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
| | | | - Michael A Ciliberto
- Department of Pediatrics, Stead Family Children's Hospital/University of Iowa
| | - Rani K Singh
- Department of Pediatrics, Atrium Health System/Levine Children's Hospital.
| |
Collapse
|
28
|
Guglielmi G, Eschbach KL, Alexander AL. Smaller Knife, Fewer Seizures? Recent Advances in Minimally Invasive Techniques in Pediatric Epilepsy Surgery. Semin Pediatr Neurol 2021; 39:100913. [PMID: 34620456 DOI: 10.1016/j.spen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
Children with drug-resistant epilepsy are at high risk for developmental delay, increased mortality, psychiatric comorbidities, and requiring assistance with activities of daily living. Despite the advent of new and effective pharmacologic therapies, about one in 5 children will develop drug-resistant epilepsy, and most of these children continue to have seizures despite trials of other medication. Epilepsy surgery is often a safe and effective option which may offer seizure freedom or at least a significant reduction in seizure burden in many children. However, despite published evidence of safety and efficacy, epilepsy surgery remains underutilized in the pediatric population. Patient and family fears about the risks of surgery may contribute to this gap. Less invasive surgical techniques may be more palatable to children with epilepsy and their caregivers. In this review, we present recent advances in minimally invasive techniques for the surgical treatment of epilepsy as well as intriguing possibilities for the future. We describe the indications for, benefits of, and limits to minimally-invasive techniques including Stereo-encephalography, laser interstitial thermal ablation, deep brain stimulation, focused ultrasound, stereo-encephalography-guided radiofrequency ablation, endoscopic disconnections, and responsive neurostimulation.
Collapse
Affiliation(s)
- Gina Guglielmi
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Krista L Eschbach
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Allyson L Alexander
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO.
| |
Collapse
|
29
|
Abstract
Epilepsy in children continues to present a major medical and economic burden on society. Left untreated, seizures can present the risk of sudden death and severe cognitive impairment. It is understood that primary care providers having concerns about abnormal movements or behaviors in children will make a prompt referral to a trusted pediatric neurologist. The authors present a brief introduction to seizure types, classification, and management with particular focus on what surgery for epilepsy can offer. Improved seizure control and its attendant improvements in quality of life can be achieved with timely referral and intervention.
Collapse
Affiliation(s)
- Luis E Bello-Espinosa
- Division Head Pediatric Neurology, Arnold Palmer Hospital for Children, Leon Neuroscience Center of Excellence, 100 West Gore Street, Orlando, FL 32806, USA.
| | - Greg Olavarria
- Pediatric Neurosurgery, Arnold Palmer Hospital for Children, 100 West Gore Street, Suite 403, Orlando, FL 32806, USA
| |
Collapse
|
30
|
Benson A, Shahwan A. Monitoring the frequency and duration of epileptic seizures: "A journey through time". Eur J Paediatr Neurol 2021; 33:168-178. [PMID: 34120833 DOI: 10.1016/j.ejpn.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
Seizure monitoring plays an undeniably important role in diagnosing and managing epileptic seizures. Establishing the frequency and duration of seizures is crucial for assessing the burden of this chronic neurological disease, selecting treatment methods, determining how frequently these methods are applied, and informing short and long-term therapeutic decisions. Over the years, seizure monitoring tools and methods have evolved and become increasingly sophisticated; from home seizure diaries to EEG monitoring to cutting-edge responsive neurostimulation systems. In this article, the various methods of seizure monitoring are reviewed.
Collapse
Affiliation(s)
- Ailbhe Benson
- Department of Clinical Neurophysiology & Neurology, CHI at Temple Street, Dublin, Ireland.
| | - Amre Shahwan
- Department of Clinical Neurophysiology & Neurology, CHI at Temple Street, Dublin, Ireland.
| |
Collapse
|
31
|
Mortazavi A, Elliott RJS, Phan TN, Schreiber J, Gaillard WD, Oluigbo CO. Responsive neurostimulation for the treatment of medically refractory epilepsy in pediatric patients: strategies, outcomes, and technical considerations. J Neurosurg Pediatr 2021; 28:54-61. [PMID: 33930869 DOI: 10.3171/2020.11.peds20660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Children with medically refractory partial-onset epilepsy arising from eloquent cortex present a therapeutic challenge, as many are not suitable for resective surgery. For these patients, responsive neurostimulation may prove to be a potential tool. Although responsive neurostimulation has demonstrated utility in adults, little has been discussed regarding its utility in the pediatric population. In this study, the authors present their institution's experience with responsive neurostimulation via the RNS System through a case series of 5 pediatric patients. METHODS A single-center retrospective study of patients who underwent RNS System implantation at Children's National Hospital was performed. RESULTS Five patients underwent RNS System implantation. The mean patient age at treatment was 16.8 years, and the average follow-up was 11.2 months. All patients were considered responders, with a seizure frequency reduction of 64.2% without adverse events. CONCLUSIONS All 5 patients experienced medium-term improvements in seizure control after RNS System implantation with decreases in seizure frequency > 50% from baseline preoperative seizure frequency. The authors demonstrated two primary configurations of electrode placement: hippocampal or amygdala placement via an occipitotemporal trajectory, as well as infratemporal surface electrodes and surface electrodes on the primary motor cortex. No adverse events were experienced in this case series.
Collapse
Affiliation(s)
| | | | - Tiffany N Phan
- 3Department of Neurosurgery, Children's National Hospital, Washington, DC
| | - John Schreiber
- 3Department of Neurosurgery, Children's National Hospital, Washington, DC
| | - William D Gaillard
- 3Department of Neurosurgery, Children's National Hospital, Washington, DC
| | - Chima O Oluigbo
- 3Department of Neurosurgery, Children's National Hospital, Washington, DC
| |
Collapse
|
32
|
Parihar J, Agrawal M, Samala R, Chandra PS, Tripathi M. Role of Neuromodulation for Treatment of Drug-Resistant Epilepsy. Neurol India 2021; 68:S249-S258. [PMID: 33318359 DOI: 10.4103/0028-3886.302476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The choice of neuromodulation techniques has greatly increased over the past two decades. While vagal nerve stimulation (VNS) has become established, newer variations of VNS have been introduced. Following the SANTE's trial, deep brain stimulation (DBS) is now approved for clinical use. In addition, responsive neurostimulation (RNS) has provided exciting new opportunities for treatment of drug-resistant epilepsy. While neuromodulation mostly offers only a 'palliative' measure, it still provides a significant reduction of frequency and intensity of epilepsy. We provide an overview of all the techniques of neuromodulation which are available, along with long-term outcomes. Further research is required to delineate the exact mechanism of action, the indications and the stimulation parameters to extract the maximum clinical benefit from these techniques.
Collapse
Affiliation(s)
- Jasmine Parihar
- Department of Neurology, Lady Harding Medical College, New Delhi, India
| | | | - Raghu Samala
- Department of Neurosurgery, AIIMS, New Delhi, India
| | | | | |
Collapse
|
33
|
Welch WP, Hect JL, Abel TJ. Case Report: Responsive Neurostimulation of the Centromedian Thalamic Nucleus for the Detection and Treatment of Seizures in Pediatric Primary Generalized Epilepsy. Front Neurol 2021; 12:656585. [PMID: 33995254 PMCID: PMC8113700 DOI: 10.3389/fneur.2021.656585] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Up to 20% of pediatric patients with primary generalized epilepsy (PGE) will not respond effectively to medication for seizure control. Responsive neurostimulation (RNS) is a promising therapy for pediatric patients with drug-resistant epilepsy and has been shown to be an effective therapy for reducing seizure frequency and severity in adult patients. RNS of the centromedian nucleus of the thalamus may help to prevent loss of awareness during seizure activity in PGE patients with absence seizures. Here we present a 16-year-old male, with drug-resistant PGE with absence seizures, characterized by 3 Hz spike-and-slow-wave discharges on EEG, who achieved a 75% reduction in seizure frequency following bilateral RNS of the centromedian nuclei. At 6-months post-implant, this patient reported complete resolution of the baseline daily absence seizure activity, and decrease from 3-4 generalized convulsive seizures per month to 1 per month. RNS recordings showed well-formed 3 Hz spike-wave discharges in bilateral CM nuclei, further supporting the notion that clinically relevant ictal discharges in PGE can be detected in CM. This report demonstrates that CM RNS can detect PGE-related seizures in the CM nucleus and deliver therapeutic stimulation.
Collapse
Affiliation(s)
- William P Welch
- Division of Pediatric Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jasmine L Hect
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States
| |
Collapse
|
34
|
Abstract
Neuromodulation, including first-generation open-loop devices and second-generation closed-loop devices, is a valuable but poorly understood therapeutic option for patients with drug-refractory epilepsy. The precise therapy a patient receives is contingent on the relationship between the patient's own unique neurophysiology and the custom programming of detection and stimulation parameters. Recent evidence demonstrates that therapeutic efficacy can be achieved through neuromodulation of seizure networks, rather than simple disruption of seizure evolution. Nevertheless, the improvement in outcomes achieved combined with its minimally invasive, nondestructive nature make closed-loop stimulation a promising therapy for additional indications, such as generalized and pediatric epilepsy.
Collapse
Affiliation(s)
- Nathaniel D Sisterson
- Department of Neurological Surgery, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Vasileios Kokkinos
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 429A Thier, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Chiang S, Khambhati AN, Wang ET, Vannucci M, Chang EF, Rao VR. Evidence of state-dependence in the effectiveness of responsive neurostimulation for seizure modulation. Brain Stimul 2021; 14:366-375. [PMID: 33556620 PMCID: PMC8083819 DOI: 10.1016/j.brs.2021.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022] Open
Abstract
Background: An implanted device for brain-responsive neurostimulation (RNS® System) is approved as an effective treatment to reduce seizures in adults with medically-refractory focal epilepsy. Clinical trials of the RNS System demonstrate population-level reduction in average seizure frequency, but therapeutic response is highly variable. Hypothesis: Recent evidence links seizures to cyclical fluctuations in underlying risk. We tested the hypothesis that effectiveness of responsive neurostimulation varies based on current state within cyclical risk fluctuations. Methods: We analyzed retrospective data from 25 adults with medically-refractory focal epilepsy implanted with the RNS System. Chronic electrocorticography was used to record electrographic seizures, and hidden Markov models decoded seizures into fluctuations in underlying risk. State-dependent associations of RNS System stimulation parameters with changes in risk were estimated. Results: Higher charge density was associated with improved outcomes, both for remaining in a low seizure risk state and for transitioning from a high to a low seizure risk state. The effect of stimulation frequency depended on initial seizure risk state: when starting in a low risk state, higher stimulation frequencies were associated with remaining in a low risk state, but when starting in a high risk state, lower stimulation frequencies were associated with transition to a low risk state. Findings were consistent across bipolar and monopolar stimulation configurations. Conclusion: The impact of RNS on seizure frequency exhibits state-dependence, such that stimulation parameters which are effective in one seizure risk state may not be effective in another. These findings represent conceptual advances in understanding the therapeutic mechanism of RNS, and directly inform current practices of RNS tuning and the development of next-generation neurostimulation systems.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.
| | - Ankit N Khambhati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Emily T Wang
- Department of Statistics, Rice University, Houston, TX, United States
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, TX, United States
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Vikram R Rao
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
36
|
Harris WB, Phillips HW, Fallah A, Mathern GW. Pediatric Epilepsy Surgery in Focal and Generalized Epilepsy: Current Trends and Recent Advancements. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0040-1722298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractFor a subset of children with medically intractable epilepsy, surgery may provide the best chances of seizure freedom. Whereas the indications for epilepsy surgery are commonly thought to be limited to patients with focal epileptogenic foci, modern imaging and surgical interventions frequently permit successful surgical treatment of generalized epilepsy. Resection continues to be the only potentially curative intervention; however, the advent of various neuromodulation interventions provides an effective palliative strategy for generalized or persistent seizures. Although the risks and benefits vary greatly by type and extent of intervention, the seizure outcomes appear to be uniformly favorable. Advances in both resective and nonresective surgical interventions provide promise for improved seizure freedom, function, and quality of life. This review summarizes the current trends and recent advancements in pediatric epilepsy surgery from diagnostic workup and indications through surgical interventions and postoperative outcomes.
Collapse
Affiliation(s)
- William B. Harris
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - H. Westley Phillips
- Department of Neurosurgery, University of California Los Angeles, California, United States
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, California, United States
| | - Gary W. Mathern
- Department of Neurosurgery, University of California Los Angeles, California, United States
- Department of Psychiatry and Biobehavioral Medicine, David Geffen School of Medicine at UCLA, California, United States
| |
Collapse
|
37
|
Inaji M, Yamamoto T, Kawai K, Maehara T, Doyle WK. Responsive Neurostimulation as a Novel Palliative Option in Epilepsy Surgery. Neurol Med Chir (Tokyo) 2020; 61:1-11. [PMID: 33268657 PMCID: PMC7812309 DOI: 10.2176/nmc.st.2020-0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with drug-resistant focal onset epilepsy are not always suitable candidates for resective surgery, a definitive intervention to control their seizures. The alternative surgical treatment for these patients in Japan has been vagus nerve stimulation (VNS). Besides VNS, epileptologists in the United States can choose a novel palliative option called responsive neurostimulation (RNS), a closed-loop neuromodulation system approved by the US Food and Drug Administration in 2013. The RNS System continuously monitors neural electroencephalography (EEG) activity at the possible seizure onset zone (SOZ) where electrodes are placed and responds with electrical stimulation when a pre-defined epileptic activity is detected. The controlled clinical trials in the United States have demonstrated long-term utility and safety of the RNS System. Seizure reduction rates have continued to improve over time, reaching 75% over 9 years of treatment. The incidence of implant-site infection, the most frequent device-related adverse event, is similar to those of other neuromodulation devices. The RNS System has shown favorable efficacy for both mesial temporal lobe epilepsy (TLE) and neocortical epilepsy of the eloquent cortex. Another unique advantage of the RNS System is its ability to provide chronic monitoring of ambulatory electrocorticography (ECoG). Valuable information obtained from ECoG monitoring provides a better understanding of the state of epilepsy in each patient and improves clinical management. This article reviews the developmental history, structure, and clinical utility of the RNS System, and discusses its indications as a novel palliative option for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University
| | - Takamichi Yamamoto
- Department of Neurosurgery, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University
| | | | | |
Collapse
|
38
|
Panov F, Ganaha S, Haskell J, Fields M, La Vega-Talbott M, Wolf S, McGoldrick P, Marcuse L, Ghatan S. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr 2020; 26:525-532. [PMID: 33861559 DOI: 10.3171/2020.5.peds20118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Approximately 75% of pediatric patients who suffer from epilepsy are successfully treated with antiepileptic drugs, while the disease is drug resistant in the remaining patients, who continue to have seizures. Patients with drug-resistant epilepsy (DRE) may have options to undergo invasive treatment such as resection, laser ablation of the epileptogenic focus, or vagus nerve stimulation. To date, treatment with responsive neurostimulation (RNS) has not been sufficiently studied in the pediatric population because the FDA has not approved the RNS device for patients younger than 18 years of age. Here, the authors sought to investigate the safety of RNS in pediatric patients. METHODS The authors performed a retrospective single-center study of consecutive patients with DRE who had undergone RNS system implantation from September 2015 to December 2019. Patients were followed up postoperatively to evaluate seizure freedom and complications. RESULTS Of the 27 patients studied, 3 developed infections and were treated with antibiotics. Of these 3 patients, one required partial removal and salvaging of a functioning system, and one required complete removal of the RNS device. No other complications, such as intracranial hemorrhage, stroke, or device malfunction, were seen. The average follow-up period was 22 months. All patients showed improvement in seizure frequency. CONCLUSIONS The authors demonstrated the safety and efficacy of RNS in pediatric patients, with infections being the main complication. ABBREVIATIONS DBS = deep brain stimulation; DRE = drug-resistant epilepsy; MDC = multidisciplinary conference; MER = microelectrode recording; MSHS = Mount Sinai Health System; RNS = responsive neurostimulation; SEEG = stereo-EEG; VNS = vagus nerve stimulation.
Collapse
Affiliation(s)
- Fedor Panov
- 1Department of Neurosurgery, Mount Sinai West; and
| | - Sara Ganaha
- 1Department of Neurosurgery, Mount Sinai West; and
| | | | - Madeline Fields
- 2Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maite La Vega-Talbott
- 2Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven Wolf
- 2Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patricia McGoldrick
- 2Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lara Marcuse
- 2Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Saadi Ghatan
- 1Department of Neurosurgery, Mount Sinai West; and
| |
Collapse
|
39
|
Bercu MM, Friedman D, Silverberg A, Drees C, Geller EB, Dugan PC, Devinsky O, Doyle WH. Responsive neurostimulation for refractory epilepsy in the pediatric population: A single-center experience. Epilepsy Behav 2020; 112:107389. [PMID: 32890796 DOI: 10.1016/j.yebeh.2020.107389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 11/17/2022]
Abstract
Drug-resistant focal epilepsy (DRFE) in children can impair cognition and behavior, and lead to premature death. Increased pediatric epilepsy surgery numbers reflect the improvements in seizure control and long-term developmental outcomes. Yet, many children with DRFE are not candidates for surgical resection due to overlap of the seizure network with eloquent cortex or multiple seizure-onset zones, making surgery dangerous or ineffective. In adults, responsive neurostimulation (RNS System) therapy is safe and effective treatment for DRFE with one or two seizure foci, especially when the seizure focus is in eloquent cortex. We present six pediatric patients with DRFE who underwent RNS implantation. Our outcomes demonstrate safety, decreased clinical seizure frequency, as well as improved functional status and quality of life. Changes in the clinical seizure semiology and frequency occurred in conjunction with adjustments to the stimulation parameters, supporting the efficacy of responsive neuromodulation in children.
Collapse
Affiliation(s)
- Marian Michael Bercu
- Division of Pediatric Neurosurgery, Department of Neurosurgery, NYU Langone Health, New York, NY, United States of America; Division of Pediatric Neurosurgery, Pediatric Neurosciences Center, Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, MI, United States of America.
| | - Daniel Friedman
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, United States of America
| | - Alyson Silverberg
- Department of Neurosurgery, NYU Langone Health, New York, NY, United States of America
| | - Cornelia Drees
- Department of Neurology, Epilepsy Section, University of Colorado Denver School of Medicine, Aurora, CO, United States of America
| | - Eric B Geller
- Institute of Neurology and Neurosurgery at Saint Barnabas, Livingston, NJ, United States of America
| | - Patricia C Dugan
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, United States of America
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, United States of America
| | - Werner H Doyle
- Comprehensive Epilepsy Center, NYU Langone Health, New York, NY, United States of America; Department of Neurosurgery, NYU Langone Health, New York, NY, United States of America
| |
Collapse
|
40
|
Kwon C, Schupper AJ, Fields MC, Marcuse LV, La Vega‐Talbott M, Panov F, Ghatan S. Centromedian thalamic responsive neurostimulation for Lennox-Gastaut epilepsy and autism. Ann Clin Transl Neurol 2020; 7:2035-2040. [PMID: 32860345 PMCID: PMC7545608 DOI: 10.1002/acn3.51173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/31/2023] Open
Abstract
The RNS System is not approved in patients under 18, although a critical need for novel treatment modalities in this vulnerable population persist. We present two pediatric patients with drug-resistant epilepsy secondary to Lennox-Gastaut Syndrome (LGS) and autism spectrum disorder (ASD) treated with the RNS System. Both patients have experienced 75-99% clinical seizure reductions in >1 year of follow-up. We illustrate that children with diffuse onset, multifocal epilepsy, including frontal and thalamic circuits thought to exist in the generation of LGS seizures, can be treated with responsive neurostimulation safely and effectively, targeting thalamic networks, and avoiding palliative disconnections and resections.
Collapse
Affiliation(s)
- Churl‐Su Kwon
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alexander J. Schupper
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Madeline C. Fields
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lara V. Marcuse
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Fedor Panov
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Saadi Ghatan
- Department of NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
41
|
Treiber JM, Curry DJ, Weiner HL, Roth J. Epilepsy surgery in tuberous sclerosis complex (TSC): emerging techniques and redefinition of treatment goals. Childs Nerv Syst 2020; 36:2519-2525. [PMID: 32535771 DOI: 10.1007/s00381-020-04715-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 01/21/2023]
Abstract
Epilepsy occurs in nearly all patients with tuberous sclerosis and is often refractory to medical treatment. The definition of surgical candidacy in these patients has broadened in recent years due to philosophical and technological advances. The goals of surgery have shifted to focusing on quality of life and maximizing neurodevelopmental potential in patients unable to obtain seizure freedom. Novel diagnostic, ablative, and neuromodulatory techniques have been developed that may help patients that were previously considered inoperable to have an improved quality of life. In the coming years, it is expected that these techniques will be further refined and lead to an improvement of neurological prognosis in patients with tuberous sclerosis.
Collapse
Affiliation(s)
- Jeffrey M Treiber
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Daniel J Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA. .,Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
42
|
Different modalities of invasive neurostimulation for epilepsy. Neurol Sci 2020; 41:3527-3536. [PMID: 32740896 DOI: 10.1007/s10072-020-04614-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/19/2020] [Indexed: 01/12/2023]
Abstract
Epilepsy affects 1% of the general population, about one-third of which is pharmacologically resistant. Uncontrolled seizures are associated with an increased risk of traumatic injury and sudden unexpected death of epilepsy. There is a considerable psychological and financial burden on caregivers of patients with epilepsy, particularly among pediatric patients. Epilepsy surgery, when indicated, is the most promising cure for epilepsy. However, when surgery is contraindicated or refused by the patient, neurostimulation is an alternative palliative approach, albeit with a lower chance of entirely curing patients of seizures. There are many options for neurostimulation. The three most commonly used invasive neurostimulation procedures that consistently show evidence of being safe and efficacious are vagal nerve stimulation, responsive neuro stimulation, or anterior thalamic nucleus deep brain stimulation. The goal of this review is to summarize the current evidence supporting the use of these three techniques, which are approved by most regulatory bodies, and discuss different factors that may enable epilepsy surgeons to choose the most appropriate modality for each patient.
Collapse
|
43
|
Hoffman CE, Parker WE, Rapoport BI, Zhao M, Ma H, Schwartz TH. Innovations in the Neurosurgical Management of Epilepsy. World Neurosurg 2020; 139:775-788. [PMID: 32689698 DOI: 10.1016/j.wneu.2020.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 10/23/2022]
Abstract
Technical limitations and clinical challenges have historically limited the diagnostic tools and treatment methods available for surgical approaches to the management of epilepsy. By contrast, recent technological innovations in several areas hold significant promise in improving outcomes and decreasing morbidity. We review innovations in the neurosurgical management of epilepsy in several areas, including wireless recording and stimulation systems (particularly responsive neurostimulation [NeuroPace]), conformal electrodes for high-resolution electrocorticography, robot-assisted stereotactic surgery, optogenetics and optical imaging methods, novel positron emission tomography ligands, and new applications of focused ultrasonography. Investigation into genetic causes of and susceptibilities to epilepsy has introduced a new era of precision medicine, enabling the understanding of cell signaling mechanisms underlying epileptic activity as well as patient-specific molecularly targeted treatment options. We discuss the emerging path to individualized treatment plans, predicted outcomes, and improved selection of effective interventions, on the basis of these developments.
Collapse
Affiliation(s)
- Caitlin E Hoffman
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA.
| | - Whitney E Parker
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Benjamin I Rapoport
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
44
|
|
45
|
Davis P, Gaitanis J. Neuromodulation for the Treatment of Epilepsy: A Review of Current Approaches and Future Directions. Clin Ther 2020; 42:1140-1154. [DOI: 10.1016/j.clinthera.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
46
|
Abstract
Convulsive status epilepticus (CSE) is one of the most common pediatric neurological emergencies. Ongoing seizure activity is a dynamic process and may be associated with progressive impairment of gamma-aminobutyric acid (GABA)-mediated inhibition due to rapid internalization of GABAA receptors. Further hyperexcitability may be caused by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartic acid) receptors moving from subsynaptic sites to the synaptic membrane. Receptor trafficking during prolonged seizures may contribute to difficulties treating seizures of longer duration and may provide some of the pathophysiological underpinnings of established and refractory SE (RSE). Simultaneously, a practice change toward more rapid initiation of first-line benzodiazepine (BZD) treatment and faster escalation to second-line non-BZD treatment for established SE is in progress. Early administration of the recommended BZD dose is suggested. For second-line treatment, non-BZD anti-seizure medications (ASMs) include valproate, fosphenytoin, or levetiracetam, among others, and at this point there is no clear evidence that any one of these options is better than the others. If seizures continue after second-line ASMs, RSE is manifested. RSE treatment consists of bolus doses and titration of continuous infusions under continuous electro-encephalography (EEG) guidance until electrographic seizure cessation or burst-suppression. Ultimately, etiological workup and related treatment of CSE, including broad spectrum immunotherapies as clinically indicated, is crucial. A potential therapeutic approach for future studies may entail consideration of interventions that may accelerate diagnosis and treatment of SE, as well as rational and early polytherapy based on synergism between ASMs by utilizing medications targeting different mechanisms of epileptogenesis and epileptogenicity.
Collapse
|
47
|
Gummadavelli A, Quraishi IH, Gerrard JL. Responsive Neurostimulation. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Gadgil N, Muir M, Lopresti MA, Lam SK. An update on pediatric surgical epilepsy: Part II. Surg Neurol Int 2019; 10:258. [PMID: 31893159 PMCID: PMC6935971 DOI: 10.25259/sni_418_2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Recent advances may allow surgical options for pediatric patients with refractory epilepsy not previously deemed surgical candidates. This review outlines major technological developments in the field of pediatric surgical epilepsy. Methods: The literature was comprehensively reviewed and summarized pertaining to stereotactic electroencephalography (sEEG), laser ablation, focused ultrasound (FUS), responsive neurostimulation (RNS), and deep brain stimulation (DBS) in pediatric epilepsy patients. Results: sEEG allows improved seizure localization in patients with widespread, bilateral, or deep-seated epileptic foci. Laser ablation may be used for destruction of deep-seated epileptic foci close to eloquent structures; FUS has a similar potential application. RNS is a palliative option for patients with eloquent, multiple, or broad epileptogenic foci. DBS is another palliative approach in children unsuitable for respective surgery. Conclusion: The landscape of pediatric epilepsy is changing due to improved diagnostic and treatment options for patients with refractory seizures. These interventions may improve seizure outcomes and decrease surgical morbidity, though further research is needed to define the appropriate role for each modality.
Collapse
Affiliation(s)
- Nisha Gadgil
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Matthew Muir
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Melissa A Lopresti
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas
| | - Sandi K Lam
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine/Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA
| |
Collapse
|
49
|
Quantitative Signal Characteristics of Electrocorticography and Stereoelectroencephalography: The Effect of Contact Depth. J Clin Neurophysiol 2019; 36:195-203. [PMID: 30925509 PMCID: PMC6493682 DOI: 10.1097/wnp.0000000000000577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Purpose: Patients undergoing epilepsy surgery often require invasive EEG, but few studies have examined the signal characteristics of contacts on the surface of the brain (electrocorticography, ECOG) versus depth contacts, used in stereoelectroencephalography (SEEG). As SEEG and ECOG have significant differences in complication rates, it is important to determine whether both modalities produce similar signals for analysis, to ultimately guide management of medically intractable epilepsy. Methods: Twenty-seven patients who underwent SEEG (19), ECOG (6), or both (2) were analyzed for quantitative measures of activity including spectral power and phase–amplitude coupling during approximately 1 hour of wakefulness. The position of the contacts was calculated by coregistering the postoperative computed tomography with a reconstructed preoperative MRI. Using two types of referencing schemes—local versus common average reference—the brain regions where any quantitative measure differed systematically with contact depth were established. Results: Using even the most permissive statistical criterion, few quantitative measures were significantly correlated with contact depth in either ECOG or SEEG contacts. The factors that predicted changes in spectral power and phase–amplitude coupling with contact depth were failing to baseline correct spectral power measures, use of a local rather than common average reference, using baseline correction for phase–amplitude coupling measures, and proximity of other grey matter structures near the region where the contact was located. Conclusions: The signals recorded by ECOG and SEEG have very similar spectral power and phase–amplitude coupling, suggesting that both modalities are comparable from an electrodiagnostic standpoint in delineation of the epileptogenic network.
Collapse
|
50
|
Starnes K, Miller K, Wong-Kisiel L, Lundstrom BN. A Review of Neurostimulation for Epilepsy in Pediatrics. Brain Sci 2019; 9:brainsci9100283. [PMID: 31635298 PMCID: PMC6826633 DOI: 10.3390/brainsci9100283] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
Neurostimulation for epilepsy refers to the application of electricity to affect the central nervous system, with the goal of reducing seizure frequency and severity. We review the available evidence for the use of neurostimulation to treat pediatric epilepsy, including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), deep brain stimulation (DBS), chronic subthreshold cortical stimulation (CSCS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We consider possible mechanisms of action and safety concerns, and we propose a methodology for selecting between available options. In general, we find neurostimulation is safe and effective, although any high quality evidence applying neurostimulation to pediatrics is lacking. Further research is needed to understand neuromodulatory systems, and to identify biomarkers of response in order to establish optimal stimulation paradigms.
Collapse
Affiliation(s)
- Keith Starnes
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kai Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|