1
|
Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S. Endothelial Colony-Forming Cells (ECFCs) in cerebrovascular aging: Focus on the pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and treatment prospects. Ageing Res Rev 2025; 104:102672. [PMID: 39884362 DOI: 10.1016/j.arr.2025.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience. ECFCs influence key cerebrovascular processes, including neurovascular coupling (NVC), blood-brain barrier (BBB) integrity, and vascular regeneration, which are critical for cognitive health. Age-related decline in ECFC quantity and functionality contributes to vascular rarefaction, diminished cerebral blood flow (CBF), and BBB permeability-processes that collectively exacerbate cognitive decline. This review delves into the multifaceted role of ECFCs in cerebrovascular aging and underscores their potential as therapeutic targets in addressing age-related vascular dysfunctions, presenting new directions for mitigating the effects of aging on brain health.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eva Troyano-Rodriguez
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer Ihuoma
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sherwin Tavakol
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Casady School, Oklahoma City, OK, USA
| | - Jonah Mohon
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Jed Boma-Iyaye
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Choi SA, Moon YJ, Koh EJ, Phi JH, Lee JY, Kim KH, Kim SK. Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease. J Korean Neurosurg Soc 2023; 66:642-651. [PMID: 37138505 PMCID: PMC10641413 DOI: 10.3340/jkns.2023.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVE Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. METHODS ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. RESULTS The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. CONCLUSION Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
4
|
Increase of Circulating Endothelial Progenitor Cells and Released Angiogenic Factors in Children with Moyamoya Arteriopathy. Int J Mol Sci 2023; 24:ijms24021233. [PMID: 36674749 PMCID: PMC9865311 DOI: 10.3390/ijms24021233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Moyamoya arteriopathy (MMA) is a rare cerebrovascular disorder that causes recurrent ischemic and hemorrhagic strokes, leading young patients to severe neurological deficits. The pathogenesis of MMA is still unknown. The disease onset in a wide number of pediatric cases raises the question of the role of genetic factors in the disease's pathogenesis. In these patients, MMA's clinical course, or progression, is largely unclear. By performing a comprehensive molecular and cellular profile in the plasma and CSF, respectively, of MMA pediatric patients, our study is aimed at assessing the levels of circulating endothelial progenitor cells (cEPC) and the release of selected proteins at an early disease stage to clarify MMA pathogenesis and progression. We employed cytofluorimetric methods and immunoassays in pediatric MMA patients and matched control subjects by age and sex. We detected increased levels of cEPC in peripheral blood and an upregulation of angiogenic markers in CSF (i.e., angiopoietin-2 and VEGF-A). This finding is probably associated with deregulated angiogenesis, as stated by the moderate severity of collateral vessel network development (Suzuki III-IV). The absence of significant modulation of neurofilament light in CSF led us to rule out the presence of substantial neuronal injury in MMA children. Despite the limited cohort of pediatric patients, we found some peculiar cellular and molecular characteristics in their blood and CSF samples. Our findings may be confirmed by wider and perspective studies to identify predictive or prognostic circulating biomarkers and potential therapeutic targets for personalized care of MMA pediatric patients.
Collapse
|
5
|
Cao L, Dong Y, Sun K, Li D, Wang H, Li H, Yang B. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review. Front Surg 2022; 9:929871. [PMID: 35846951 PMCID: PMC9283787 DOI: 10.3389/fsurg.2022.929871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. The etiology and pathogenesis of MMD are still obscure. The biggest obstacles in the basic research of MMD are difficulty in obtaining specimens and the lack of an animal model. It is necessary to use appropriate and rationally designed animal models for the correct evaluation. Several animal models and methods have been developed to produce an effective MMD model, such as zebrafish, mice and rats, rabbits, primates, felines, canines, and peripheral blood cells, each with advantages and disadvantages. There are three mechanisms for developing animal models, including genetic, immunological/inflammatory, and ischemic animal models. This review aims to analyze the characteristics of currently available models, providing an overview of the animal models framework and the convenience of selecting model types for MMD research. It will be a great benefit to identify strategies for future model generations.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Roy V, Ross JP, Pépin R, Cortez Ghio S, Brodeur A, Touzel Deschênes L, Le-Bel G, Phillips DE, Milot G, Dion PA, Guérin S, Germain L, Berthod F, Auger FA, Rouleau GA, Dupré N, Gros-Louis F. Moyamoya Disease Susceptibility Gene RNF213 Regulates Endothelial Barrier Function. Stroke 2022; 53:1263-1275. [PMID: 34991336 DOI: 10.1161/strokeaha.120.032691] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variants in the ring finger protein 213 (RNF213) gene are known to be associated with increased predisposition to cerebrovascular diseases development. Genomic studies have identified RNF213 as a major risk factor of Moyamoya disease in East Asian descendants. However, little is known about the RNF213 (ring finger protein 213) biological functions or its associated pathogenic mechanisms underlying Moyamoya disease. METHODS To investigate RNF213 loss-of-function effect in endothelial cell, stable RNF213-deficient human cerebral endothelial cells were generated using the CRISPR-Cas9 genome editing technology. RESULTS In vitro assays, using RNF213 knockout brain endothelial cells, showed clear morphological changes and increased blood-brain barrier permeability. Downregulation and delocalization of essential interendothelial junction proteins involved in the blood-brain barrier maintenance, such as PECAM-1 (platelet endothelial cell adhesion molecule-1), was also observed. Brain endothelial RNF213-deficient cells also showed an abnormal potential to transmigration of leukocytes and secreted high amounts of proinflammatory cytokines. CONCLUSIONS Taken together, these results indicate that RNF213 could be a key regulator of cerebral endothelium integrity, whose disruption could be an early pathological mechanism leading to Moyamoya disease. This study also further reinforces the importance of blood-brain barrier integrity in the development of Moyamoya disease and other RNF213-associated diseases.
Collapse
Affiliation(s)
- Vincent Roy
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Jay P Ross
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Rémy Pépin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Sergio Cortez Ghio
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Alyssa Brodeur
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lydia Touzel Deschênes
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Gaëtan Le-Bel
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Daniel E Phillips
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Geneviève Milot
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Patrick A Dion
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Sylvain Guérin
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Lucie Germain
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Berthod
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François A Auger
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - Guy A Rouleau
- McGill University, Montréal, Québec, Canada (J.P.R., D.E.P., P.A.D., G.A.R.)
| | - Nicolas Dupré
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| | - François Gros-Louis
- CHU de Québec - Université Laval, Canada (V.R., R.P., S.C.G., A.B., L.T.D., G.L.-B., G.M., S.G., L.G., F.B., F.A.A., N.D., F.G.-L.)
| |
Collapse
|
7
|
Rallo MS, Akel O, Gurram A, Sun H. Experimental animal models for moyamoya disease and treatment: a pathogenesis-oriented scoping review. Neurosurg Focus 2021; 51:E5. [PMID: 34469865 DOI: 10.3171/2021.6.focus21284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya disease (MMD) is an intracranial steno-occlusive pathology characterized by progressive narrowing of proximal large vessels, including the terminal internal carotid arteries (ICAs), middle cerebral arteries, or anterior cerebral arteries. Named for the "puff of smoke" appearance of the anomalous vascularization visualized on cerebral angiography, MMD lacks a well-defined etiology, although significant insights have been made, including the identification of a susceptibility gene, RNF213, in humans with the disease. A limitation to advancing the understanding and treatment of MMD has been the lack of experimental animal models that authentically reflect the clinical pathogenesis. In an effort to analyze characteristics of currently available models and identify strategies for future model generation, the authors performed a scoping review of experimental animal models that have been used to study MMD. METHODS A systematic search of PubMed, Web of Science, and Scopus was performed to identify articles describing animal models used to study MMD. Additional articles were identified via citation searching. Study selection and data extraction were performed by two independent reviewers based on defined inclusion and exclusion criteria. RESULTS A total of 44 articles were included for full-text review. The methods used to generate these animal models were broadly classified as surgical (n = 25, 56.8%), immunological (n = 7, 15.9%), genetic (n = 6, 13.6%), or a combination (n = 6, 13.6%). Surgical models typically involved permanent ligation of one or both of the common carotid arteries or ICAs to produce chronic cerebral hypoperfusion. Genetic models utilized known MMD or cerebrovascular disease-related genes, such as RNF213 or ACTA2, to induce heritable cerebral vasculopathy. Finally, immunological models attempted to induce vasculitis-type pathology by recapitulating the inflammatory milieu thought to underlie MMD. CONCLUSIONS Models generated for MMD have involved three general approaches: surgical, immunological, and genetic. Although each reflects a key aspect of MMD pathogenesis, the failure of any individual model to recapitulate the development, progression, and consequences of the disease underscores the importance of future work in developing a multietiology model.
Collapse
|
8
|
Yu J, Du Q, Hu M, Zhang J, Chen J. Endothelial Progenitor Cells in Moyamoya Disease: Current Situation and Controversial Issues. Cell Transplant 2021; 29:963689720913259. [PMID: 32193953 PMCID: PMC7444216 DOI: 10.1177/0963689720913259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the lack of animal models and difficulty in obtaining specimens, the study of pathogenesis of moyamoya disease (MMD) almost stagnated. In recent years, endothelial progenitor cells (EPCs) have attracted more and more attention in vascular diseases due to their important role in neovascularization. With the aid of paradigms and methods in cardiovascular diseases research, people began to explore the role of EPCs in the processing of MMD. In the past decade, studies have shown that abnormalities in cell amounts and functions of EPCs were closely related to the vascular pathological changes in MMD. However, the lack of consistent criteria, such as isolation, cultivation, and identification standards, is also blocking the way forward. The goal of this review is to provide an overview of the current situation and controversial issues relevant to studies about EPCs in the pathogenesis and etiology of MMD.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Du
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Hu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Yang K, Zeng L, Ge A, Yi Y, Wang S, Ge J. Exploring the Oxidative Stress Mechanism of Buyang Huanwu Decoction in Intervention of Vascular Dementia Based on Systems Biology Strategy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8879060. [PMID: 33747352 PMCID: PMC7953864 DOI: 10.1155/2021/8879060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To explore the oxidative stress mechanism of modified Buyang Huanwu decoction (MBHD) in intervention of vascular dementia (VD) based on systems biology strategy. METHODS In this study, through the reverse virtual target prediction technology and transcriptomics integration strategy, the active ingredients and potential targets of MBHD treatment of VD were analyzed, and the drug-disease protein-protein interaction (PPI) network was constructed. Then, bioinformatics analysis methods are used for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis, and finally find the core biological process. After that, in animal models, low-throughput technology is used to detect gene expression and protein expression of key molecular targets in oxidative stress-mediated inflammation and apoptosis signaling pathways to verify the mechanism of MBHD treatment of VD rats. Finally, the potential interaction relationship between MBHD and VD-related molecules is further explored through molecular docking technology. RESULTS There are a total of 54 MBHD components, 252 potential targets, and 360 VD genes. The results of GO enrichment analysis and pathway enrichment analysis showed that MBHD may regulate neuronal apoptosis, nitric oxide synthesis and metabolism, platelet activation, NF-κB signaling pathway-mediated inflammation, oxidative stress, angiogenesis, etc. Among them, SIRT1, NF-κB, BAX, BCL-2, CASP3, and APP may be important targets for MBHD to treat VD. Low-throughput technology (qRT-PCR/WB/immunohistochemical technology) detects oxidative stress-mediated inflammation and apoptosis-related signaling pathway molecules. The molecular docking results showed that 64474-51-7, cycloartenol, ferulic acid, formononetin, kaempferol, liquiritigenin, senkyunone, wallichilide, xanthinin, and other molecules can directly interact with NF-κB p65, BAX, BCL-2, and CASP3. CONCLUSION The active compounds of MBHD interact with multiple targets and multiple pathways in a synergistic manner, and have important therapeutic effects on VD mainly by balancing oxidative stress/anti-inflammatory and antiapoptotic, enhancing metabolism, and enhancing the immune system.
Collapse
Affiliation(s)
- Kailin Yang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- Key Lab of Hunan Province for Prevention and Treatment of Cardio-Cerebral Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yaqiao Yi
- Key Lab of Hunan Province for Prevention and Treatment of Cardio-Cerebral Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Shanshan Wang
- Key Lab of Hunan Province for Prevention and Treatment of Cardio-Cerebral Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Jinwen Ge
- Key Lab of Hunan Province for Prevention and Treatment of Cardio-Cerebral Diseases with Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
11
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
12
|
Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. Int J Mol Sci 2020; 21:ijms21165763. [PMID: 32796702 PMCID: PMC7460840 DOI: 10.3390/ijms21165763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology.
Collapse
|
13
|
Liao G, Zheng K, Shorr R, Allan DS. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med 2020; 9:1344-1352. [PMID: 32681814 PMCID: PMC7581447 DOI: 10.1002/sctm.20-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial colony‐forming cells (ECFCs) hold significant promise as candidates for regenerative therapy of vascular injury. Existing studies remain largely preclinical and exhibit marked design heterogeneity. A systematic review of controlled preclinical trials of human ECFCs is needed to guide future study design and to accelerate clinical translation. A systematic search of Medline and EMBASE on 1 April 2019 returned 3131 unique entries of which 66 fulfilled the inclusion criteria. Most studies used ECFCs derived from umbilical cord or adult peripheral blood. Studies used genetically modified immunodeficient mice (n = 52) and/or rats (n = 16). ECFC phenotypes were inconsistently characterized. While >90% of studies used CD31+ and CD45−, CD14− was demonstrated in 73% of studies, CD146+ in 42%, and CD10+ in 35%. Most disease models invoked ischemia. Peripheral vascular ischemia (n = 29), central nervous system ischemia (n = 14), connective tissue injury (n = 10), and cardiovascular ischemia and reperfusion injury (n = 7) were studied most commonly. Studies showed predominantly positive results; only 13 studies reported ≥1 outcome with null results, three reported only null results, and one reported harm. Quality assessment with SYRCLE revealed potential sources of bias in most studies. Preclinical ECFC studies are associated with benefit across several ischemic conditions in animal models, although combining results is limited by marked heterogeneity in study design. In particular, characterization of ECFCs varied and aspects of reporting introduced risk of bias in most studies. More studies with greater focus on standardized cell characterization and consistency of the disease model are needed.
Collapse
Affiliation(s)
- Gary Liao
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katina Zheng
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Risa Shorr
- Information Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - David S Allan
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Wang DP, Chen SH, Wang D, Kang K, Wu YF, Su SH, Zhang YY, Hai J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem 2020; 122:151514. [PMID: 32019701 DOI: 10.1016/j.acthis.2020.151514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
To explore the potential effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced neuronal damage as well as the underlying mechanisms. Rat CCH model was established by 2-vessel occlusion (2VO). The CCH rats received andrographolide treatment for 4 weeks. The neuron loss was detected by using neuronal nuclei (NeuN) immunofluorescent staining. The expression levels of phospho-phosphatase and tensin homolog deleted on chromosome ten (p-PTEN), protein kinase B (AKT), p-AKT, and cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins were accessed by Western blotting. Moreover, the neuronal apoptosis of hippocampus tissues was detected via terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL) staining. CCH reduced the number of NeuN-positive cells, while the number was significant increased after andrographolide treatment. CCH increased the proteins expression level of p-PTEN, Caspase-3, and decreased the p-AKT, which were reversed by andrographolide treatment. Furthermore, andrographolide treatment also down-regulated CCH-induced TUNEL-apoptosis rate. Our results suggest that the PTEN/AKT pathway may be modulated by andrographolide and the damaging effects of CCH on hippocampus may be ameliorated by andrographolide treatment. Andrographolide may act as a potential therapeutic approach for chronic ischemic insults.
Collapse
|
15
|
Su SH, Wu YF, Lin Q, Wang DP, Hai J. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. J Neuroinflammation 2019; 16:260. [PMID: 31815636 PMCID: PMC6900848 DOI: 10.1186/s12974-019-1668-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that URB597 (URB) had therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuroinflammation and autophagy dysfunction. However, the interaction mechanisms underlying the CCH-induced abnormal excessive autophagy and neuroinflammation remain unknown. In this study, we investigated the roles of impaired autophagy in nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 inflammasome activation in the rat hippocampus and the underlying mechanisms under the condition of induced CCH as well as the effect of URB treatment. Methods The CCH rat model was established by bilateral common carotid artery occlusion (BCCAo), and rats were randomly divided into 11 groups as follows: (1) sham-operated, (2) BCCAo; (3) BCCAo+autophagy inhibitor 3-methyladenine (3-MA), (4) BCCAo+lysosome inhibitor chloroquine (CQ), (5) BCCAo+microglial activation inhibitor minocycline, (6) BCCAo+ROS scavenger N-acetylcysteine (NAC), (7) BCCAo+URB, (8) BCCAo+URB+3-MA, (9) BCCAo+URB+CQ, (10) BCCAo+URB+minocycline, (11) BCCAo+URB+NAC. The cell localizations of LC3, p62, LAMP1, TOM20 and NLRP3 were assessed by immunofluorescence staining. The levels of autophagy-related proteins (LC3, p62, LAMP1, BNIP3 and parkin), NLRP3 inflammasome-related proteins (NLRP3, CASP1 and IL-1β), microglial marker (OX-42) and proinflammatory cytokines (iNOS and COX-2) were evaluated by western blotting, and proinflammatory cytokines (IL-1β and TNF-a) were determined by ELISA. Reactive oxygen species (ROS) were assessed by dihydroethidium staining. The mitochondrial ultrastructural changes were examined by electron microscopy. Results CCH induced microglial overactivation and ROS accumulation, promoting the activation of the NLRP3 inflammasome and the release of IL-1β. Blocked autophagy and mitophagy flux enhanced the activation of the NLRP3-CASP1 inflammasome pathway. However, URB alleviated impaired autophagy and mitophagy by decreasing mitochondrial ROS and microglial overactivation as well as restoring lysosomal function, which would further inhibit the activation of the NLRP3-CASP1 inflammasome pathway. Conclusion These findings extended previous studies indicating the function of URB in the mitigation of chronic ischemic injury of the brain.
Collapse
Affiliation(s)
- Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| | - Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
16
|
Mikami T, Suzuki H, Komatsu K, Mikuni N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol Med Chir (Tokyo) 2019; 59:361-370. [PMID: 31281171 PMCID: PMC6796064 DOI: 10.2176/nmc.ra.2019-0059] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moyamoya disease is a unique cerebrovascular disease that is characterized by progressive bilateral stenotic alteration at the terminal portion of the internal carotid arteries. These changes induce the formation of an abnormal vascular network composed of collateral pathways known as moyamoya vessels. In quasi-moyamoya disease, a similar stenotic vascular abnormality is associated with an underlying disease, which is sometimes an inflammatory disease. Recent advances in moyamoya disease research implicate genetic background and immunological mediators, and postulate an association with inflammatory disease as a cause of, or progressive factor in, quasi-moyamoya disease. Although this disease has well-defined clinical and radiological characteristics, the role of inflammation has not been rigorously explored. Herein, we focused on reviewing two main themes: (1) molecular biology of inflammation in moyamoya disease, and (2) clinical significance of inflammation in quasi-moyamoya disease. We have summarized the findings of the former theme according to the following topics: (1) inflammatory biomarkers, (2) genetic background of inflammatory response, (3) endothelial progenitor cells, and (4) noncoding ribonucleic acids. Under the latter theme, we summarized the findings according to the following topics: (1) influence of inflammatory disease, (2) vascular remodeling, and (3) mechanisms gleaned from clinical cases. This review includes articles published up to February 2019 and provides novel insights for the treatment of the moyamoya disease and quasi-moyamoya disease.
Collapse
Affiliation(s)
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | | |
Collapse
|