1
|
Anthraper MSJ, Chandramouli A, Srinivasan S, Rangasamy J. Lyophilized platelet rich fibrin and gelatin incorporated bioadhesive bone cement composite for repair of mandibular continuity defects. Int J Biol Macromol 2024; 258:129086. [PMID: 38161027 DOI: 10.1016/j.ijbiomac.2023.129086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Mandibular continuity defects stem from conditions such as malignancies, trauma, cysts, osteomyelitis and osteoradionecrosis, presenting significant challenges. If mandibular reconstruction fails, it can result in facial collapse, causing significant aesthetic and functional concerns for the patient. In the present study we developed a bio-adhesive Bone Cement (BC) enriched with lyophilised PRF and gelatin to enhance bone repair and induce regeneration. The developed BC consisted of a mixture of Tetracalcium Phosphate (TTCP) and O-Phospho-l-serine (OPLS) in addition to lyophilised Platelet Rich Fibrin (PRF) for sustained growth factor release and gelatin (GE) for improved cement resorption. It is primarily designed for in-situ application, conforming to the shape and size of the defect for effective bone repair and regeneration. The study evaluated four groups: (i) BC (control), (ii) BC-GE (control), (iii) BC-PRF, and (iv) BC-GE-PRF. All the four groups were characterised using FTIR, SEM and XRD. The mechanical studies of the prepared beads exhibited a significant increase in the compressive strength of the PRF loaded bone cement composites. In vitro degradation study of the beads over a 60-day period revealed a significantly higher percentage of bone cement resorption in the gelatin-incorporated groups, BC-GE (44 ± 0.5 %), and BC-GE-PRF (45 ± 2 %). The assessment of growth factor release (TGF-β and VEGF) using ELISA revealed a prolonged and sustained release of both growth factors over a 28-day period. In vitro studies were performed on human Dental Follicle Stem Cells (DFSCs) to assess cell attachment, proliferation, mineralisation and osteogenic differentiation. These studies clearly depicted that BC-PRF and BC-GE-PRF showed significantly greater proliferation of DFSCs. Furthermore, BC-PRF and BC-GE-PRF samples exhibited notably elevated expression of Runx2 and OPN (osteogenic markers), as well as a higher intensity of alizarin red stain (mineralisation). Therefore, it was concluded that PRF incorporated bioadhesive bone cement composites greatly enhance the cell attachment, proliferation, mineralisation and osteogenic differentiation of the DFSCs. Thus, the PRF and gelatin incorporated bone cement composites is expected to facilitate effective and faster bone regeneration and healing in a wide range of dental and maxillofacial defects.
Collapse
Affiliation(s)
- Mary Susan J Anthraper
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Arthi Chandramouli
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sowmya Srinivasan
- Department of Periodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
2
|
Smith TR, Foley KT, Boruah S, Slotkin JR, Woodard E, Lazor JB, Cavaleri C, Brown MC, McDonough B, Hess B, Van Citters DW. Use of adhesive cranial bone flap fixation without hardware to improve mechanical strength, resist cerebrospinal fluid leakage, and maintain anatomical alignment: a laboratory study. J Neurosurg 2023; 139:517-527. [PMID: 36681962 PMCID: PMC10193477 DOI: 10.3171/2022.10.jns221657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Titanium plates and screws (TPS) are the current standard of care for fixation of cranial bone flaps. These materials have been used for decades but have known potential complications, including flap migration, bone resorption/incomplete osseous union, hardware protrusion, cosmetic deformity, wound infection/dehiscence, and cerebrospinal fluid (CSF) leakage. This study evaluated the efficacy of a novel mineral-organic bone adhesive (Tetranite) for cranial bone flap fixation. METHODS Craniotomy bone flaps created in human cadaveric skulls were tested under quasistatic and impact loading in the following conditions: 1) uncut skull; 2) bone flaps fixated with TPS alone; and 3) bone flaps fixated with bone adhesive alone. All fixative surgical procedures were performed by a group of 16 neurosurgeons in a simulated surgical environment. The position of adhesive-fixated cranial bone flaps was measured using computed tomography and compared with their original native location. The resistance of adhesive-fixated cranial bone flaps to simulated CSF leakage was also evaluated. Because there was a gap around the circumference of the TPS-fixated specimens that was visible to the naked eye, pressurized CSF leak testing was not attempted on them. RESULTS Adhesive-fixated bone flaps showed significantly stiffer and stronger quasistatic responses than TPS-fixated specimens. The strength and stiffness of the adhesive-fixated specimens were not significantly different from those of the uncut native skulls. Total and plastic deflections under 6-J impact were significantly less for adhesive-fixed bone flaps than TPS. There were no significant differences in any subthreshold impact metrics between the adhesive-fixed and native specimens at both 6-J and 12-J impact levels, with 1 exception. Plastic deflection at 6-J impact was significantly less in adhesive-fixated bone flaps than in native specimens. The energy to failure of the adhesive-fixated specimens was not significantly different from that of the native specimens. Time since fixation (20 minutes vs 10 days) did not significantly affect the impact failure properties of the adhesive-fixated specimens. Of the 16 adhesive-fixated craniotomy specimens tested, 14 did not leak at pressures as high as 40 mm Hg. CONCLUSIONS The neurosurgeons in this study had no prior exposure or experience with the bone adhesive. Despite this, improved resistance to CSF egress, superior mechanical properties, and better cosmetic outcomes were demonstrated with bone adhesive compared with TPS.
Collapse
Affiliation(s)
- Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kevin T. Foley
- Semmes-Murphey Clinic and Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sourabh Boruah
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- RevBio, Inc., Lowell, Massachusetts
| | | | - Eric Woodard
- Department of Neurosurgery, New England Baptist Hospital, Boston, Massachusetts; and
| | - John B. Lazor
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
3
|
Schlund M, Dartus J, Defrançois S, Ferri J, Delattre J, Blanchemain N, Woisel P, Lyskawa J, Chai F. In Vitro and In Vivo Evaluation of a Bio-Inspired Adhesive for Bone Fixation. Pharmaceutics 2023; 15:pharmaceutics15041233. [PMID: 37111718 PMCID: PMC10146643 DOI: 10.3390/pharmaceutics15041233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Compared to metallic hardware, an effective bone adhesive can revolutionize the treatment of clinically challenging situations such as comminuted, articular, and pediatric fractures. The present study aims to develop such a bio-inspired bone adhesive, based upon a modified mineral-organic adhesive with tetracalcium phosphate (TTCP) and phosphoserine (OPS) by incorporating nanoparticles of polydopamine (nPDA). The optimal formulation, which was screened using in vitro instrumental tensile adhesion tests, was found to be 50%molTTCP/50%molOPS-2%wtnPDA with a liquid-to-powder ratio of 0.21 mL/g. This adhesive has a substantially stronger adhesive strength (1.0-1.6 MPa) to bovine cortical bone than the adhesive without nPDA (0.5-0.6 MPa). To simulate a clinical scenario of autograft fixation under low mechanical load, we presented the first in vivo model: a rat fibula glued to the tibia, on which the TTCP/OPS-nPDA adhesive (n = 7) was shown to be effective in stabilizing the graft without displacement (a clinical success rate of 86% and 71% at 5 and 12 weeks, respectively) compared to a sham control (0%). Significant coverage of newly formed bone was particularly observed on the surface of the adhesive, thanks to the osteoinductive property of nPDA. To conclude, the TTCP/OPS-nPDA adhesive fulfilled many clinical requirements for the bone fixation, and potentially could be functionalized via nPDA to offer more biological activities, e.g., anti-infection after antibiotic loading.
Collapse
Affiliation(s)
- Matthias Schlund
- Univ. Lille, Inserm, CHU Lille, U1008-Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Service de Chirurgie Maxillo-Faciale et Stomatologie, 59000 Lille, France
- Univ. Bordeaux, CHU Bordeaux, Service de Chirurgie Maxillo-Faciale et Stomatologie, 33000 Bordeaux, France
| | - Julien Dartus
- Univ. Lille, Inserm, CHU Lille, U1008-Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
| | - Sarah Defrançois
- Univ. Lille, UMET, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, 59000 Lille, France
| | - Joël Ferri
- Univ. Lille, Inserm, CHU Lille, U1008-Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Service de Chirurgie Maxillo-Faciale et Stomatologie, 59000 Lille, France
| | - Jérôme Delattre
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, ULP 4490-MABLab-Adiposité Médullaire er Os, 59000 Lille, France
| | - Nicolas Blanchemain
- Univ. Lille, Inserm, CHU Lille, U1008-Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
| | - Patrice Woisel
- Univ. Lille, UMET, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, 59000 Lille, France
| | - Joël Lyskawa
- Univ. Lille, UMET, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, 59000 Lille, France
| | - Feng Chai
- Univ. Lille, Inserm, CHU Lille, U1008-Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
| |
Collapse
|
4
|
Bingol HB, Bender JC, Opsteen JA, Leeuwenburgh SC. Bone adhesive materials: From bench to bedside. Mater Today Bio 2023; 19:100599. [PMID: 37063249 PMCID: PMC10102013 DOI: 10.1016/j.mtbio.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.
Collapse
Affiliation(s)
- Hatice B. Bingol
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- GATT Technologies BV, Nijmegen, the Netherlands
| | | | | | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Corresponding author.
| |
Collapse
|
5
|
Gerstl JVE, Rendon LF, Burke SM, Doucette J, Mekary RA, Smith TR. Complications and cosmetic outcomes of materials used in cranioplasty following decompressive craniectomy-a systematic review, pairwise meta-analysis, and network meta-analysis. Acta Neurochir (Wien) 2022; 164:3075-3090. [PMID: 35593924 DOI: 10.1007/s00701-022-05251-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Optimal reconstruction materials for cranioplasty following decompressive craniectomy (DC) remain unclear. This systematic review, pairwise meta-analysis, and network meta-analysis compares cosmetic outcomes and complications of autologous bone grafts and alloplasts used for cranioplasty following DC. METHOD PubMed, Embase, and Cochrane were searched from inception until April 2021. A random-effects pairwise meta-analysis was used to compare pooled outcomes and 95% confidence intervals (CIs) of autologous bone to combined alloplasts. A frequentist network meta-analysis was subsequently conducted to compare multiple individual materials. RESULTS Of 2033 articles screened, 30 studies were included, consisting of 29 observational studies and one randomized control trial. Overall complications were statistically significantly higher for autologous bone compared to combined alloplasts (RR = 1.56, 95%CI = 1.14-2.13), hydroxyapatite (RR = 2.60, 95%CI = 1.17-5.78), polymethylmethacrylate (RR = 1.50 95%CI = 1.08-2.08), and titanium (Ti) (RR = 1.56 95%CI = 1.03-2.37). Resorption occurred only in autologous bone (15.1%) and not in alloplasts (0.0%). When resorption was not considered, there was no difference in overall complications between autologous bone and combined alloplasts (RR = 1.00, 95%CI = 0.75-1.34), nor between any individual materials. Dehiscence was lower for autologous bone compared to combined alloplasts (RR = 0.39, 95%CI = 0.19-0.79) and Ti (RR = 0.34, 95%CI = 0.15-0.76). There was no difference between autologous bone and combined alloplasts with respect to infection (RR = 0.85, 95%CI = 0.56-1.30), migration (RR = 1.36, 95%CI = 0.63-2.93), hematoma (RR = 0.98, 95%CI = 0.53-1.79), seizures (RR = 0.83, 95%CI = 0.29-2.35), satisfactory cosmesis (RR = 0.88, 95%CI = 0.71-1.08), and reoperation (RR = 1.66, 95%CI = 0.90-3.08). CONCLUSIONS Bone resorption is only a consideration in autologous cranioplasty compared to bone substitutes explaining higher complications for autologous bone. Dehiscence is higher in alloplasts, particularly in Ti, compared to autologous bone.
Collapse
Affiliation(s)
- Jakob V E Gerstl
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,University College London Medical School, London, WC1E 6DE, UK.
| | - Luis F Rendon
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shane M Burke
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurosurgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Joanne Doucette
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, 02115, USA
| | - Rania A Mekary
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, 02115, USA
| | - Timothy R Smith
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Procter P, Hulsart-Billström G, Alves A, Pujari-Palmer M, Wenner D, Insley G, Engqvist H, Larsson S. Gluing Living Bone Using a Biomimetic Bioadhesive: From Initial Cut to Final Healing. Front Bioeng Biotechnol 2021; 9:728042. [PMID: 34820360 PMCID: PMC8606677 DOI: 10.3389/fbioe.2021.728042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0–28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.
Collapse
Affiliation(s)
- Philip Procter
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden.,Biomimetic Innovations Ltd, Shannon, Ireland
| | - Gry Hulsart-Billström
- Department of Surgical Sciences, Division of Orthopaedics, Uppsala University, Uppsala, Sweden
| | | | - Michael Pujari-Palmer
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - David Wenner
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - Gerard Insley
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden.,Biomimetic Innovations Ltd, Shannon, Ireland
| | - Håkan Engqvist
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - Sune Larsson
- Department of Surgical Sciences, Division of Orthopaedics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Kirillova A, Nillissen O, Liu S, Kelly C, Gall K. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2021; 10:e2001058. [PMID: 33111508 DOI: 10.1002/adhm.202001058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Bioresorbable bone adhesives may provide remarkable clinical solutions in areas ranging from fixation and osseointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Mechanical properties of bone adhesives are critical for their successful application in vivo. Reinforcement of a tetracalcium phosphate-phosphoserine bone adhesive is investigated using three degradable reinforcement strategies: poly(lactic-co-glycolic) (PLGA) fibers, PLGA sutures, and chitosan lactate. All three approaches lead to higher compressive strengths of the material and better fatigue performance. Reinforcement with PLGA fibers and chitosan lactate results in a 100% probability of survival of samples at 20 MPa maximum compressive stress level, which is almost ten times higher compared to compressive loads observed in the intervertebral discs of the spine in vivo. High adhesive shear strength of 5.1 MPa is achieved for fiber-reinforced bone adhesive by tuning the surface architecture of titanium samples. Finally, biological and biomechanical performance of the fiber-reinforced adhesive is evaluated in a rabbit distal femur osteotomy model, showing the potential of the bone adhesive for clinical use.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Olivia Nillissen
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Samuel Liu
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|