1
|
Sun H, Sun K, Tian H, Chen X, Su S, Tu Y, Chen S, Wang J, Peng M, Zeng M, Li X, Luo Y, Xie Y, Feng X, Li Z, Zhang X, Li X, Liu Y, Ye W, Chen Z, Zhu Z, Li Y, Xia F, Zhou H, Duan C. Integrated metagenomic and metabolomic analysis reveals distinctive stage-specific gut-microbiome-derived metabolites in intracranial aneurysms. Gut 2024; 73:1662-1674. [PMID: 38960582 DOI: 10.1136/gutjnl-2024-332245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome. DESIGN We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified. RESULTS Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion. CONCLUSION Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.
Collapse
Affiliation(s)
- Haitao Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaijian Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Tian
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiheng Chen
- Beijing Neurosurgical Institute, Beijing Engineering Research Center for Interventional Neuroradiology, Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Shixing Su
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Tu
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shilan Chen
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxuan Wang
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meichang Peng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiqin Zeng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunhao Luo
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yugu Xie
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Feng
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Li
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Zhang
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xifeng Li
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanchao Liu
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Ye
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengrui Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Youxiang Li
- Beijing Neurosurgical Institute, Beijing Engineering Research Center for Interventional Neuroradiology, Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Fangbo Xia
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanzhi Duan
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wang X, Huang X. Risk factors and predictive indicators of rupture in cerebral aneurysms. Front Physiol 2024; 15:1454016. [PMID: 39301423 PMCID: PMC11411460 DOI: 10.3389/fphys.2024.1454016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral aneurysms are abnormal dilations of blood vessels in the brain that have the potential to rupture, leading to subarachnoid hemorrhage and other serious complications. Early detection and prediction of aneurysm rupture are crucial for effective management and prevention of rupture-related morbidities and mortalities. This review aims to summarize the current knowledge on risk factors and predictive indicators of rupture in cerebral aneurysms. Morphological characteristics such as aneurysm size, shape, and location, as well as hemodynamic factors including blood flow patterns and wall shear stress, have been identified as important factors influencing aneurysm stability and rupture risk. In addition to these traditional factors, emerging evidence suggests that biological and genetic factors, such as inflammation, extracellular matrix remodeling, and genetic polymorphisms, may also play significant roles in aneurysm rupture. Furthermore, advancements in computational fluid dynamics and machine learning algorithms have enabled the development of novel predictive models for rupture risk assessment. However, challenges remain in accurately predicting aneurysm rupture, and further research is needed to validate these predictors and integrate them into clinical practice. By elucidating and identifying the various risk factors and predictive indicators associated with aneurysm rupture, we can enhance personalized risk assessment and optimize treatment strategies for patients with cerebral aneurysms.
Collapse
Affiliation(s)
- Xiguang Wang
- Department of Research & Development Management, Shanghai Aohua Photoelectricity Endoscope Co., Ltd., Shanghai, China
| | - Xu Huang
- Department of Research & Development Management, Shanghai Aohua Photoelectricity Endoscope Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
Ushio Y, Kataoka H, Akagawa H, Sato M, Manabe S, Kawachi K, Makabe S, Akihisa T, Seki M, Teraoka A, Iwasa N, Yoshida R, Tsuchiya K, Nitta K, Hoshino J, Mochizuki T. Factors associated with early-onset intracranial aneurysms in patients with autosomal dominant polycystic kidney disease. J Nephrol 2024; 37:983-992. [PMID: 38315279 DOI: 10.1007/s40620-023-01866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Recently, the importance of attribute-based medicine has been emphasized. The effects of early-onset intracranial aneurysms on patients can be significant and long-lasting. Herein, we compared the factors associated with intracranial aneurysms in patients with autosomal dominant polycystic kidney disease (ADPKD) according to age categories (≥ 50 years, < 50 years). METHODS We included 519 ADPKD patients, with a median age of 44 years, estimated glomerular filtration rate of 54.5 mL/min/1.73 m2, and total follow-up duration of 3104 patient-years. Logistic regression analyses were performed to determine factors associated with intracranial aneurysms. RESULTS Regarding the presence of intracranial aneurysm, significant interactions were identified between the age category (age ≥ 50 years), female sex (P = 0.0027 for the interaction) and hypertension (P = 0.0074 for the interaction). Female sex and hypertension were associated with intracranial aneurysm risk factors only in patients aged ≥ 50 years. The presence of intracranial aneurysm was significantly associated with chronic kidney disease (CKD) stages 4-5 (odds ratio [OR] = 3.87, P = 0.0007) and family history of intracranial aneurysm or subarachnoid hemorrhage (OR = 2.30, P = 0.0217) in patients aged < 50 years. For patients aged ≥ 50 years, in addition to the abovementioned factors [OR = 2.38, P = 0.0355 for CKD stages 4-5; OR = 3.49, P = 0.0094 for family history of intracranial aneurysm or subarachnoid hemorrhage], female sex (OR = 4.51, P = 0.0005), and hypertension (OR = 5.89, P = 0.0012) were also associated with intracranial aneurysm. CONCLUSION Kidney dysfunction and family history of intracranial aneurysm or subarachnoid hemorrhage are risk factors for early-onset intracranial aneurysm. Patients aged < 50 years with a family history of intracranial aneurysm or subarachnoid hemorrhage or with CKD stages 4-5 may be at an increased risk of early-onset intracranial aneurysm.
Collapse
Affiliation(s)
- Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keiko Kawachi
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Momoko Seki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsuko Teraoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Naomi Iwasa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
4
|
Tian Z, Wu X, Zhang B, Li W, Wang C. Transcription factor CEBPB mediates intracranial aneurysm rupture by inflammatory and immune response. CNS Neurosci Ther 2024; 30:e14603. [PMID: 38332649 PMCID: PMC10853640 DOI: 10.1111/cns.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Genetic factors play a major part in mediating intracranial aneurysm (IA) rupture. However, research on the role of transcription factors (TFs) in IA rupture is rare. AIMS Bioinformatics analysis was performed to explore the TFs and related functional pathways involved in IA rupture. RESULTS A total of 63 differentially expressed transcription factors (DETFs) were obtained. Significantly enriched biological processes of these DETFs were related to regulation of myeloid leukocyte differentiation. The top 10 DETFs were screened based on the MCC algorithm from the protein-protein interaction network. After screening and validation, it was finally determined that CEBPB may be the hub gene for aneurysm rupture. The GSEA results of CEBPB were mainly associated with the inflammatory response, which was also verified by the experimental model of cellular inflammation in vitro. CONCLUSION The inflammatory and immune response may be closely associated with aneurysm rupture. CEBPB may be the hub gene for aneurysm rupture and may have diagnostic value. Therefore, CEBPB may serve as the diagnostic signature for RIAs and a potential target for intervention.
Collapse
Affiliation(s)
- Zhongbin Tian
- Department of Interventional Radiology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Xuefang Wu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Baorui Zhang
- Department of Neurosurgery, Beijing Tongren HospitalCapital Medial UniversityBeijingChina
| | - Wei Li
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chao Wang
- Department of Neurointerventional SurgeryBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
5
|
Li Y, Zhu Y, Liu Y, Li G, Qu X. Comparative Study of the Diagnostic Value of Zero-Echo-Time Magnetic Resonance Angiography With Time-of-Flight Magnetic Resonance Angiography for Intracranial Aneurysm. J Comput Assist Tomogr 2024; 48:169-174. [PMID: 37531630 DOI: 10.1097/rct.0000000000001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Intracranial aneurysm (IAN) is a class of cerebrovascular diseases with a serious threat to patients, and an accurate diagnosis of IAN is very important for both selection of the appropriate therapy and prediction of the prognosis. This study aimed to evaluate the diagnostic values of zero-echo-time magnetic resonance angiography (ZTE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA) in patients with IAN. METHODS Digital subtraction angiography, ZTE-MRA, and TOF-MRA were performed in 18 patients diagnosed with IAN. The images of ZTE-MRA and TOF-MRA were compared for image quality, qualitative diagnosis, detailed diagnosis, number of thrombi, and residual aneurysm lumen, with digital subtraction angiography as the reference. RESULTS Zero-echo-time MRA and TOF-MRA did not show a significant difference in image quality or detailed information (including aneurysm size, growth direction, and angle with the aneurysm-carrying vessel) ( P > 0.05). However, ZTE-MRA showed advantages over TOF-MRA in terms of qualitative diagnosis (sensitivity and specificity), intra-aneurismal thrombus detection, and residual aneurysm lumen detection after embolization ( P < 0.05). CONCLUSIONS Compared with TOF-MRA, ZTE-MRA showed greater diagnostic value for IAN patients in terms of qualitative diagnosis, as well as the detection of intra-aneurysm thrombi and residual aneurysm lumen after embolization.
Collapse
Affiliation(s)
- Yushi Li
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Yifeng Zhu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Yajie Liu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Ge Li
- Department of Oncology, Yankuang New Journey General Hospital, Jining, China
| | - Xiaofeng Qu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| |
Collapse
|
6
|
Toader C, Eva L, Bratu BG, Covache-Busuioc RA, Costin HP, Dumitrascu DI, Glavan LA, Corlatescu AD, Ciurea AV. Intracranial Aneurysms and Genetics: An Extensive Overview of Genomic Variations, Underlying Molecular Dynamics, Inflammatory Indicators, and Forward-Looking Insights. Brain Sci 2023; 13:1454. [PMID: 37891822 PMCID: PMC10605587 DOI: 10.3390/brainsci13101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review initiates by outlining the clinical relevance of IA, underlining the pressing need to comprehend its foundational elements. We delve into the assorted risk factors tied to IA, spotlighting both environmental and genetic influences. Additionally, we illuminate distinct genetic syndromes linked to a pronounced prevalence of intracranial aneurysms, underscoring the pivotal nature of genetics in this ailment's susceptibility. A detailed scrutiny of genome-wide association studies allows us to identify key genomic changes and locations associated with IA risk. We further detail the molecular and physiopathological dynamics instrumental in IA's evolution and escalation, with a focus on inflammation's role in affecting the vascular landscape. Wrapping up, we offer a glimpse into upcoming research directions and the promising horizons of personalized therapeutic strategies in IA intervention, emphasizing the central role of genetic insights. This thorough review solidifies genetics' cardinal role in IA, positioning it as a cornerstone resource for professionals in the realms of neurology and genomics.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
7
|
Gulati A, Watnick T. Vascular Complications in Autosomal Dominant Polycystic Kidney Disease: Perspectives, Paradigms, and Current State of Play. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:429-439. [PMID: 38097333 DOI: 10.1053/j.akdh.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading cause of inherited kidney disease with significant contributions to CKD and end-stage kidney disease. The underlying polycystin proteins (PC1 and PC2) have widespread tissue expression and complex functional roles making ADPKD a systemic disease. Vascular complications, particularly intracranial aneurysms (ICA) are the most feared due to their potential for devastating neurological complications and sudden death. Intracranial aneurysms occur in 8-12% of all patients with ADPKD, but the risk is intensified 4-5-fold in those with a positive family history. The basis for this genetic risk is not well understood and could conceivably be due to features of the germline mutation with a significant contribution of other genetic modifiers and/or environmental factors. Here we review what is known about the natural history and genetics of unruptured ICA in ADPKD including the prevalence and risk factors for aneurysm formation and subarachnoid hemorrhage. We discuss two alternative screening strategies and recommend a practical algorithm that targets those at highest risk for ICA with a positive family history for screening.
Collapse
Affiliation(s)
- Ashima Gulati
- Division of Nephrology, Children's National Hospital and Children's National Research Institute, Washington, DC
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
8
|
Hale AT, He J, Jones J. Multinational Genome-Wide Association Study and Functional Genomics Analysis Implicates Decreased SIRT3 Expression Underlying Intracranial Aneurysm Risk. Neurosurgery 2022; 91:625-632. [PMID: 35838494 DOI: 10.1227/neu.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genetic mechanisms regulating intracranial aneurysm (IA) formation and rupture are largely unknown. To identify germline-genetic risk factors for IA, we perform a multinational genome-wide association study (GWAS) of individuals from the United Kingdom, Finland, and Japan. OBJECTIVE To identify a shared, multinational genetic basis of IA. METHODS Using GWAS summary statistics from UK Biobank, FinnGen, and Biobank Japan, we perform a meta-analysis of IA, containing ruptured and unruptured IA cases. Logistic regression was used to identify IA-associated single-nucleotide polymorphisms. Effect size was calculated using the coefficient r , estimating the contribution of the single-nucleotide polymorphism to the genetic variance of the trait. Genome-wide significance was set at 5.0 × 10 -8 . Expression quantitative trait loci mapping and functional genomics approaches were used to infer mechanistic consequences of implicated variants. RESULTS Our cohort contained 155 154 individuals (3132 IA cases and 152 022 controls). We identified 4 genetic loci reaching genome-wide: rs73392700 ( SIRT3 , effect size = 0.28, P = 4.3 × 10 -12 ), rs58721068 ( EDNRA , effect size = -0.20, P = 4.8 × 10 -12 ), rs4977574 ( AL359922.1 , effect size = 0.18, P = 7.9 × 10 -12 ), and rs11105337 ( ATP2B1 , effect size = -0.15, P = 3.4 × 10 -8 ). Expression quantitative trait loci mapping suggests that rs73392700 has a large effect size on SIRT3 gene expression in arterial and muscle, but not neurological, tissues. Functional genomics analysis suggests that rs73392700 causes decreased SIRT3 gene expression. CONCLUSION We perform a multinational GWAS of IA and identify 4 genetic risk loci, including 2 novel IA risk loci ( SIRT3 and AL359922.1 ). Identification of high-risk genetic loci across ancestries will enable population-genetic screening approaches to identify patients with IA.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jesse Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Vivas A, Mikhal J, Ong GM, Eigenbrodt A, van der Meer AD, Aquarius R, Geurts BJ, Boogaarts HD. Aneurysm-on-a-Chip: Setting Flow Parameters for Microfluidic Endothelial Cultures Based on Computational Fluid Dynamics Modeling of Intracranial Aneurysms. Brain Sci 2022; 12:603. [PMID: 35624990 PMCID: PMC9139202 DOI: 10.3390/brainsci12050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Intracranial aneurysms are pouch-like extrusions from the vessels at the base of the brain which can rupture and cause a subarachnoid hemorrhage. The pathophysiological mechanism of aneurysm formation is thought to be a consequence of blood flow (hemodynamic) induced changes on the endothelium. In this study, the results of a personalized aneurysm-on-a-chip model using patient-specific flow parameters and patient-specific cells are presented. CT imaging was used to calculate CFD parameters using an immersed boundary method. A microfluidic device either cultured with human umbilical vein endothelial cells (HUVECs) or human induced pluripotent stem cell-derived endothelial cells (hiPSC-EC) was used. Both types of endothelial cells were exposed for 24 h to either 0.03 Pa or 1.5 Pa shear stress, corresponding to regions of low shear and high shear in the computational aneurysm model, respectively. As a control, both cell types were also cultured under static conditions for 24 h as a control. Both HUVEC and hiPSC-EC cultures presented as confluent monolayers with no particular cell alignment in static or low shear conditions. Under high shear conditions HUVEC elongated and aligned in the direction of the flow. HiPSC-EC exhibited reduced cell numbers, monolayer gap formation and cells with aberrant, spread-out morphology. Future research should focus on hiPSC-EC stabilization to allow personalized intracranial aneurysm models.
Collapse
Affiliation(s)
- Aisen Vivas
- Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands; (A.V.); (A.E.); (A.D.v.d.M.)
| | - Julia Mikhal
- Multiscale Modeling and Simulation Group, Department of Applied Mathematics, University of Twente, 7522 NB Enschede, The Netherlands; (J.M.); (G.M.O.); (B.J.G.)
| | - Gabriela M. Ong
- Multiscale Modeling and Simulation Group, Department of Applied Mathematics, University of Twente, 7522 NB Enschede, The Netherlands; (J.M.); (G.M.O.); (B.J.G.)
| | - Anna Eigenbrodt
- Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands; (A.V.); (A.E.); (A.D.v.d.M.)
| | - Andries D. van der Meer
- Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands; (A.V.); (A.E.); (A.D.v.d.M.)
| | - Rene Aquarius
- Department of Neurosurgery, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands;
| | - Bernard J. Geurts
- Multiscale Modeling and Simulation Group, Department of Applied Mathematics, University of Twente, 7522 NB Enschede, The Netherlands; (J.M.); (G.M.O.); (B.J.G.)
| | - Hieronymus D. Boogaarts
- Department of Neurosurgery, Radboud University Medical Center, 6525 XZ Nijmegen, The Netherlands;
| |
Collapse
|
10
|
Gao H, You W, Lv J, Li Y. Hemodynamic Analysis of Pipeline Embolization Device Stent for Treatment of Giant Intracranial Aneurysm under Unsupervised Learning Algorithm. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8509195. [PMID: 35028125 PMCID: PMC8752217 DOI: 10.1155/2022/8509195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
To treat large intracranial aneurysms, pipeline embolization device (PED) stent with unsupervised learning algorithms was utilized. Unsupervised learning model algorithm was used to screen aneurysm health big data, find aneurysm blood flow and PED stent positioning characteristic parameters, and guide PED stent treatment of intracranial aneurysms. The research objects were 100 patients with intracranial large aneurysm admitted to X Hospital of X Province from June 2020 to June 2021, who were enrolled into two groups. One group used the prototype transfer generative adversarial network (PTGAN) model to measure mean blood flow and mean vascular pressure and guide the placement of PED stents (PTGAN group). The other group did not use the model to place PED (control group). The PTGAN model can learn feature information from horizontal and vertical directions, with smooth edges and prominent features, which can effectively extract the main morphological and texture features of aneurysms. Compared with the convolutional neural network (CNN) model, the accuracy of the PTGAN model increased by 8.449% (87.452%-79.003%), and the precision increased by 8.347% (91.23%-82.883%). The recall rate increased by 7.011% (87.231%-80.22%), and the F1 score increased by 8.09% (89.73%-81.64%). After the adoption of the PTGAN model, the average blood flow inside the aneurysm body was 0.22 (m/s). After the adoption of the CNN model, the average blood flow inside the aneurysm body was 0.21 (m/s), and the difference was 0.01 (m/s), which was considerable (p < 0.05). Through this research, it was found that the PTGAN model was better than the CNN model in terms of accuracy, precision, recall, and F1 score values. The PTGAN model was better than the CNN model in detecting the average blood flow rate and average blood pressure after treatment, and the blood flowed smoothly. Postoperative complications and postoperative relief were also better than those of the control group. In summary, based on the unsupervised learning algorithm, the PED stent had a good adoption effect in the treatment of intracranial aneurysms and was suitable for subsequent treatment.
Collapse
Affiliation(s)
- Haibin Gao
- Beijing Tiantan Hospital, Capital Medical University, Beijing Institute of Neurosurgery, Beijing 100069, China
- Neurosurgery of China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing 100069, China
| | - Wei You
- Beijing Tiantan Hospital, Capital Medical University, Beijing Institute of Neurosurgery, Beijing 100069, China
| | - Jian Lv
- Beijing Tiantan Hospital, Capital Medical University, Beijing Institute of Neurosurgery, Beijing 100069, China
| | - Youxiang Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing Institute of Neurosurgery, Beijing 100069, China
| |
Collapse
|
11
|
Ashvetiya T, Fan SX, Chen YJ, Williams CH, O’Connell JR, Perry JA, Hong CC. Identification of novel genetic susceptibility loci for thoracic and abdominal aortic aneurysms via genome-wide association study using the UK Biobank Cohort. PLoS One 2021; 16:e0247287. [PMID: 34469433 PMCID: PMC8409653 DOI: 10.1371/journal.pone.0247287] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) are known to have a strong genetic component. METHODS AND RESULTS In a genome-wide association study (GWAS) using the UK Biobank, we analyzed the genomes of 1,363 individuals with AAA compared to 27,260 age, ancestry, and sex-matched controls (1:20 case:control study design). A similar analysis was repeated for 435 individuals with TAA compared to 8,700 controls. Polymorphism with minor allele frequency (MAF) >0.5% were evaluated. We identified novel loci near LINC01021, ATOH8 and JAK2 genes that achieved genome-wide significance for AAA (p-value <5x10-8), in addition to three known loci. For TAA, three novel loci in CTNNA3, FRMD6 and MBP achieved genome-wide significance. There was no overlap in the genes associated with AAAs and TAAs. Additionally, we identified a linkage group of high-frequency variants (MAFs ~10%) encompassing FBN1, the causal gene for Marfan syndrome, which was associated with TAA. In FinnGen PheWeb, this FBN1 haplotype was associated with aortic dissection. Finally, we found that baseline bradycardia was associated with TAA, but not AAA. CONCLUSIONS Our GWAS found that AAA and TAA were associated with distinct sets of genes, suggesting distinct underlying genetic architecture. We also found association between baseline bradycardia and TAA. These findings, including JAK2 association, offer plausible mechanistic and therapeutic insights. We also found a common FBN1 linkage group that is associated with TAA and aortic dissection in patients who do not have Marfan syndrome. These FBN1 variants suggest shared pathophysiology between Marfan disease and sporadic TAA.
Collapse
Affiliation(s)
- Tamara Ashvetiya
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sherry X. Fan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yi-Ju Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles H. Williams
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jeffery R. O’Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Charles C. Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Bir SC, Khan MW, Javalkar V, Toledo EG, Kelley RE. Emerging Concepts in Vascular Dementia: A Review. J Stroke Cerebrovasc Dis 2021; 30:105864. [PMID: 34062312 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105864] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Vascular dementia (VaD) is the second most common cause of dementia and a major health concern worldwide. A comprehensive review on VaD is warranted for better understanding and guidance for the practitioner. We provide an updated overview of the epidemiology, pathophysiological mechanisms, neuroimaging patterns as well as current diagnostic and therapeutic approaches. MATERIALS AND METHODS A narrative review of current literature in VaD was performed based on publications from the database of PubMed, Scopus and Google Scholar up to January, 2021. RESULTS VaD can be the result of ischemic or hemorrhagic tissue injury in a particular region of the brain which translates into clinically significant cognitive impairment. For example, a cerebral infarct in the speech area of the dominant hemisphere would translate into clinically significant impairment as would involvement of projection pathways such as the arcuate fasciculus. Specific involvement of the angular gyrus of the dominant hemisphere, with resultant Gerstman's syndrome, could have a pronounced effect on functional ability despite being termed a "minor stroke". Small vessel cerebrovascular disease can have a cumulate effect on cognitive function over time. It is unfortunately well recognized that "good" functional recovery in acute ischemic or haemorrhagic stroke, including subarachnoid haemorrhage, does not necessarily translate into good cognitive recovery. The victim may often be left unable to have gainful employment, drive a car safely or handle their affairs independently. CONCLUSIONS This review should serve as a compendium of updated information on VaD and provide guidance in terms of newer diagnostic and potential therapeutic approaches.
Collapse
Affiliation(s)
- Shyamal C Bir
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Muhammad W Khan
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | - Vijayakumar Javalkar
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA
| | | | - Roger E Kelley
- Department of Neurology Ocshner/LSU Health Sciences Center-Sheveport, Shreveport, LA, USA.
| |
Collapse
|
13
|
Teixeira FS, Neufeld E, Kuster N, Watton PN. Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases. Biomech Model Mechanobiol 2020; 19:2413-2431. [PMID: 32533497 PMCID: PMC7603456 DOI: 10.1007/s10237-020-01351-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/12/2020] [Indexed: 11/03/2022]
Abstract
We present a novel patient-specific fluid-solid-growth framework to model the mechanobiological state of clinically detected intracranial aneurysms (IAs) and their evolution. The artery and IA sac are modeled as thick-walled, non-linear elastic fiber-reinforced composites. We represent the undulation distribution of collagen fibers: the adventitia of the healthy artery is modeled as a protective sheath whereas the aneurysm sac is modeled to bear load within physiological range of pressures. Initially, we assume the detected IA is stable and then consider two flow-related mechanisms to drive enlargement: (1) low wall shear stress; (2) dysfunctional endothelium which is associated with regions of high oscillatory flow. Localized collagen degradation and remodelling gives rise to formation of secondary blebs on the aneurysm dome. Restabilization of blebs is achieved by remodelling of the homeostatic collagen fiber stretch distribution. This integrative mechanobiological modelling workflow provides a step towards a personalized risk-assessment and treatment of clinically detected IAs.
Collapse
Affiliation(s)
| | - Esra Neufeld
- IT’IS Foundation & ETH Zürich, Zürich, Switzerland
| | - Niels Kuster
- IT’IS Foundation & ETH Zürich, Zürich, Switzerland
| | - Paul N. Watton
- Department of Computer Science, Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
14
|
Wang Y, Niu L, Zhao J, Wang M, Li K, Zheng Y. An update: mechanisms of microRNA in primary open-angle glaucoma. Brief Funct Genomics 2020; 20:19-27. [PMID: 33165516 DOI: 10.1093/bfgp/elaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a disease with characteristic optic neuropathy and loss of vision, leading to blindness, and primary open-angle glaucoma (POAG) is the most common glaucoma type throughout the world. Genetic susceptibility is the main factor in POAG, and most susceptibility genes cause changes in microRNA expression and function, thereby leading to POAG occurrence and development. Increasing evidence indicates that many microRNAs are involved in the regulation of intraocular pressure (IOP) and play an important role in the increase in IOP in POAG. Additionally, microRNA is closely related to optic nerve damage factors (mechanical stress, hypoxia and inflammation). This review discusses the effect of single-nucleotide polymorphisms in POAG-related genes on microRNA and the value of microRNA in the diagnosis and treatment of POAG.
Collapse
Affiliation(s)
- Yuanping Wang
- The author was born in 1996 in Inner Mongolia, China
| | - Lingzhi Niu
- The author was born in 1992 in Shandong, China
| | - Jing Zhao
- The author was born in 1985 in Shenyang, China
| | - Mingxuan Wang
- The author was born in 1992 in Jilin, China. She received her PhD degree from Jilin University in 2020
| | - Ke Li
- The author was born in 1993 in Henan, China. She started her PhD degree in 2019 at Jilin University
| | - Yajuan Zheng
- The author was born in 1969 in Shenyang, China. She received her PhD degree in 2003. She served as a doctoral supervisor at Jilin University in 2005
| |
Collapse
|
15
|
Jiang Z, Huang J, You L, Zhang J, Li B. STAT3 Contributes to Intracranial Aneurysm Formation and Rupture by Modulating Inflammatory Response. Cell Mol Neurobiol 2020; 41:1715-1725. [PMID: 32804311 DOI: 10.1007/s10571-020-00941-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/08/2020] [Indexed: 02/04/2023]
Abstract
Intracranial aneurysm (IA) is a common type of refractory cerebrovascular diseases. Inflammatory responses have been reported to be associated with the pathogenesis of IA. We aimed to study the role of STAT3 on IA formation and inflammatory response. STAT3 expression and clinicopathological factors were analyzed in IA and normal cerebral arteries. mRNA level of STAT3 was detected in normal, unruptured, and ruptured IA tissues by RT-PCR and Western blot. Inflammatory cytokines were examined by ELISA in unruptured, ruptured IA tissues, as well as cells with STAT3 overexpression or knockdown. mRNA of phenotypic modulation-related factors was tested by RT-PCR in STAT3 overexpressing or knockdown VSMCs. STAT3 expression was upregulated in ruptured IA tissues and highly associated with IA diameter and IA type. Inflammatory cytokine secretion was increased in ruptured IA samples and positively correlated with STAT3 expression. STAT3 overexpression led to enhanced expression of SM-α actin, SM-MHC, MMP2, and MMP9, and increased secretion of inflammatory cytokines. Our findings have demonstrated that STAT3 is a key regulator in IA formation by modulating inflammatory cytokine expression.
Collapse
Affiliation(s)
- Zhixian Jiang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jiaxin Huang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lingtong You
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jinning Zhang
- Inpatient Department District N13, Chendong Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Bingyu Li
- Geriatrics Dept District 7, Dongjie Branch of Quanzhou First Hospital, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
16
|
Sturiale CL, Stumpo V, Ricciardi L, Trevisi G, Valente I, D'Arrigo S, Latour K, Barbone P, Albanese A. Retrospective application of risk scores to ruptured intracranial aneurysms: would they have predicted the risk of bleeding? Neurosurg Rev 2020; 44:1655-1663. [PMID: 32715359 DOI: 10.1007/s10143-020-01352-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
As the incidental diagnosis of unruptured intracranial aneurysms has been increasing, several scores were developed to predict risk of rupture and growth to guide the management choice. We retrospectively applied these scores to a multicenter series of patients with subarachnoid hemorrhage to test whether they would have predicted the risk of bleeding in the event of aneurysm discovery previous to its rupture. Demographical, clinical, and radiological information of 245 adults were retrieved from two neurovascular centers' database. Data were pooled and PHASES, UCAS, and ELAPSS scores were retrospectively calculated for the whole population and their performances in identifying aneurysms at risk of rupture were compared. Mean PHASES, UCAS, and ELAPSS scores were 5.12 ± 3.08, 5.09 ± 2.62, and 15.88 ± 8.07, respectively. Around half (46%) of patients would have been assigned to the low- or very low-risk class (5-year rupture risk < 1%) in PHASES. Around 28% of patients would have been in a low-risk class, with a probability of 3-year rupture risk < 1% according to UCAS. Finally, ELAPSS score application showed a wider distribution among the risk classes, but a significant proportion of patients (45.5%) lie in the low- or intermediate-risk class for aneurysm growth. A high percentage of patients with ruptured aneurysms in this multicenter cohort would have been assigned to the lower risk categories for aneurysm growth and rupture with all the tested scores if they had been discovered before the rupture. Based on these observations, physicians should be careful about drawing therapeutic conclusions solely based on application of these scores.
Collapse
Affiliation(s)
- Carmelo Lucio Sturiale
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vittorio Stumpo
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Luca Ricciardi
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Trevisi
- Department of Neurosurgery, Santo Spirito Hospital, Università degli Studi di Chieti-Pescara, Chieti, Italy
| | - Iacopo Valente
- Department of Bioimaging, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sonia D'Arrigo
- Department of Anesthesiology and Intensive Care, Fodazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Kristy Latour
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Barbone
- Department of Neurosurgery, Santo Spirito Hospital, Università degli Studi di Chieti-Pescara, Chieti, Italy
| | - Alessio Albanese
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Iosif C. Neurovascular devices for the treatment of intracranial aneurysms: emerging and future technologies. Expert Rev Med Devices 2020; 17:173-188. [PMID: 32141395 DOI: 10.1080/17434440.2020.1733409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Despite numerous advances in the endovascular treatment of intracranial aneurysms (IAs), treatment in cases of wide-neck, complex configurations or branching locations remains challenging. Apart from the paradigm shift introduced by flow diverters, several other devices have seen the light or are under development in order to address these challenges.Areas covered: We performed a review of the novel implantable endovascular devices which have been introduced for the treatment of IAs, from 1 January 2014 to 1 September 2019, excluding classic flow diverter and intracranial stent designs.Expert opinion: Alternative designs have been proposed for the treatment of IAs at branching positions, which do not jail the side branches, with or without flow diversion effect, most of which with good initial outcomes. Endosaccular devices have also been proposed, some of which with lower initial total occlusion rates. Alternative materials such as biopolymers have also been proposed and are under bench research. Despite the challenges in the exploitation of some of the new devices, most of them seem to provide solutions to some current technical shortcomings. The exploitation of the biological phenomena and the physical properties of the devices will allow us to expand the therapeutic armamentarium for more complex IA cases.
Collapse
Affiliation(s)
- Christina Iosif
- School of Medicine, European University of Cyprus, Nicosia, Cyprus.,Department of Interventional Neuroradiology, Henry Dunant Hospital, Athens, Greece.,Department of Interventional Neuroradiology, Iaso Hospital, Athens, Greece
| |
Collapse
|