1
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun 2023; 5:fcad171. [PMID: 37304793 PMCID: PMC10257440 DOI: 10.1093/braincomms/fcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Patients with movement disorders treated by deep brain stimulation do not always achieve successful therapeutic alleviation of motor symptoms, even in cases where surgery is without complications. Magnetic resonance imaging (MRI) offers methods to investigate structural brain-related factors that may be predictive of clinical motor outcomes. This review aimed to identify features which have been associated with variability in clinical post-operative motor outcomes in patients with Parkinson's disease, dystonia, and essential tremor from structural MRI modalities. We performed a literature search for articles published between 1 January 2000 and 1 April 2022 and identified 5197 articles. Following screening through our inclusion criteria, we identified 60 total studies (39 = Parkinson's disease, 11 = dystonia syndromes and 10 = essential tremor). The review captured a range of structural MRI methods and analysis techniques used to identify factors related to clinical post-operative motor outcomes from deep brain stimulation. Morphometric markers, including volume and cortical thickness were commonly identified in studies focused on patients with Parkinson's disease and dystonia syndromes. Reduced metrics in basal ganglia, sensorimotor and frontal regions showed frequent associations with reduced motor outcomes. Increased structural connectivity to subcortical nuclei, sensorimotor and frontal regions was also associated with greater motor outcomes. In patients with tremor, increased structural connectivity to the cerebellum and cortical motor regions showed high prevalence across studies for greater clinical motor outcomes. In addition, we highlight conceptual issues for studies assessing clinical response with structural MRI and discuss future approaches towards optimizing individualized therapeutic benefits. Although quantitative MRI markers are in their infancy for clinical purposes in movement disorder treatments, structural features obtained from MRI offer the powerful potential to identify candidates who are more likely to benefit from deep brain stimulation and provide insight into the complexity of disorder pathophysiology.
Collapse
Affiliation(s)
- Luke Andrews
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Simon S Keller
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
| | - Jibril Osman-Farah
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| | - Antonella Macerollo
- The Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L3 9TA, UK
- Department of Neurology and Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L97LJ, UK
| |
Collapse
|
3
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
4
|
Miao J, Tantawi M, Koa V, Zhang AB, Zhang V, Sharan A, Wu C, Matias CM. Use of Functional MRI in Deep Brain Stimulation in Parkinson's Diseases: A Systematic Review. Front Neurol 2022; 13:849918. [PMID: 35401406 PMCID: PMC8984293 DOI: 10.3389/fneur.2022.849918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) has been used to modulate aberrant circuits associated with Parkinson's disease (PD) for decades and has shown robust therapeutic benefits. However, the mechanism of action of DBS remains incompletely understood. With technological advances, there is an emerging use of functional magnetic resonance imaging (fMRI) after DBS implantation to explore the effects of stimulation on brain networks in PD. This systematic review was designed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarize peer-reviewed articles published within the past 10 years in which fMRI was employed on patients with PD-DBS. Search in PubMed database provided 353 references, and screenings resulted in a total of 19 studies for qualitative synthesis regarding study designs (fMRI scan timepoints and paradigm), methodology, and PD subtypes. This review concluded that fMRI may be used in patients with PD-DBS after proper safety test; resting-state and block-based fMRI designs have been employed to explore the effects of DBS on brain networks and the mechanism of action of the DBS, respectively. With further validation of safety use of fMRI and advances in imaging techniques, fMRI may play an increasingly important role in better understanding of the mechanism of stimulation as well as in improving clinical care to provide subject-specific neuromodulation treatments.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mohamed Tantawi
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victoria Koa
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashley B. Zhang
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Veronica Zhang
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caio M. Matias
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, United States
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|