1
|
Snellings DA, Hong CC, Ren AA, Lopez-Ramirez MA, Girard R, Srinath A, Marchuk DA, Ginsberg MH, Awad IA, Kahn ML. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res 2021; 129:195-215. [PMID: 34166073 PMCID: PMC8922476 DOI: 10.1161/circresaha.121.318174] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.
Collapse
Affiliation(s)
- Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Miguel A Lopez-Ramirez
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
- Department of Pharmacology (M.A.L.-R.), University of California, San Diego, La Jolla
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Mark H Ginsberg
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| |
Collapse
|
2
|
Bonkhoff AK, Lim JS, Bae HJ, Weaver NA, Kuijf HJ, Biesbroek JM, Rost NS, Bzdok D. Generative lesion pattern decomposition of cognitive impairment after stroke. Brain Commun 2021; 3:fcab110. [PMID: 34189457 PMCID: PMC8233115 DOI: 10.1093/braincomms/fcab110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Cognitive impairment is a frequent and disabling sequela of stroke. There is however incomplete understanding of how lesion topographies in the left and right cerebral hemisphere brain interact to cause distinct cognitive deficits. We integrated machine learning and Bayesian hierarchical modelling to enable a hemisphere-aware analysis of 1080 acute ischaemic stroke patients with deep profiling ∼3 months after stroke. We show the relevance of the left hemisphere in the prediction of language and memory assessments and relevance of the right hemisphere in the prediction of visuospatial functioning. Global cognitive impairments were equally well predicted by lesion topographies from both sides. Damage to the hippocampal and occipital regions on the left was particularly informative about lost naming and memory functions, while damage to these regions on the right was linked to lost visuospatial functioning. Global cognitive impairment was predominantly linked to lesioned tissue in the supramarginal and angular gyrus, the post-central gyrus as well as the lateral occipital and opercular cortices of the left hemisphere. Hence, our analysis strategy uncovered that lesion patterns with unique hemispheric distributions are characteristic of how cognitive capacity is lost due to ischaemic brain tissue damage.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
3
|
Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood 2018; 133:193-204. [PMID: 30442679 DOI: 10.1182/blood-2018-06-856062] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of Krit1 (Krit1 ECKO ) or Pdcd10 (Pdcd10 ECKO ), which cause CCM formation, results in increased levels of vascular TM and EPCR, as well as in enhanced generation of activated protein C (APC) on endothelial cells. Increased TM expression is due to upregulation of transcription factors KLF2 and KLF4 consequent to the loss of KRIT1 or PDCD10. Increased TM expression contributes to CCM hemorrhage, because genetic inactivation of 1 or 2 copies of the Thbd gene decreases brain hemorrhage in Pdcd10 ECKO mice. Moreover, administration of blocking antibodies against TM and EPCR significantly reduced CCM hemorrhage in Pdcd10 ECKO mice. Thus, a local increase in the endothelial cofactors that generate anticoagulant APC can contribute to bleeding in CCMs, and plasma soluble TM may represent a biomarker for hemorrhagic risk in CCMs.
Collapse
|
4
|
Schmidt H, Heinemann T, Elster J, Djukic M, Harscher S, Neubieser K, Prange H, Kastrup A, Rohde V. Cognition after malignant media infarction and decompressive hemicraniectomy--a retrospective observational study. BMC Neurol 2011; 11:77. [PMID: 21699727 PMCID: PMC3141399 DOI: 10.1186/1471-2377-11-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 06/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decompressive hemicraniectomy is a life-saving procedure for patients with malignant middle cerebral artery infarctions. However, the neuropsychological sequelae in such patients have up to now received little attention. In this study we not only describe neuropsychological deficits but also the quality of life and the extent of depression and other psychiatric symptoms in patients after complete media infarction of the non-speech dominant hemisphere. METHODS 20 patients from two different university hospitals (mean ± standard deviation: 52 ± 14 years of age) who had undergone hemicraniectomy with duraplasty above the non-speech dominant hemisphere at least one year previously were examined using a thorough neurological and neuropsychological work-up. The quality of life and the extent of psychiatric problems were determined on the basis of self-estimation questionnaires. The patients were asked whether they would again opt for the surgical treatment when considering their own outcome. 20 healthy persons matched for age, gender and education served as a control group. RESULTS All patients but one were neurologically handicapped, half of them severely. Age was significantly correlated with poorer values on the Rankin scale and Barthel index. All cognitive domain z values were significantly lower than in the control group. Upon re-examination, 18 of 20 patients were found to be cognitively impaired to a degree that fulfilled the formal DSM IV criteria for dementia. CONCLUSIONS Patients with non-speech dominant hemispheric infarctions and decompressive hemicraniectomy are at high risk of depression and severe cognitive impairment.
Collapse
Affiliation(s)
- Holger Schmidt
- University of Göttingen, Department of Neurology, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Studies in animal models have shown that plasminogen activators bound to erythrocytes (RBC-PA) have an extended lifetime in the circulation and are safer than free PAs. RBC-PAs incorporate into nascent thrombi, which are focally lysed from within, an attractive thromboprophylactic option. In static systems, RBC-PAs cleave surrounding fibrin fibers, forming pores larger than the cells themselves, and move around the pore edges, enlarging them until eventual clot dissolution. We hypothesized that under flow in blood vessels, RBC-PAs form functional patent channels before clot dissolution. Here we used perfusion chambers to study clot lysis by RBC-PAs under static versus arterial and venous flow conditions. We found that flow decelerates bulk clot lysis but quickly generates patent channels filled with passing RBCs, via pore enlargement and merging in the direction of flow. Formation of such channels by RBC-PAs may help rescue ischemic tissue before bulk dissolution of potentially occlusive clots.
Collapse
|
6
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
7
|
Zaitsev S, Zaitzev S, Spitzer D, Murciano JC, Ding BS, Tliba S, Kowalska MA, Bdeir K, Kuo A, Stepanova V, Atkinson JP, Poncz M, Cines DB, Muzykantov VR. Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis. J Pharmacol Exp Ther 2009; 332:1022-31. [PMID: 19952305 DOI: 10.1124/jpet.109.159194] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemical coupling to carrier red blood cells (RBCs) converts tissue type plasminogen activator (tPA) from a problematic therapeutic into a safe agent for thromboprophylaxis. The goal of this study was to develop a more clinically relevant recombinant biotherapeutic by fusing a mutant tPA with a single-chain antibody fragment (scFv) with specificity for glycophorin A (GPA) on mouse RBCs. The fusion construct (anti-GPA scFv/PA) bound specifically to mouse but not human RBCs and activated plasminogen; this led to rapid and stable attachment of up to 30,000 copies of anti-GPA scFv/PA per mouse RBC that were thereby endowed with high fibrinolytic activity. Binding of anti-GPA scFv/PA neither caused RBC aggregation, hemolysis, uptake in capillary-rich lungs or in the reticuloendothelial system nor otherwise altered the circulation of RBCs. Over 40% of labeled anti-GPA scFv/PA injected in mice bound to RBC, which markedly prolonged its intravascular circulation and fibrinolytic activity compared with its nontargeted PA counterpart, anti-GPA scFv/PA, but not its nontargeted PA analog, prevented thrombotic occlusion in FeCl(3) models of vascular injury. These results provide proof-of-principle for the development of a recombinant PA variant that binds to circulating RBC and provides thromboprophylaxis by use of a clinically relevant approach.
Collapse
Affiliation(s)
- Sergei Zaitsev
- IFEM, University of Pennsylvania School of Medicine, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Strutt AM, Lai EC, Jankovic J, Atassi F, Soety EM, Levin HS, Grossman RG, York MK. Five-year follow-up of unilateral posteroventral pallidotomy in Parkinson's disease. ACTA ACUST UNITED AC 2008; 71:551-8. [PMID: 18514283 DOI: 10.1016/j.surneu.2008.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neurocognitive outcome research of individuals with Parkinson's disease after unilateral pallidotomy is inconsistent. Although some studies reported few cognitive changes, other investigations have more consistently shown both transient and long-term cognitive decline postoperatively. METHODS We report the long-term motor and neurocognitive outcome 5 years post surgery for 18 patients with Parkinson's disease (12 men and 6 woman; all right-handed) who underwent right or left unilateral posteroventral pallidotomy. RESULTS Pallidotomy patients revealed long-term motor benefits from the surgery in their "off" state and control of dopa-induced dyskinesias in their "on" state, which is consistent with previous research. We found mild declines in oral and visuomotor information processing speed, verbal recognition memory, and mental status 5 years after surgery, which differs from previous literature regarding the long-term neurocognitive outcome after pallidotomy. Differences between the right and left pallidotomy patients for both motor and cognitive skills were not found. CONCLUSION Although deep brain stimulation is presently the treatment of choice, pallidotomy continues to be performed around the world. Consequently, although unilateral pallidotomy should be considered a treatment option for patients with Parkinson's disease who suffer from severe unilateral disabling motor symptoms or dyskinesias, the long-term neurocognitive outcome should also be considered in treatment decisions.
Collapse
Affiliation(s)
- Adriana M Strutt
- Departments of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ninomia T, Wang L, Kumar SR, Kim A, Zlokovic BV. Brain injury and cerebrovascular fibrin deposition correlate with reduced antithrombotic brain capillary functions in a hypertensive stroke model. J Cereb Blood Flow Metab 2000; 20:998-1009. [PMID: 10894183 DOI: 10.1097/00004647-200006000-00012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemostasis factors may influence the pathophysiology of stroke. The role of brain hemostasis in ischemic hypertensive brain injury is not known. We studied ischemic injury in spontaneously hypertensive rats in relation to cerebrovascular fibrin deposition and activity of different hemostasis factors in brain microcirculation. In spontaneously hypertensive rats subjected to transient middle cerebral artery occlusion versus normotensive Wistar-Kyoto (W-K) rats, infarct and edema volumes were increased by 6.1-fold (P < 0.001) and 5.8-fold (P < 0.001), respectively, the cerebral blood flow (CBF) reduced during middle cerebral artery occlusion (MCAO) by 55% (P < 0.01), motor neurologic score increased by 6.9-fold (P < 0.01), and cerebrovascular fibrin deposition increased by 6.8-fold (P < 0.01). Under basal conditions, brain capillary protein C activation and tissue plasminogen activator activity were reduced in spontaneously hypertensive rats compared with Wistar-Kyoto rats by 11.8-fold (P < 0.001) and 5.1-fold (P < 0.001), respectively, and the plasminogen activator inhibitor-1 antigen and tissue factor activity were increased by 154-fold (P < 0.00001) and 74% (P < 0.01), respectively. We suggest that hypertension reduces antithrombotic mechanisms in brain microcirculation, which may enhance cerebrovascular fibrin deposition and microvascular obstructions during transient focal cerebral ischemia, which results in greater neuronal injury.
Collapse
Affiliation(s)
- T Ninomia
- Department of Neurological Surgery, Children's Hospital Los Angeles, USC School of Medicine, California, USA
| | | | | | | | | |
Collapse
|
10
|
Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV. Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 1999; 19:2801-6. [PMID: 10559029 DOI: 10.1161/01.atv.19.11.2801] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the serine protease, tissue plasminogen activator (tPA), is approved by the US Food and Drug Administration for therapy to combat focal cerebral infarction, the basic concept of thrombolytic tPA therapy for stroke was challenged by recent studies that used genetically manipulated tPA-deficient (tPA-/-) mice, which suggested that tPA mediates ischemic neuronal damage. However, those studies were potentially flawed because the genotypes of tPA-/- and wild-type control mice were not entirely clear, and ischemic neuronal injury was evaluated in isolation of tPA effects on brain thrombosis. Using mice with appropriate genetic backgrounds and a middle cerebral artery occlusion stroke model with nonsiliconized thread, which does lead to microvascular thrombus formation, in the present study we determined the risk for cerebrovascular thrombosis and neuronal injury in tPA-/- and genetically matched tPA+/+ mice subjected to transient focal ischemia. Cerebrovascular fibrin deposition and the infarction volume were increased by 8.2- and 6. 7-fold in tPA-/- versus tPA+/+ mice, respectively, and these variables were correlated with reduced cerebral blood flow up to 58% (P<0.05) and impaired motor neurological score by 70% (P<0.05). Our findings indicate that tPA deficiency exacerbates ischemia-induced cerebrovascular thrombosis and that endogenous tPA protects the brain from an ischemic insult, presumably through its thrombolytic action. In addition, our study emphasizes the importance of appropriate genetic controls in murine stroke research.
Collapse
Affiliation(s)
- P Tabrizi
- Department of Neurosurgery, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | | | | | |
Collapse
|