1
|
Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs 2020; 29:333-348. [PMID: 32175781 DOI: 10.1080/13543784.2020.1738383] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: This review evaluates the novel strategy of treating Alzheimer's and Parkinson's disease (AD and PD) withdrugs that initially have been developed to treat type 2 diabetes. As insulin signalling has been found to be de-sensitized in the brains of patients, drugs that can re-sensitize insulin signalling have been tested to evaluate if this strategy can alter disease progression.Areas covered: The review will give an overview of preclinical and clinical tests in AD and PD of drugs activating insulin receptors, glucagon-like peptide -1 (GLP-1) receptors, and glucose-dependent insulinotropic polypeptide (GIP) receptors.Expert opinion: Insulin, GLP-1 and GIP receptor agonists have shown good effects in preclinical studies. First clinical trials in MCI/AD patients have shown that insulin can improve on key pathological symptoms of AD such as memory impairment, brain activity, neuronal energy utilization, and inflammation markers. A GLP-1 receptor agonist has shown disease-modifying effects in PD patients, and first pilot studies have shown encouraging effects of a GLP-1 receptor agonist in AD patients. Novel dual GLP-1/GIP receptor agonists that cross the blood brain barrier show superior neuroprotective effects compared to single GLP-1 or GIP receptor agonists, and show great promise as novel treatments of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|
2
|
Zilony-Hanin N, Rosenberg M, Richman M, Yehuda R, Schori H, Motiei M, Rahimipour S, Groisman A, Segal E, Shefi O. Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer's Disease Model and Potential Delivery to the Brain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904203. [PMID: 31482695 DOI: 10.1002/smll.201904203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Nerve growth factor (NGF) plays a vital role in reducing the loss of cholinergic neurons in Alzheimer's disease (AD). However, its delivery to the brain remains a challenge. Herein, NGF is loaded into degradable oxidized porous silicon (PSiO2 ) carriers, which are designed to carry and continuously release the protein over a 1 month period. The released NGF exhibits a substantial neuroprotective effect in differentiated rat pheochromocytoma PC12 cells against amyloid-beta (Aβ)-induced cytotoxicity, which is associated with Alzheimer's disease. Next, two potential localized administration routes of the porous carriers into murine brain are investigated: implantation of PSiO2 chips above the dura mater, and biolistic bombardment of PSiO2 microparticles through an opening in the skull using a pneumatic gene gun. The PSiO2 -implanted mice are monitored for a period of 8 weeks and no inflammation or adverse effects are observed. Subsequently, a successful biolistic delivery of these highly porous microparticles into a live-mouse brain is demonstrated for the first time. The bombarded microparticles are observed to penetrate the brain and reach a depth of 150 µm. These results pave the way for using degradable PSiO2 carriers as potential localized delivery systems for NGF to the brain.
Collapse
Affiliation(s)
- Neta Zilony-Hanin
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michal Rosenberg
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ronen Yehuda
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Menachem Motiei
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Alexander Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
3
|
Ivanov A, Tukhbatova G, Salozhin S, Markevich V. NGF but not BDNF overexpression protects hippocampal LTP from beta-amyloid-induced impairment. Neuroscience 2015; 289:114-22. [DOI: 10.1016/j.neuroscience.2014.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/19/2023]
|
4
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Gezen-Ak D, Dursun E, Yilmazer S. The Effect of Vitamin D Treatment On Nerve Growth Factor (NGF) Release From Hippocampal Neurons. Noro Psikiyatr Ars 2014; 51:157-162. [PMID: 28360616 DOI: 10.4274/npa.y7076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Vitamin D, the main function of which is thought to be the maintenance of calcium and phosphate homeostasis and bone structure, has been shown in recent studies to have important roles in brain development as well. A certain vitamin D receptor (VDR) gene haplotype was reported, for the first time by our group, to increase the risk of developing Alzheimer's disease. Our studies also showed that vitamin D prevents beta amyloid-induced calcium elevation and toxicity that target nerve growth factor (NGF) release in cortical neurons; beta amyloid suppresses VDR expression and the disruption of vitamin D-VDR pathway mimics beta amyloid-induced neurodegeneration. In this study, our aim was to investigate the effects of vitamin D on the NGF release from hippocampal neurons. METHOD Primary hippocampal neuron cultures that were prepared from 18-day-old Sprague-Dawley rat embryos were treated with vitamin D for 48 hours. The alteration in the NGF release was determined with ELISA. Cytotoxicity tests were also performed for all groups. RESULTS The NGF release in vitamin D-treated group was significantly higher than in untreated control group. The protective effect of vitamin D against cytotoxicity was also observed. CONCLUSION Our results indicated that vitamin D regulates the release of NGF, a very important molecule for neuronal survival of hippocampal neurons as well as cortical neurons.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Medical Biology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| | - Selma Yilmazer
- Department of Medical Biology, İstanbul University Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
6
|
Zeng F, Lu JJ, Zhou XF, Wang YJ. Roles of p75NTR in the pathogenesis of Alzheimer's disease: A novel therapeutic target. Biochem Pharmacol 2011; 82:1500-9. [DOI: 10.1016/j.bcp.2011.06.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 12/17/2022]
|
7
|
Urbaniak Hunter K, Yarbrough C, Ciacci J. Stem cells in the treatment of stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:105-16. [PMID: 20455499 DOI: 10.1007/978-1-4419-5819-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is an often devastating insult resulting in neurological deficit lasting greater than 24 hours. In the United States, stroke is the third leading cause of death. In those who do not succumb, any outcome from total recovery over a period of weeks to months to persistent profound neurological deficits is possible. Present treatment centers on the decision to administer tissue plasminogen activator, subsequent medical stabilization and early intervention with rehabilitation and risk factor management. The advent of stem cell therapy presents an exciting new frontier for research in stroke treatment, with the potential to cause a paradigm shift from symptomatic control and secondary prevention to reconstitution of neural networks and prevention of neuronal cell death after neurologic injury.
Collapse
Affiliation(s)
- Klaudia Urbaniak Hunter
- University of Michigan, Department of Radiation Oncology, UH B2C490, 1500 E. Medical Center Dr., Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
8
|
Urbaniak Hunter K, Yarbrough C, Ciacci J. Gene- and cell-based approaches for neurodegenerative disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:117-30. [PMID: 20455500 DOI: 10.1007/978-1-4419-5819-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases comprise an important group ofchronic diseases that increase in incidence with rising age. In particular, the two most common neurodegenerative diseases are Alzheimer's disease and Parkinson's disease, both of which will be discussed below. A third, Huntington's disease, occurs infrequently, but has been studied intensely. Each of these diseases shares characteristics which are also generalizeable to other neurodegenerative diseases: accumulation ofproteinaceous substances that leads inexorably to selective neuronal death and decline in neural function. Treatments for these diseases have historically focused on symptomatic relief, but recent advances in molecular research have identified more specific targets. Additionally, stem cell therapy, immunotherapy and trophic-factor delivery provide avenues for neuronal protection that may alter the natural progression of these devastating illnesses. Upcoming clinical trials will evaluate treatment strategies and provide hope that translational research will decrease the onset of debilitating disability associated with neurodegenerative disease.
Collapse
|
9
|
Ishii K, Nakamura K, Kawaguchi S, Li R, Hirai S, Sakuragi N, Wada T, Kato K, Yamashita T, Hamada H. Selective gene transfer into neurons via Na,K-ATPase β1. Targeting gene transfer with monoclonal antibody and adenovirus vector. J Gene Med 2008; 10:597-609. [DOI: 10.1002/jgm.1164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
10
|
Korecka JA, Verhaagen J, Hol EM. Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med 2007; 2:425-46. [PMID: 17635050 DOI: 10.2217/17460751.2.4.425] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Parkinson's disease and Alzheimer's disease are the most common neurodegenerative diseases in the elderly population. Given that age is the most important risk factor in these diseases, the number of patients is expected to rise dramatically in the coming years. Therefore, an effective therapy for these diseases is highly sought. Current treatment brings only temporary symptomatic relief and does not result in halting the progression of these diseases. The increasing knowledge on the molecular mechanisms that underlie these diseases enables the design of novel therapies, targeted at degenerating neurons by creating an optimal regenerative cellular environment. Here, we review the progress made in the field of cell-replacement and gene-therapy strategies. New developments in the application of embryonic stem cells and adult neuronal progenitors are discussed. We also discuss the use of genetically engineered cells in neuronal rescuing strategies that have recently advanced into the clinic. The first trials for the treatment of Alzheimer's disease and Parkinson's disease with this approach are ongoing.
Collapse
Affiliation(s)
- Joanna A Korecka
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Heavner SB, Rubin AD, Fung K, Old M, Hogikyan ND, Feldman EL. Dysfunction of the recurrent laryngeal nerve and the potential of gene therapy. Ann Otol Rhinol Laryngol 2007; 116:441-8. [PMID: 17672247 DOI: 10.1177/000348940711600609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Injury to the recurrent laryngeal nerve causes vocal fold paresis or paralysis resulting in poor voice quality, and possibly swallowing dysfunction and/or airway compromise. Injury can occur as part of a neurodegenerative disease process or can be due to direct nerve trauma or tumor invasion. Management depends upon symptoms, the cause and severity of injury, and the prognosis for recovery of nerve function. Surgical treatment techniques can improve symptoms, but do not restore physiologic motion. Gene therapy may be a useful adjunct to enhance nerve regeneration in the setting of neurodegenerative disease or trauma. Remote injection of viral vectors into the recurrent laryngeal nerve is the least invasive way to deliver neurotrophic factors to the nerve's cell bodies within the nucleus ambiguus, and in turn to promote nerve regeneration and enhance both nuclear and nerve survival. The purpose of this review is to discuss the potential role for gene therapy in treatment of the unsolved problem of vocal fold paralysis.
Collapse
Affiliation(s)
- S Brett Heavner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dekkers W, Rikkert MO. What is a genetic cause? The example of Alzheimer's Disease. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2006; 9:273-84. [PMID: 16847726 DOI: 10.1007/s11019-006-9005-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper focuses on the causation of diseases, particularly on the idea of a "genetic cause" taking Alzheimer's Disease (AD) as an example. We (1) provide some historical information and a synopsis of the current knowledge on the etiology and pathogenesis of AD, (2) analyse some conceptual problems related to the notion of "genetic disease", (3) elaborate on the alleged (genetic) cause of AD, and (4) place the discussion on the cause of AD in a broader philosophical context, paying attention to a constructivist perspective, the notions of causal connection and causal selection, and to some practical and normative consequences of our analysis. We conclude (a) that AD is not a specific disease entity with one specific cause, (b) that the idea of a single (sufficient) cause can still function as a heuristic tool in AD research and practice, and (c) that a "belief" in causation can go together with the notions of multicausality and probability.
Collapse
Affiliation(s)
- Wim Dekkers
- Department of Ethics, Philosophy and History of Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
13
|
Ralph GS, Binley K, Wong LF, Azzouz M, Mazarakis ND. Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin Sci (Lond) 2005; 110:37-46. [PMID: 16336203 DOI: 10.1042/cs20050158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy holds great promise for the treatment of a wide range of inherited and acquired disorders. The development of viral vector systems to mediate safe and long-lasting expression of therapeutic transgenes in specific target cell populations is continually advancing. Gene therapy for the nervous system is particularly challenging due to the post-mitotic nature of neuronal cells and the restricted accessibility of the brain itself. Viral vectors based on lentiviruses provide particularly attractive vehicles for delivery of therapeutic genes to treat neurological and ocular diseases, since they efficiently transduce non-dividing cells and mediate sustained transgene expression. Furthermore, novel routes of vector delivery to the nervous system have recently been elucidated and these have increased further the scope of lentiviruses for gene therapy application. Several studies have demonstrated convincing therapeutic efficacy of lentiviral-based gene therapies in animal models of severe neurological disorders and the push for progressing such vectors to the clinic is ongoing. This review describes the key features of lentiviral vectors that make them such useful tools for gene therapy to the nervous system and outlines the major breakthroughs in the potential use of such vectors for treating neurodegenerative and ocular diseases.
Collapse
Affiliation(s)
- G Scott Ralph
- Oxford Biomedica plc, The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | |
Collapse
|
14
|
|