1
|
Janas AM, Miller KR, Stence NV, Wyrwa JM, Ruzas CM, Messer R, Mourani PM, Fink EL, Maddux AB. Utility of Early Magnetic Resonance Imaging to Enhance Outcome Prediction in Critically Ill Children with Severe Traumatic Brain Injury. Neurocrit Care 2024; 41:80-90. [PMID: 38148435 DOI: 10.1007/s12028-023-01898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Many children with severe traumatic brain injury (TBI) receive magnetic resonance imaging (MRI) during hospitalization. There are insufficient data on how different patterns of injury on early MRI inform outcomes. METHODS Children (3-17 years) admitted in 2010-2021 for severe TBI (Glasgow Coma Scale [GCS] score < 9) were identified using our site's trauma registry. We used multivariable modeling to determine whether the hemorrhagic diffuse axonal injury (DAI) grade and the number of regions with restricted diffusion (subcortical white matter, corpus callosum, deep gray matter, and brainstem) on MRI obtained within 7 days of injury were independently associated with time to follow commands and with Functional Independence Measure for Children (WeeFIM) scores at the time of discharge from inpatient rehabilitation. We controlled for the clinical variables age, preadmission cardiopulmonary resuscitation, pupil reactivity, motor GCS score, and fever (> 38 °C) in the first 12 h. RESULTS Of 260 patients, 136 (52%) underwent MRI within 7 days of injury at a median of 3 days (interquartile range [IQR] 2-4). Patients with early MRI were a median age of 11 years (IQR 7-14), 8 (6%) patients received cardiopulmonary resuscitation, 19 (14%) patients had bilateral unreactive pupils, the median motor GCS score was 1 (IQR 1-4), and 82 (60%) patients had fever. Grade 3 DAI was present in 46 (34%) patients, and restricted diffusion was noted in the corpus callosum in 75 (55%) patients, deep gray matter in 29 (21%) patients, subcortical white matter in 23 (17%) patients, and the brainstem in 20 (15%) patients. After controlling for clinical variables, an increased number of regions with restricted diffusion, but not hemorrhagic DAI grade, was independently associated with longer time to follow commands (hazard ratio 0.68, 95% confidence interval 0.53-0.89) and worse WeeFIM scores (estimate β - 4.67, 95% confidence interval - 8.33 to - 1.01). CONCLUSIONS Regional restricted diffusion on early MRI is independently associated with short-term outcomes in children with severe TBI. Multicenter cohort studies are needed to validate these findings and elucidate the association of early MRI features with long-term outcomes in children with severe TBI.
Collapse
Affiliation(s)
- Anna M Janas
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, University of Colorado Anschutz Medical Campus, 13121 E. 17th Avenue, Ed2S, MS8414, Aurora, CO, 80045, USA.
| | - Kristen R Miller
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas V Stence
- Section of Neuroradiology, Department of Radiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jordan M Wyrwa
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine and Children's Hospital of Colorado, Aurora, CO, USA
| | - Christopher M Ruzas
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, University of Colorado Anschutz Medical Campus, 13121 E. 17th Avenue, Ed2S, MS8414, Aurora, CO, 80045, USA
| | - Ricka Messer
- Section of Child Neurology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, Aurora, CO, USA
| | - Peter M Mourani
- Section of Critical Care, Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aline B Maddux
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital of Colorado, University of Colorado Anschutz Medical Campus, 13121 E. 17th Avenue, Ed2S, MS8414, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
3
|
Pandya JD, Musyaju S, Modi HR, Okada-Rising SL, Bailey ZS, Scultetus AH, Shear DA. Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties. J Transl Med 2024; 22:167. [PMID: 38365798 PMCID: PMC10874030 DOI: 10.1186/s12967-024-04908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer's neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
| | - Sudeep Musyaju
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Hiren R Modi
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Starlyn L Okada-Rising
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Zachary S Bailey
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Anke H Scultetus
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Deborah A Shear
- TBI Bioenergetics, Metabolism and Neurotherapeutics Program, Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| |
Collapse
|
4
|
Harnisch LO, Neugebauer S, Mihaylov D, Eidizadeh A, Zechmeister B, Maier I, Moerer O. Quantification of Bile Acids in Cerebrospinal Fluid: Results of an Observational Trial. Biomedicines 2023; 11:2947. [PMID: 38001948 PMCID: PMC10669160 DOI: 10.3390/biomedicines11112947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood-brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as well as possible functions of bile acids in the central nervous system, are not precisely understood. (2) Methods: We conducted a single-center observational trial. The concentrations of 15 individual bile acids were determined using an in-house LC-MS/MS method in 54 patients with various acute and severe disorders of the central nervous system. We analyzed CSF from ventricular drainage taken within 24 h after placement, and blood samples were drawn at the same time for the presence and quantifiability of 15 individual bile acids. (3) Results: At a median time of 19.75 h after a cerebral insult, the concentration of bile acids in the CSF was minute and almost negligible. The CSF concentrations of total bile acids (TBAs) were significantly lower compared to the serum concentrations (serum 0.37 µmol/L [0.24, 0.89] vs. 0.14 µmol/L [0.05, 0.43]; p = 0.033). The ratio of serum-to-CSF bile acid levels calculated from the respective total concentrations were 3.10 [0.94, 14.64] for total bile acids, 3.05 for taurocholic acid, 14.30 [1.11, 27.13] for glycocholic acid, 0.0 for chenodeoxycholic acid, 2.19 for taurochenodeoxycholic acid, 1.91 [0.68, 8.64] for glycochenodeoxycholic acid and 0.77 [0.0, 13.79] for deoxycholic acid; other bile acids were not detected in the CSF. The ratio of CSF-to-serum S100 concentration was 0.01 [0.0, 0.02]. Serum total and conjugated (but not unconjugated) bilirubin levels and serum TBA levels were significantly correlated (total bilirubin p = 0.031 [0.023, 0.579]; conjugated bilirubin p = 0.001 [0.193, 0.683]; unconjugated p = 0.387 [-0.181, 0.426]). No correlations were found between bile acid concentrations and age, delirium, intraventricular blood volume, or outcome measured on a modified Rankin scale. (4) Conclusions: The determination of individual bile acids is feasible using the current LC-MS/MS method. The results suggest an intact blood-brain barrier in the patients studied. However, bile acids were detected in the CSF, which could have been achieved by active transport across the blood-brain barrier.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany; (S.N.); (D.M.)
| | - Abass Eidizadeh
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Bozena Zechmeister
- Interdisciplinary UMG Laboratories, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany; (A.E.); (B.Z.)
| | - Ilko Maier
- Department of Neurology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center, University of Göttingen, Robert-Koch-Str. 40, D-37075 Göttingen, Germany;
| |
Collapse
|
5
|
Naumenko Y, Yuryshinetz I, Zabenko Y, Pivneva T. Mild traumatic brain injury as a pathological process. Heliyon 2023; 9:e18342. [PMID: 37519712 PMCID: PMC10372741 DOI: 10.1016/j.heliyon.2023.e18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries. Many literature sources have confirmed that mechanically induced brain injury initiates ionic, metabolic, inflammatory, and neurovascular changes in the CNS, which can lead to acute, subacute, and chronic neurological consequences. Despite the global nature of the disease, its high heterogeneity, lack of a unified classification system, rapid fluctuation of epidemiological trends, and variability of long-term consequences significantly complicate research and the development of new therapeutic strategies. In this review paper, we systematize current knowledge of biomechanical and molecular mechanisms of mild TBI and provide general information on the classification and epidemiology of this complex disorder.
Collapse
Affiliation(s)
- Yana Naumenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Irada Yuryshinetz
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Yelyzaveta Zabenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
6
|
Stafford P, Mitra S, Debot M, Lutz P, Stem A, Hadley J, Hom P, Schaid TR, Cohen MJ. Astrocytes and pericytes attenuate severely injured patient plasma mediated expression of tight junction proteins in endothelial cells. PLoS One 2022; 17:e0270817. [PMID: 35789221 PMCID: PMC9255734 DOI: 10.1371/journal.pone.0270817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be fully elucidated mechanistically. Existing research suggests that breakdown of tight junction proteins between endothelial cells is a primary driver of increased BBB permeability following injury, and intercellular signaling between primary cells of the neurovascular unit: endothelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound upon this body of research, we analyzed the effects of severely injured patient plasma on each of the cell types in monoculture and together in a triculture model for the transcriptional and translational expression of the tight junction proteins Claudins 3 and 5, (CLDN3, CLDN5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed to illuminate the cell type responsible for differential tight junction expression. Our data show that incubation with 5% human ex vivo severely injured patient plasma is sufficient to produce a differential response in endothelial cell tight junction mRNA and protein expression. Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5 mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and CLDN5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this increase was attenuated. Our triculture model and conditioned media experiments suggest that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes and endothelial cells are sufficient in attenuating the transcriptional increases of tight junction proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation with severely injured trauma plasma. This data suggests that inhibitory molecular signals from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via tight junction transcriptional and translational downregulation of CLDN5.
Collapse
Affiliation(s)
- Preston Stafford
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sanchayita Mitra
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margot Debot
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Lutz
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Arthur Stem
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jamie Hadley
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Hom
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Terry R. Schaid
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mitchell J. Cohen
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Gier EC, Pulliam AN, Gaul DA, Moore SG, LaPlaca MC, Fernández FM. Lipidome Alterations following Mild Traumatic Brain Injury in the Rat. Metabolites 2022; 12:150. [PMID: 35208224 PMCID: PMC8878543 DOI: 10.3390/metabo12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted p-values less than 0.05. The novel lipid biomarker candidates identified provide insight into the metabolic pathways altered within 24 h of mild TBI.
Collapse
Affiliation(s)
- Eric C. Gier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
| | - Alexis N. Pulliam
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Hu Y, Tao W. Microenvironmental Variations After Blood-Brain Barrier Breakdown in Traumatic Brain Injury. Front Mol Neurosci 2021; 14:750810. [PMID: 34899180 PMCID: PMC8662751 DOI: 10.3389/fnmol.2021.750810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is linked to several pathologies. The blood-brain barrier (BBB) breakdown is considered to be one of the initial changes. Further, the microenvironmental alteration following TBI-induced BBB breakdown can be multi-scaled, constant, and dramatic. The microenvironmental variations after disruption of BBB includes several pathological changes, such as cerebral blood flow (CBF) alteration, brain edema, cerebral metabolism imbalances, and accumulation of inflammatory molecules. The modulation of the microenvironment presents attractive targets for TBI recovery, such as reducing toxic substances, inhibiting inflammation, and promoting neurogenesis. Herein, we briefly review the pathological alterations of the microenvironmental changes following BBB breakdown and outline potential interventions for TBI recovery based on microenvironmental modulation.
Collapse
Affiliation(s)
- Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Tao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
10
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Sinke MRT, Otte WM, Meerwaldt AE, Franx BAA, Ali MHM, Rakib F, van der Toorn A, van Heijningen CL, Smeele C, Ahmed T, Blezer ELA, Dijkhuizen RM. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1642-1653. [PMID: 33198560 DOI: 10.1089/neu.2020.7151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.
Collapse
Affiliation(s)
- Michel R T Sinke
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Willem M Otte
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078.,UMC Utrecht Brain Center, Department of Child Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Anu E Meerwaldt
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Annette van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Caroline L van Heijningen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Christel Smeele
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Erwin L A Blezer
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands. ORCID ID: 0000-0002-8185-9209; 0000-0002-4623-4078
| |
Collapse
|
12
|
Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-Escalate Therapies for Intracranial Pressure Control in Traumatic Brain Injury. Front Neurol 2020; 11:564751. [PMID: 33324317 PMCID: PMC7724991 DOI: 10.3389/fneur.2020.564751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is frequently associated with an elevation of intracranial pressure (ICP), followed by cerebral perfusion pressure (CPP) reduction. Invasive monitoring of ICP is recommended to guide a step-by-step “staircase approach” which aims to normalize ICP values and reduce the risks of secondary damage. However, if such monitoring is not available clinical examination and radiological criteria should be used. A major concern is how to taper the therapies employed for ICP control. The aim of this manuscript is to review the criteria for escalating and withdrawing therapies in TBI patients. Each step of the staircase approach carries a risk of adverse effects related to the duration of treatment. Tapering of barbiturates should start once ICP control has been achieved for at least 24 h, although a period of 2–12 days is often required. Administration of hyperosmolar fluids should be avoided if ICP is normal. Sedation should be reduced after at least 24 h of controlled ICP to allow neurological examination. Removal of invasive ICP monitoring is suggested after 72 h of normal ICP. For patients who have undergone surgical decompression, cranioplasty represents the final step, and an earlier cranioplasty (15–90 days after decompression) seems to reduce the rate of infection, seizures, and hydrocephalus.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Pasquale Anania
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-Nano SAÚDE/Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Iole Brunetti
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro Prior
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integral Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Xie J, Hong E, Ding B, Jiang W, Zheng S, Xie Z, Tian D, Chen Y. Inhibition of NOX4/ROS Suppresses Neuronal and Blood-Brain Barrier Injury by Attenuating Oxidative Stress After Intracerebral Hemorrhage. Front Cell Neurosci 2020; 14:578060. [PMID: 33281556 PMCID: PMC7691600 DOI: 10.3389/fncel.2020.578060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common and severe neurological disorder that can effectively induce oxidative stress responses. NADPH oxidase 4 (NOX4) is a member of the NOX family of oxidases. It is expressed in the brain normally and involved in cell signal transduction and the removal of harmful substances. In some pathological conditions, it mediates inflammation and the aging of cells. However, few studies have focused on whether NOX4 is involved in brain injury caused by ICH. Therefore, this study aimed to clarify the role of NOX4 in the pathological process that occurs after ICH and the potential mechanism underlying its role. A rat model of ICH was established by the injection of collagenase type IV, and the expression of NOX4 was then determined. Further, siRNA-mediated protein expression knockdown technology was used for NOX4 knockdown, and western immunoblotting, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and other molecular biological techniques were performed to assess the effects of NOX4 knockdown. Neurobiological scoring, brain water content determination, and other brain injury detection methods were also performed to assess the role of NOX4 following ICH. We found that the expression of NOX4 increased in the brains of rats after ICH, and that it was mainly expressed in neurons, astrocytes, vascular endothelial cells and microglia. Following NOX4 knockdown, the level of oxidative stress in the brain decreased considerably, the neurobehavioral scores improved, the levels of neuronal apoptosis reduced markedly, and the impairment of blood-brain barrier function was significantly ameliorated in rats with ICH. In conclusion, this study suggests that NOX4 expression is upregulated after ICH, which may cause an imbalance in the oxidative stress of relevant cells in the brain, leading to subsequent apoptosis of neurons and damage to the blood-brain barrier due to secondary brain injury following ICH.
Collapse
Affiliation(s)
- Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Baiyun Ding
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Weiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shizhong Zheng
- Department of Neurosurgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhichong Xie
- Department of Neurosurgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Tian
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhao Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Hu Y, Seker B, Exner C, Zhang J, Plesnila N, Schwarzmaier SM. Longitudinal Characterization of Blood-Brain Barrier Permeability after Experimental Traumatic Brain Injury by In Vivo 2-Photon Microscopy. J Neurotrauma 2020; 38:399-410. [PMID: 33012249 DOI: 10.1089/neu.2020.7271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vasogenic brain edema (VBE) formation remains an important factor determining the fate of patients with traumatic brain injury (TBI). The spatial and temporal development of VBE, however, remains poorly understood because of the lack of sufficiently sensitive measurement techniques. To close this knowledge gap, we directly visualized the full time course of vascular leakage after TBI by in vivo 2-photon microscopy (2-PM). Male C57BL/6 mice (n = 6/group, 6-8 weeks old) were assigned randomly to sham operation or brain trauma by controlled cortical impact. A cranial window was prepared, and tetramethylrhodamine-dextran (TMRM, MW 40,000 Da) was injected intravenously to visualize blood plasma 4 h, 24 h, 48 h, 72 h, or seven days after surgery or trauma. Three regions with increasing distance to the primary contusion were investigated up to a depth of 300 μm by 2-PM. No TMRM extravasation was detected in sham-operated mice, while already 4 h after TBI vascular leakage was significantly increased (p < 0.05 vs. sham) and reached its maximum at 48 h after injury. Vascular leakage was most pronounced in the vicinity of the contusion. The rate of extravasation showed a biphasic pattern, peaking 4 h and 48-72 h after trauma. Taken together, longitudinal quantification of vascular leakage after TBI in vivo demonstrates that VBE formation after TBI develops in a biphasic manner suggestive of acute and delayed mechanisms. Further studies using the currently developed dynamic in vivo imaging modalities are needed to investigate these mechanisms and potential therapeutic strategies in more detail.
Collapse
Affiliation(s)
- Yue Hu
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Burcu Seker
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carina Exner
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Junping Zhang
- First Teaching Hospital of the Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD) and Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Department of Anesthesiology, Ludwig-Maximilians-University (LMU) Munich Medical Center, Munich, Germany.,Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
15
|
P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A 2020; 117:27667-27675. [PMID: 33087571 PMCID: PMC7959512 DOI: 10.1073/pnas.2010430117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegeneration, a major cause of the long-term disabilities that afflict survivors of traumatic brain injury (TBI), is linked to an increased risk for late-life neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, vascular dementia, and chronic traumatic encephalopathy. Here, we report on the restoration of blood–brain barrier (BBB) structure and function by P7C3-A20 when administered 12 mo after TBI. This pharmacotherapy was associated with cessation of chronic neurodegeneration and recovery of normal cognitive function, benefits that persisted long after treatment cessation. Pharmacologic renewal of BBB integrity may thus provide a new treatment option for patients who have suffered a remote TBI, or other neurological conditions associated with BBB deterioration. Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood–brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer’s disease, Parkinson’s disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.
Collapse
|
16
|
Low Molecular Weight Dextran Sulfate (ILB ®) Administration Restores Brain Energy Metabolism Following Severe Traumatic Brain Injury in the Rat. Antioxidants (Basel) 2020; 9:antiox9090850. [PMID: 32927770 PMCID: PMC7555574 DOI: 10.3390/antiox9090850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in people less than 40 years of age in Western countries. Currently, there are no satisfying pharmacological treatments for TBI patients. In this study, we subjected rats to severe TBI (sTBI), testing the effects of a single subcutaneous administration, 30 min post-impact, of a new low molecular weight dextran sulfate, named ILB®, at three different dose levels (1, 5, and 15 mg/kg body weight). A group of control sham-operated animals and one of untreated sTBI rats were used for comparison (each group n = 12). On day 2 or 7 post-sTBI animals were sacrificed and the simultaneous HPLC analysis of energy metabolites, N-acetylaspartate (NAA), oxidized and reduced nicotinic coenzymes, water-soluble antioxidants, and biomarkers of oxidative/nitrosative stress was carried out on deproteinized cerebral homogenates. Compared to untreated sTBI rats, ILB® improved energy metabolism by increasing ATP, ATP/ adenosine diphosphate ratio (ATP/ADP ratio), and triphosphate nucleosides, dose-dependently increased NAA concentrations, protected nicotinic coenzyme levels and their oxidized over reduced ratios, prevented depletion of ascorbate and reduced glutathione (GSH), and decreased oxidative (malondialdehyde formation) and nitrosative stress (nitrite + nitrate production). Although needing further experiments, these data provide the first evidence that a single post-injury injection of a new low molecular weight dextran sulfate (ILB®) has beneficial effects on sTBI metabolic damages. Due to the absence of adverse effects in humans, ILB® represents a promising therapeutic agent for the treatment of sTBI patients.
Collapse
|
17
|
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020; 11:914. [PMID: 32848858 PMCID: PMC7424030 DOI: 10.3389/fphys.2020.00914] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.
Collapse
|
18
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
19
|
Toomey LM, Bartlett CA, Gavriel N, McGonigle T, Majimbi M, Gopalasingam G, Rodger J, Fitzgerald M. Comparing modes of delivery of a combination of ion channel inhibitors for limiting secondary degeneration following partial optic nerve transection. Sci Rep 2019; 9:15297. [PMID: 31653948 PMCID: PMC6814709 DOI: 10.1038/s41598-019-51886-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022] Open
Abstract
Injury to the central nervous system is exacerbated by secondary degeneration. Previous research has shown that a combination of orally and locally administered ion channel inhibitors following partial optic nerve injury protects the myelin sheath and preserves function in the ventral optic nerve, vulnerable to secondary degeneration. However, local administration is often not clinically appropriate. This study aimed to compare the efficacy of systemic and local delivery of the ion channel inhibitor combination of lomerizine, brilliant blue G (BBG) and YM872, which inhibits voltage-gated calcium channels, P2X7 receptors and Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors respectively. Following a partial optic nerve transection, adult female PVG rats were treated with BBG and YM872 delivered via osmotic mini pump directly to the injury site, or via intraperitoneal injection, both alongside oral administration of lomerizine. Myelin structure was preserved with both delivery modes of the ion channel inhibitor combination. However, there was no effect of treatment on inflammation, either peripherally or at the injury site, or on the density of oligodendroglial cells. Taken together, the data indicate that even at lower concentrations, the combinatorial treatment may be preserving myelin structure, and that systemic and local delivery are comparable at improving outcomes following neurotrauma.
Collapse
Affiliation(s)
- Lillian M Toomey
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Nikolas Gavriel
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Gopana Gopalasingam
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The concussion public health burden has increased alongside our knowledge of the pathophysiology of mild traumatic brain injury (mTBI). The purpose of this review is to summarize our current understanding of mTBI pathophysiology and biomechanics and how these underlying principles correlate with clinical manifestations of mTBI. RECENT FINDINGS Changes in post-mTBI glutamate and GABA concentrations seem to be region-specific and time-dependent. Genetic variability may predict recovery and symptom severity while gender differences appear to be associated with the neuroinflammatory response and neuroplasticity. Ongoing biomechanical research has shown a growing body of evidence in support of an "individual-specific threshold" for mTBI that varies based on individual intrinsic factors. The literature demonstrates a well-characterized timeframe for mTBI pathophysiologic changes in animal models while work in this area continues to grow in humans. Current human research shows that these underlying post-mTBI effects are multifactorial and may correlate with symptomatology and recovery. While wearable sensor technology has advanced biomechanical impact research, a definitive concussion threshold remains elusive.
Collapse
Affiliation(s)
- Rafael Romeu-Mejia
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - Joshua T Goldman
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.
- Department of Family Medicine, Division of Sports Medicine, UCLA, Los Angeles, CA, USA.
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA.
- Department of Intercollegiate Athletics, UCLA, Los Angeles, CA, USA.
- Center for Sports Medicine, Orthopedic Institute for Children, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
A mechanism for injury through cerebral arteriole inflation. Biomech Model Mechanobiol 2019; 18:651-663. [PMID: 30604301 DOI: 10.1007/s10237-018-01107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
An increase in arterial pressure within the cerebral vasculature appears to coincide with ischemia and dysfunction of the neurovascular unit in some cases of traumatic brain injury. In this study, we examine a new mechanism of brain tissue damage that results from excessive cerebral arteriole pressurization. We begin by considering the morphological and material properties of normotensive and hypertensive arterioles and present a computational model that captures the interaction of neighboring pressurized arterioles and the surrounding brain tissue. Assuming an axonal strain-induced injury criterion, we find that the injury depends on vessel spacing, proximity to an unconfined free surface, and the relative difference in stiffness between the arterioles and the surrounding tissue. We find that a steeper heterogeneity (stiffer vessels surrounded by softer brain tissue) causes larger axial strains to develop at some distance from the arteriole wall, within the brain parenchyma. For a more gradual heterogeneity (softer vessels), we observe more larger strain fields close to the arteriole walls. Both deformation patterns are comparable to damage seen in previous pathology studies on postmortem TBI patients. Finally, we use an analytical model to approximate the interplay between internal pressure, arteriole thickness, and the variation in mechanical properties of arterioles.
Collapse
|
23
|
Hydrogen Gas Treatment Improves the Neurological Outcome After Traumatic Brain Injury Via Increasing miR-21 Expression. Shock 2018; 50:308-315. [DOI: 10.1097/shk.0000000000001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wilkes S, McCormack E, Kenney K, Stephens B, Passo R, Harburg L, Silverman E, Moore C, Bogoslovsky T, Pham D, Diaz-Arrastia R. Evolution of Traumatic Parenchymal Intracranial Hematomas (ICHs): Comparison of Hematoma and Edema Components. Front Neurol 2018; 9:527. [PMID: 30022968 PMCID: PMC6040600 DOI: 10.3389/fneur.2018.00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
This study seeks to quantitatively assess evolution of traumatic ICHs over the first 24 h and investigate its relationship with functional outcome. Early expansion of traumatic intracranial hematoma (ICH) is common, but previous studies have focused on the high density (blood) component. Hemostatic therapies may increase the risk of peri-hematoma infarction and associated increased cytotoxic edema. Assessing the magnitude and evolution of ICH and edema represented by high and low density components on computerized tomography (CT) may be informative for designing therapies targeted at traumatic ICH. CT scans from participants in the COBRIT (Citicoline Brain Injury Trial) study were analyzed using MIPAV software. CT scans from patients with non-surgical intraparenchymal ICHs at presentation and approximately 24 h later (±12 h) were selected. Regions of high density and low density were quantitatively measured. The relationship between volumes of high and low density were compared to several outcome measures, including Glasgow Outcome Score-Extended (GOSE) and Disability Rating Score (DRS). Paired scans from 84 patients were analyzed. The median time between the first and second scan was 22.79 h (25%ile 20.11 h; 75%ile 27.49 h). Over this time frame, hematoma and edema volumes increased >50% in 34 (40%) and 46 (55%) respectively. The correlation between the two components was low (r = 0.39, p = 0.002). There was a weak correlation between change in edema volume and GOSE at 6 months (r = 0.268, p = 0.037), change in edema volume and DRS at 3 and 6 months (r = -0.248, p = 0.037 and r = 0.358, p = 0.005, respectively), change in edema volume and COWA at 6 months (r = 0.272, p = 0.049), and between final edema volume and COWA at 6 months (r = 0.302, p = 0.028). To conclude, both high density and low density components of traumatic ICHs expand significantly in the first 2 days after TBI. In our study, there does not appear to be a relationship between hematoma volume or hematoma expansion and functional outcome, while there is a weak relationship between edema expansion and functional outcome.
Collapse
Affiliation(s)
- Sean Wilkes
- Department of Behavioral Health, Tripler Army Medical Center, Honolulu, HI, United States
| | - Erin McCormack
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimbra Kenney
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Brian Stephens
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ross Passo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Leah Harburg
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Erika Silverman
- Department of Neurology, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Carol Moore
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tanya Bogoslovsky
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Johnson VE, Weber MT, Xiao R, Cullen DK, Meaney DF, Stewart W, Smith DH. Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol 2018; 135:711-726. [PMID: 29460006 DOI: 10.1007/s00401-018-1824-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
Although concussion is now recognized as a major health issue, its non-lethal nature has limited characterization of the underlying pathophysiology. In particular, potential neuropathological changes have typically been inferred from non-invasive techniques or post-mortem examinations of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational acceleration based on human concussion to examine blood-brain barrier (BBB) integrity after injury in association with diffuse axonal injury and glial responses. We then determined the potential clinical relevance of the swine concussion findings through comparisons with pathological changes in human severe TBI, where post-mortem examinations are possible. At 6-72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent with biomechanical insult. Specifically, extravasated serum proteins were frequently observed at interfaces between regions of tissue with differing material properties, including the gray-white boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB disruption with regions of axonal pathology in the white matter. Acute perivascular cellular uptake of blood-borne proteins was observed to be prominent in astrocytes (GFAP-positive) and neurons (MAP-2-positive), but not microglia (IBA1-positive). Parallel examination of human severe TBI revealed similar patterns of serum extravasation and glial uptake of serum proteins, but to a much greater extent than in the swine model, attributed to the higher injury severity. These data suggest that BBB disruption represents a new and important pathological feature of concussion.
Collapse
|
26
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
27
|
Galinsky R, Davidson JO, Dean JM, Green CR, Bennet L, Gunn AJ. Glia and hemichannels: key mediators of perinatal encephalopathy. Neural Regen Res 2018; 13:181-189. [PMID: 29557357 PMCID: PMC5879879 DOI: 10.4103/1673-5374.226378] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypothermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel mediated injury likely involve impaired intracellular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand; The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 2017; 14:9. [PMID: 28407791 DOI: 10.1186/s12987-017-0059-0/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. METHODS Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. RESULTS The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm2 and fluorescein permeability below 1.95 × 10-7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson's Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm2, which to our knowledge is the highest reported in vitro TEER value to date. CONCLUSIONS Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications.
Collapse
Affiliation(s)
- Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Amanda K Bailey
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Archit V Potharazu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Aaron B Bowman
- Department of Biochemistry, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
| |
Collapse
|
29
|
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 2017; 14:9. [PMID: 28407791 PMCID: PMC5390351 DOI: 10.1186/s12987-017-0059-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood–brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Methods Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. Results The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm2 and fluorescein permeability below 1.95 × 10−7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated with Parkinson’s Disease. Finally, BMECs differentiated using E6 medium responded to inductive cues from astrocytes and pericytes and achieved a maximum TEER value of 6635 ± 315 Ω × cm2, which to our knowledge is the highest reported in vitro TEER value to date. Conclusions Given the accelerated differentiation, equivalent performance, and reduced cost to produce BMECs, our updated methods should make iPSC-derived in vitro BBB models more accessible for a wide variety of applications. Electronic supplementary material The online version of this article (doi:10.1186/s12987-017-0059-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma K Hollmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Amanda K Bailey
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Archit V Potharazu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Aaron B Bowman
- Department of Biochemistry, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.,Department of Pediatrics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA.,Department of Neurology, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN, 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
| |
Collapse
|
30
|
Rodriguez O, Schaefer ML, Wester B, Lee YC, Boggs N, Conner HA, Merkle AC, Fricke ST, Albanese C, Koliatsos VE. Manganese-Enhanced Magnetic Resonance Imaging as a Diagnostic and Dispositional Tool after Mild-Moderate Blast Traumatic Brain Injury. J Neurotrauma 2016; 33:662-71. [PMID: 26414591 PMCID: PMC4827293 DOI: 10.1089/neu.2015.4002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) caused by explosive munitions, known as blast TBI, is the signature injury in recent military conflicts in Iraq and Afghanistan. Diagnostic evaluation of TBI, including blast TBI, is based on clinical history, symptoms, and neuropsychological testing, all of which can result in misdiagnosis or underdiagnosis of this condition, particularly in the case of TBI of mild-to-moderate severity. Prognosis is currently determined by TBI severity, recurrence, and type of pathology, and also may be influenced by promptness of clinical intervention when more effective treatments become available. An important task is prevention of repetitive TBI, particularly when the patient is still symptomatic. For these reasons, the establishment of quantitative biological markers can serve to improve diagnosis and preventative or therapeutic management. In this study, we used a shock-tube model of blast TBI to determine whether manganese-enhanced magnetic resonance imaging (MEMRI) can serve as a tool to accurately and quantitatively diagnose mild-to-moderate blast TBI. Mice were subjected to a 30 psig blast and administered a single dose of MnCl2 intraperitoneally. Longitudinal T1-magnetic resonance imaging (MRI) performed at 6, 24, 48, and 72 h and at 14 and 28 days revealed a marked signal enhancement in the brain of mice exposed to blast, compared with sham controls, at nearly all time-points. Interestingly, when mice were protected with a polycarbonate body shield during blast exposure, the marked increase in contrast was prevented. We conclude that manganese uptake can serve as a quantitative biomarker for TBI and that MEMRI is a minimally-invasive quantitative approach that can aid in the accurate diagnosis and management of blast TBI. In addition, the prevention of the increased uptake of manganese by body protection strongly suggests that the exposure of an individual to blast risk could benefit from the design of improved body armor.
Collapse
Affiliation(s)
- Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Michele L. Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brock Wester
- Research and Exploratory Development Department, Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - Yi-Chien Lee
- Department of Oncology, Georgetown University Medical Center, Washington DC
| | - Nathan Boggs
- Research and Exploratory Development Department, Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - Howard A. Conner
- Research and Exploratory Development Department, Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - Andrew C. Merkle
- Research and Exploratory Development Department, Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - Stanley T. Fricke
- Pediatric and Integrative Systems Biology, George Washington University, Washington, DC
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington DC
- Department of Pathology, Georgetown University Medical Center, Washington DC
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell Microbiol 2016; 18:632-44. [PMID: 26918908 DOI: 10.1111/cmi.12585] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
The concept of a gut microbiota-brain axis has emerged to describe the complex and continuous signalling between the gut microbiota and host nervous system. This review examines key microbial-derived neuromodulators and structural components that comprise the gut microbiota-brain axis. To conclude, we briefly identify current challenges in gut microbiota-brain research and suggest a framework to characterize these interactions. Here, we propose five emerging hallmarks of the gut microbiota-brain axis: (i) Indistinguishability, (ii) Emergence, (iii) Bidirectional Signalling, (iv) Critical Window Fluidity and (5) Neural Homeostasis.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kelsey E Huus
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Asadollahi S, Heidari K, Taghizadeh M, Seidabadi AM, Jamshidian M, Vafaee A, Manoochehri M, Shojaee AH, Hatamabadi HR. Reducing head computed tomography after mild traumatic brain injury: Screening value of clinical findings and S100B protein levels. Brain Inj 2015; 30:172-8. [PMID: 26671496 DOI: 10.3109/02699052.2015.1091504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PRIMARY OBJECTIVE The present prospective study was performed to investigate whether primary clinical findings and serum S100B concentrations at 3 and 6 hours post-trauma can contribute to the selection of patients for an initial computed tomography (CT) scanning. RESEARCH DESIGN AND METHODS S100B was measured in serum samples obtained at 3 and 6 hours after the injury. Adjusted odds ratios (OR) and 95% confidence interval (CI) associated with demographics and clinical predictors of positive CT scan were calculated. Sensitivity, specificity, negative and positive predictive values were also calculated for S100B levels. MAIN OUTCOMES AND RESULTS It was found that the presence of loss of consciousness (OR = 2.3; 95% CI = 1.00-4.01; p = 0.008) and post-traumatic vomiting ≥ 2 episodes (OR = 1.8; 95% CI = 1.08-3.29; p = 0.019) are factors associated with positive CT scan. In this study the best cut-off point of 0.115 µg L(-1) for 3-hour S100B has sensitivity of 94.9% (95% CI = 86.8-98.3) with specificity of 35.4% (95% CI = 25.2-47.0) to predict intracranial injury on CT scanning. The corresponding results for 6-hour S100B > 0.210 µg L(-1) were 98.7% (95% CI = 92.1-99.9) for sensitivity and 39.2% (95% CI = 28.6-50.8) for specificity. CONCLUSIONS Serum S100B measurement along with clinical evaluation of patients with mild traumatic brain injury has promising screening value to support selection of patients for CT scanning.
Collapse
Affiliation(s)
- Shadi Asadollahi
- a School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Kamran Heidari
- b Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehrdad Taghizadeh
- b Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Arash Mohammad Seidabadi
- b Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Morteza Jamshidian
- c Department of Emergency Medicine , Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ali Vafaee
- b Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Manoochehri
- b Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ali Habibzade Shojaee
- a School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Hamid Reza Hatamabadi
- d Sina Trauma and Surgery Research Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
Ziebell JM, Rowe RK, Harrison JL, Eakin KC, Colburn T, Willyerd FA, Lifshitz J. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology. Brain Inj 2015; 30:217-24. [PMID: 26646974 DOI: 10.3109/02699052.2015.1090012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PRIMARY OBJECTIVE A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. It was hypothesized that pathology is associated with modification of the vasculature. METHODS Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1, 2 or 7 days post-injury or sham-injury (n = 3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching and tortuosity of the vessels were evaluated across three regions of interest. RESULTS In M2, average vessel volume (p < 0.01) and surface area (p < 0.05) were significantly larger at 1 day relative to 2 days, 7 days and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching or tortuosity were observed. CONCLUSIONS Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes.
Collapse
Affiliation(s)
- Jenna M Ziebell
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Rachel K Rowe
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Jordan L Harrison
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Katharine C Eakin
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Taylor Colburn
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - F Anthony Willyerd
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,d Critical Care, Phoenix Children's Hospital , Phoenix , AZ , USA
| | - Jonathan Lifshitz
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,e Psychology , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
35
|
Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015; 74:1147-57. [DOI: 10.1097/nen.0000000000000261] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
36
|
Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015. [DOI: 10.1093/jnen/74.12.1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Hue CD, Cho FS, Cao S, Nicholls RE, Vogel Iii EW, Sibindi C, Arancio O, Dale Bass CR, Meaney DF, Morrison Iii B. Time Course and Size of Blood-Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury. J Neurotrauma 2015; 33:1202-11. [PMID: 26414212 DOI: 10.1089/neu.2015.4067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have reported blood-brain barrier (BBB) dysfunction after blast-induced traumatic brain injury (bTBI). Despite this evidence, there is limited quantitative understanding of the extent of BBB opening and the time course of damage after blast injury. In addition, many studies do not report kinematic parameters of head motion, making it difficult to separate contributions of primary and tertiary blast-loading. Detailed characterization of blast-induced BBB damage may hold important implications for serum constituents that may potentially cross the compromised barrier and contribute to neurotoxicity, neuroinflammation, and persistent neurologic deficits. Using an in vivo bTBI model, systemic administration of sodium fluorescein (NaFl; 376 Da), Evans blue (EB; 69 kDa when bound to serum albumin), and dextrans (3-500 kDa) was used to estimate the pore size of BBB opening and the time required for recovery. Exposure to blast with 272 ± 6 kPa peak overpressure, 0.69 ± 0.01 ms duration, and 65 ± 1 kPa*ms impulse resulted in significant acute extravasation of NaFl, 3 kDa dextran, and EB. However, there was no significant acute extravasation of 70 kDa or 500 kDa dextrans, and minimal to no extravasation of NaFl, dextrans, or EB 1 day after exposure. This study presents a detailed analysis of the time course and pore size of BBB opening after bTBI, supported by a characterization of kinematic parameters associated with blast-induced head motion.
Collapse
Affiliation(s)
- Christopher D Hue
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Frances S Cho
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Siqi Cao
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Russell E Nicholls
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Edward W Vogel Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Cosmas Sibindi
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Ottavio Arancio
- 2 Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University , New York, New York
| | - Cameron R Dale Bass
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - David F Meaney
- 4 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Barclay Morrison Iii
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
38
|
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731292. [PMID: 26579539 PMCID: PMC4633536 DOI: 10.1155/2015/731292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 01/16/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery.
Collapse
|
39
|
Price L, Wilson C, Grant G. Blood–Brain Barrier Pathophysiology following Traumatic Brain Injury. TRANSLATIONAL RESEARCH IN TRAUMATIC BRAIN INJURY 2015. [DOI: 10.1201/b18959-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B. Blood-brain barrier dysfunction following traumatic brain injury. Metab Brain Dis 2015; 30:1093-104. [PMID: 25624154 DOI: 10.1007/s11011-015-9651-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 01/24/2023]
Abstract
Traumatic brain injury is a serious cause of morbidity and mortality worldwide. After traumatic brain injury, the blood-brain barrier, the protective barrier between the brain and the intravascular compartment, becomes dysfunctional, leading to leakage of proteins, fluid, and transmigration of immune cells. As this leakage has profound clinical implications, including edema formation, elevated intracranial pressure and decreased perfusion pressure, much interest has been paid to better understanding the mechanisms responsible for these events. Various molecular pathways and numerous mediators have been found to be involved in the intricate process of regulating blood-brain barrier permeability following traumatic brain injury. This review provides an update to the existing knowledge about the various pathophysiological pathways and advancements in the field of blood-brain barrier dysfunction and hyperpermeability following traumatic brain injury, including the role of various tight junction proteins involved in blood-brain barrier integrity and regulation. We also address pitfalls of existing systems and propose strategies to improve the various debilitating functional deficits caused by this progressive epidemic.
Collapse
Affiliation(s)
- Himakarnika Alluri
- Department of Surgery, Baylor Scott & White Health & Texas A&M University Health Science Center, College of Medicine, 702 S.W. H.K. Dodgen Loop, Temple, TX, 76504, USA
| | | | | | | | | |
Collapse
|
41
|
Al Nimer F, Thelin E, Nyström H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM. Comparative Assessment of the Prognostic Value of Biomarkers in Traumatic Brain Injury Reveals an Independent Role for Serum Levels of Neurofilament Light. PLoS One 2015; 10:e0132177. [PMID: 26136237 PMCID: PMC4489843 DOI: 10.1371/journal.pone.0132177] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of death and disability, worldwide. Early determination of injury severity is essential to improve care. Neurofilament light (NF-L) has been introduced as a marker of neuroaxonal injury in neuroinflammatory/-degenerative diseases. In this study we determined the predictive power of serum (s-) and cerebrospinal fluid (CSF-) NF-L levels towards outcome, and explored their potential correlation to diffuse axonal injury (DAI). A total of 182 patients suffering from TBI admitted to the neurointensive care unit at a level 1 trauma center were included. S-NF-L levels were acquired, together with S100B and neuron-specific enolase (NSE). CSF-NF-L was measured in a subcohort (n = 84) with ventriculostomies. Clinical and neuro-radiological parameters, including computerized tomography (CT) and magnetic resonance imaging, were included in the analyses. Outcome was assessed 6 to 12 months after injury using the Glasgow Outcome Score (1-5). In univariate proportional odds analyses mean s-NF-L, -S100B and -NSE levels presented a pseudo-R2 Nagelkerke of 0.062, 0.214 and 0.074 in correlation to outcome, respectively. In a multivariate analysis, in addition to a model including core parameters (pseudo-R2 0.33 towards outcome; Age, Glasgow Coma Scale, pupil response, Stockholm CT score, abbreviated injury severity score, S100B), S-NF-L yielded an extra 0.023 pseudo-R2 and a significantly better model (p = 0.006) No correlation between DAI or CT assessed-intracranial damage and NF-L was found. Our study thus demonstrates that S-NF-L correlates to TBI outcome, even if used in models with S100B, indicating an independent contribution to the prediction, perhaps by reflecting different pathophysiological processes, not possible to monitor using conventional neuroradiology. Although we did not find a predictive value of NF-L for DAI, this cannot be completely excluded. We suggest further studies, with volume quantification of axonal injury, and a prolonged sampling time, in order to better determine the connection between NF-L and DAI.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Eric Thelin
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Nyström
- Department of Clinical Neuroscience, Section of Neuroradiology, Karolinska Institutet, Stockholm, Sweden
| | - Ann M Dring
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Svenningsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - David W Nelson
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Schwarzmaier SM, Gallozzi M, Plesnila N. Identification of the Vascular Source of Vasogenic Brain Edema following Traumatic Brain Injury Using In Vivo 2-Photon Microscopy in Mice. J Neurotrauma 2015; 32:990-1000. [PMID: 25585052 DOI: 10.1089/neu.2014.3775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasogenic brain edema due to vascular leakage is one of the most important factors determining the clinical outcome of patients following acute brain injury. To date, performing a detailed in vivo quantification of vascular leakage has not been possible. Here, we used in vivo 2-photon microscopy (2-PM) to determine the spatial (3D) and temporal development of vasogenic brain edema following traumatic brain injury (TBI) in mice; in addition, we identified the vessel types involved in vascular leakage. Thirteen male Tie2-GFP mice (6-8 weeks old) were subjected to controlled cortical impact (CCI) or a sham operation; subsequently, a cranial window was prepared adjacent to the injury site, and tetramethylrhodamine-dextran (TMRM, 40 mg/kg, MW 40,000) was injected intravenously to visualize blood plasma leakage. Parenchymal fluorescence intensity was monitored in three regions for 2-4 h post-CCI, reaching from the surface of the brain to a depth of 300 μm, and TMRM leakage was measured as an increase in TMRM fluorescence intensity outside the vessel lumen and in the parenchyma. In the CCI group, vascular leakage was detected in all investigated regions as early as 2.5 h post-injury. This leakage increased over time and was more pronounced proximal to the primary contusion. Both arterioles and venules contributed similarly to brain edema formation and their contribution was independent of vessel size; however, capillaries were the major contributor to leakage. In summary, using 2-PM to perform in vivo 3D deep-brain imaging, we found that TBI induces vascular leakage from capillaries, venules, and arterioles. Thus, all three vessel types are involved in trauma-induced brain edema and should be considered when developing novel therapies for preventing vasogenic brain edema.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Department of Anesthesiology, University of Munich Medical Center , Germany .,3 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Germany
| | - Micaela Gallozzi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland
| | - Nikolaus Plesnila
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,3 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Germany .,4 Munich Cluster of Symptoms Neurology (Synergy) , Munich, Germany
| |
Collapse
|
43
|
Olivecrona Z, Bobinski L, Koskinen LOD. Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury. Prognostic value of the biomarkers. Brain Inj 2014; 29:446-54. [PMID: 25518864 DOI: 10.3109/02699052.2014.989403] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The association was studied of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) on S-100B and neuron-specific enolase (NSE) in severe traumatic brain injury (sTBI). The relationship was explored between biomarkers, ICP, CPP, CT-scan classifications and the clinical outcome. MATERIALS AND METHODS Data were collected prospectively and consecutively in 48 patients with Glasgow Coma Scale score ≤ 8, age 15-70 years. NSE and S-100B were analysed during 5 consecutive days. The initial and follow-up CT-scans were classified according to the Marshall, Rotterdam and Morris-Marshall classifications. Outcome was evaluated with extended Glasgow outcome scale at 3 months. RESULTS Maximal ICP and minimal CPP correlated with S-100B and NSE levels. Complex relations between biomarkers and CT classifications were observed. S-100B bulk release (AUC = 0.8333, p = 0.0009), and NSE at 72 hours (AUC = 0.8476, p = 0.0045) had the highest prediction power of mortality. Combining Morris-Marshall score and S-100B bulk release improved the prediction of clinical outcome (AUC = 0.8929, p = 0.0008). CONCLUSION Biomarker levels are associated with ICP and CPP and reflect different aspects of brain injury as evaluated by CT-scan. The biomarkers might predict mortality. There are several pitfalls influencing the interpretation of biomarker data in respect to ICP, CPP, CT-findings and clinical outcome.
Collapse
Affiliation(s)
- Zandra Olivecrona
- Institution of Pharmacology and Clinical Neuroscience, Department of Neurosurgery, Umeå University , Umeå , Sweden
| | | | | |
Collapse
|
44
|
Choi SH, Kim HJ, Hwangbo L, Kim YW. The minimum percentage of triolein emulsion for studying cerebral vascular permeability with least brain edema. IRANIAN JOURNAL OF RADIOLOGY 2014; 11:e14887. [PMID: 25780547 PMCID: PMC4347752 DOI: 10.5812/iranjradiol.14887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/13/2013] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
Abstract
Background: Triolein emulsion infusion into the brain produces transiently increased vascular permeability. Objectives: The purpose of this study was to find the minimum percentage of triolein emulsion required for studying vascular permeability with minimal brain edema. Materials and Methods: Sixty healthy cats were divided into six groups according to the concentration of emulsified triolein infused into the carotid artery: group 1, 0.125% (n = 10); group 2, 0.25% (n = 10); group 3, 0.5% (n = 10); group 4, 1% (n = 10); group 5, 2% (n = 10); and group 6, saline infusion (control group, n = 10). T2-, T1- and contrast enhanced T1-weighted MR images were obtained 2 hours after infusing triolein emulsion. Contrast enhancement ratios (CERs) and signal intensity ratios (SIRs) versus contralateral hemispheres were calculated. Statistical analysis was performed by analysis of variance followed by Tukey’s test. P values of ≤ 0.05 were considered significant. Results: The lesion hemispheres showed mild hyperintensity due to edema on T2-weighted images, and contrast enhancement on post-contrast T1-weighted images in cats of group 1-5. CERs showed statistically significant differences between the control group and group 3 (P = 0.006), group 4 (P = 0.003), and group 5 (P < 0.001). However, SIRs were significantly different between the control group and group 5 only (P < 0.001). Conclusion: The minimum concentration of triolein emulsion required to increase vascular permeability adequately with minimal brain edema in a cat model was 0.5%.
Collapse
Affiliation(s)
- Seon Hee Choi
- Department of Radiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Pusan National University Postgraduate School, Yangsan, Republic of Korea
| | - Hak Jin Kim
- Department of Radiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Republic of Korea
- Corresponding author: Hak Jin Kim, Department of Radiology, Pusan National University School of Medicine, Biomedial Research Institute, Pusan National University Hospital, 10, 1-Ga, Ami-Dong, Seo-Ku, Pusan, 602-739, Republic of Korea. Tel: +82-512407371, Fax: +82-512447534, E-mail:
| | - Lee Hwangbo
- Department of Radiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Pusan National University Postgraduate School, Yangsan, Republic of Korea
| | - Yong-Woo Kim
- Department of Radiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Pusan National University, Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
45
|
Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 2014; 28:1491-503. [PMID: 25111457 DOI: 10.3109/02699052.2014.943288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
ShanghaiPR China
| | - Bo-Ding Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| |
Collapse
|
46
|
Xu FF, Sun S, Ho ASW, Lee D, Kiang KMY, Zhang XQ, Wang AM, Wu EX, Lui WM, Liu BY, Leung GKK. Effects of progesterone vs. dexamethasone on brain oedema and inflammatory responses following experimental brain resection. Brain Inj 2014; 28:1594-601. [PMID: 25093611 DOI: 10.3109/02699052.2014.943289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fei-Fan Xu
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
BeijingPR China
| | - Stella Sun
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Amy S. W. Ho
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Derek Lee
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Karrie M. Y. Kiang
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Xiao-Qin Zhang
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Anna M. Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong
Hong KongPR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong
Hong KongPR China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong
Hong KongPR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong
Hong KongPR China
| | - Wai-Man Lui
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| | - Bai-Yun Liu
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
- Beijing Neurosurgical Institute
BeijingPR China
- Department of Neurotrauma, General Hospital of Chinese People’s Armed Police Force
BeijingPR China
| | - Gilberto K. K. Leung
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
Hong KongPR China
| |
Collapse
|
47
|
Gold EM, Su D, López-Velázquez L, Haus DL, Perez H, Lacuesta GA, Anderson AJ, Cummings BJ. Functional assessment of long-term deficits in rodent models of traumatic brain injury. Regen Med 2014; 8:483-516. [PMID: 23826701 DOI: 10.2217/rme.13.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) ranks as the leading cause of mortality and disability in the young population worldwide. The annual US incidence of TBI in the general population is estimated at 1.7 million per year, with an estimated financial burden in excess of US$75 billion a year in the USA alone. Despite the prevalence and cost of TBI to individuals and society, no treatments have passed clinical trial to clinical implementation. The rapid expansion of stem cell research and technology offers an alternative to traditional pharmacological approaches targeting acute neuroprotection. However, preclinical testing of these approaches depends on the selection and characterization of appropriate animal models. In this article we consider the underlying pathophysiology for the focal and diffuse TBI subtypes, discuss the existing preclinical TBI models and functional outcome tasks used for assessment of injury and recovery, identify criteria particular to preclinical animal models of TBI in which stem cell therapies can be tested for safety and efficacy, and review these criteria in the context of the existing TBI literature. We suggest that 2 months post-TBI is the minimum period needed to evaluate human cell transplant efficacy and safety. Comprehensive review of the published TBI literature revealed that only 32% of rodent TBI papers evaluated functional outcome ≥1 month post-TBI, and only 10% evaluated functional outcomes ≥2 months post-TBI. Not all published papers that evaluated functional deficits at a minimum of 2 months post-TBI reported deficits; hence, only 8.6% of overall TBI papers captured in this review demonstrated functional deficits at 2 months or more postinjury. A 2-month survival and assessment period would allow sufficient time for differentiation and integration of human neural stem cells with the host. Critically, while trophic effects might be observed at earlier time points, it will also be important to demonstrate the sustainability of such an effect, supporting the importance of an extended period of in vivo observation. Furthermore, regulatory bodies will likely require at least 6 months survival post-transplantation for assessment of toxicology/safety, particularly in the context of assessing cell abnormalities.
Collapse
Affiliation(s)
- Eric M Gold
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine 2030 Gross Hall, CA 92697-1705, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma 2014; 31:618-29. [PMID: 24279428 DOI: 10.1089/neu.2013.3087] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood-brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4-5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment.
Collapse
Affiliation(s)
- Edwin B Yan
- 1 National Trauma Research Institute, The Alfred Hospital , Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jiang X, Huang Y, Lin W, Gao D, Fei Z. Protective effects of hydrogen sulfide in a rat model of traumatic brain injury via activation of mitochondrial adenosine triphosphate–sensitive potassium channels and reduction of oxidative stress. J Surg Res 2013; 184:e27-35. [DOI: 10.1016/j.jss.2013.03.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/28/2023]
|
50
|
Ondruschka B, Pohlers D, Sommer G, Schober K, Teupser D, Franke H, Dressler J. S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 2013; 30:1862-71. [PMID: 23796187 DOI: 10.1089/neu.2013.2895] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postmortem analysis of relevant biomarkers might aid in characterizing causes of death and survival times in legal medicine. However, there are still no sufficiently established results of practical postmortem biochemical investigations in cases of traumatic brain injury (TBI). The two biomarkers--S100 protein subunit B (S100B) and neuronal specific enolase (NSE)--could be of special interest. Therefore, the aim of the present study was to investigate changes in their postmortem levels for further determination of brain damage in TBI. In 17 cases of TBI (average age, 58 years) and in 23 controls with different causes of death (average age, 59 years), serum and cerebrospinal fluid (CSF) samples were analyzed with a chemiluminescence immunoassay for marker expression. An increase in serum S100B, as well as a subsequent decrease after survival times>4 days, were detected in TBI cases (p<0.01). CSF NSE values >6,000 ng/mL and CSF S100B levels >10,000 ng/mL seem to indicate a TBI survival time of at least 15 min (p<0.01). It is of particular interest that CSF S100B levels (p<0.01) and serum S100B levels (p<0.05) as well as CSF NSE values (p<0.01) were significantly higher in TBI cases in comparison to the controls, especially when compared with fatal non-head injuries. In conclusion, the present findings emphasize that S100B and NSE are useful markers in postmortem biochemistry in cases of suspected TBI. Further, S100B may be helpful to estimate the survival time of fatal injuries in legal medicine.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- 1 Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig , Germany
| | | | | | | | | | | | | |
Collapse
|