1
|
Martinez-Nunez AE, Wong JK, Hilliard JD, Foote KD, Okun MS. Preventing Shift from Pneumocephalus During Deep Brain Stimulation Surgery: Don't Give Up the 'Fork in the Brain'. Tremor Other Hyperkinet Mov (N Y) 2024; 14:18. [PMID: 38617832 PMCID: PMC11011943 DOI: 10.5334/tohm.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Clinical vignette We present the case of a patient who developed intra-operative pneumocephalus during left globus pallidus internus deep brain stimulation (DBS) placement for Parkinson's disease (PD). Microelectrode recording (MER) revealed that we were anterior and lateral to the intended target. Clinical dilemma Clinically, we suspected brain shift from pneumocephalus. Removal of the guide-tube for readjustment of the brain target would have resulted in the introduction of movement resulting from brain shift and from displacement from the planned trajectory. Clinical solution We elected to leave the guide-tube cannula in place and to pass the final DBS lead into a channel that was located posterior-medially from the center microelectrode pass. Gap in knowledge Surgical techniques which can be employed to minimize brain shift in the operating room setting are critical for reduction in variation of the final DBS lead placement. Pneumocephalus after dural opening is one potential cause of brain shift. The recognition that the removal of a guide-tube cannula could worsen brain shift creates an opportunity for an intraoperative team to maintain the advantage of the 'fork' in the brain provided by the initial procedure's requirement of guide-tube placement.
Collapse
Affiliation(s)
- Alfonso Enrique Martinez-Nunez
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, US
| | - Joshua K. Wong
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, US
| | - Justin D. Hilliard
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, US
| | - Kelly D. Foote
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, US
| | - Michael S. Okun
- Departments of Neurology and Neurosurgery, Norman Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, US
| |
Collapse
|
2
|
Johari K, Kelley RM, Tjaden K, Patterson CG, Rohl AH, Berger JI, Corcos DM, Greenlee JDW. Human subthalamic nucleus neurons differentially encode speech and limb movement. Front Hum Neurosci 2023; 17:962909. [PMID: 36875233 PMCID: PMC9983637 DOI: 10.3389/fnhum.2023.962909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN), which consistently improves limb motor functions, shows mixed effects on speech functions in Parkinson's disease (PD). One possible explanation for this discrepancy is that STN neurons may differentially encode speech and limb movement. However, this hypothesis has not yet been tested. We examined how STN is modulated by limb movement and speech by recording 69 single- and multi-unit neuronal clusters in 12 intraoperative PD patients. Our findings indicated: (1) diverse patterns of modulation in neuronal firing rates in STN for speech and limb movement; (2) a higher number of STN neurons were modulated by speech vs. limb movement; (3) an overall increase in neuronal firing rates for speech vs. limb movement; and (4) participants with longer disease duration had higher firing rates. These data provide new insights into the role of STN neurons in speech and limb movement.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Science and Disorders, Louisiana State University, Baton Rouge, LA, United States.,Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Ryan M Kelley
- Medical Scientist Training Program, The University of Iowa, Iowa City, IA, United States.,Program in Neuroscience, The University of Iowa, Iowa City, IA, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Charity G Patterson
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrea H Rohl
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Joel I Berger
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Jeremy D W Greenlee
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, United States.,Program in Neuroscience, The University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Iowa City, IA, United States
| |
Collapse
|
3
|
Direct visualization of deep brain stimulation targets in patients with Parkinson's disease via 3-T quantitative susceptibility mapping. Acta Neurochir (Wien) 2021; 163:1335-1345. [PMID: 33576911 DOI: 10.1007/s00701-021-04715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND The direct visualization of brain nuclei on magnetic resonance (MR) images is important for target localization during deep brain stimulation (DBS) in patients with Parkinson's disease (PD). We demonstrated the superiority of 3-T high-resolution submillimeter voxel size quantitative susceptibility mapping (QSM) for delineating the subthalamic nucleus (STN) and the globus pallidus internus (GPi). METHODS Preoperative 3-T QSM and T2 weighted (T2w) images were obtained from ten patients with PD. Qualitative visualization scores were analyzed by two neurosurgeons on both images using a 4-point and 5-point scale, respectively. Images were also compared with regard to contrast-to-noise ratios (CNRs) and edge detection power for the STN and GPi. The Wilcoxon rank-sum test and the signed-rank test were used to compare measurements between the two images. RESULTS Visualization scores for the STN and GPi, the mean CNR of the STN relative to the zona incerta (ZI) and the substantia nigra, and the mean CNR of the GPi relative to the internal capsule (IC) and the globus pallidum externum, were significantly higher on QSM images than on T2w images (P < 0.01). The edge detection powers of the STN-ZI and GPi-IC on QSM were significantly larger (by 2.6- and 3.8-fold, respectively) than those on T2w images (P < 0.01). QSM detected asymmetry of the STN in two patients. CONCLUSIONS QSM images provided improved delineation ability for the STN and GPi when compared to T2w images. Our findings are important for patients with PD who undergo DBS surgery, particularly those with asymmetric bilateral nuclei.
Collapse
|
4
|
Engelhardt J, Caire F, Damon-Perrière N, Guehl D, Branchard O, Auzou N, Tison F, Meissner WG, Krim E, Bannier S, Bénard A, Sitta R, Fontaine D, Hoarau X, Burbaud P, Cuny E. A Phase 2 Randomized Trial of Asleep versus Awake Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Stereotact Funct Neurosurg 2020; 99:230-240. [PMID: 33254172 DOI: 10.1159/000511424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/07/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Asleep deep brain stimulation (DBS) for Parkinson's disease (PD) is being performed more frequently; however, motor outcomes and safety of asleep DBS have never been assessed in a prospective randomized trial. METHODS We conducted a prospective, randomized, noncomparative trial to assess the motor outcomes of asleep DBS. Leads were implanted in the subthalamic nucleus (STN) according to probabilistic stereotactic coordinates with a surgical robot under O-arm© imaging guidance under either general anesthesia without microelectrode recordings (MER) (20 patients, asleep group) or local anesthesia with MER and clinical testing (9 patients, awake group). RESULTS The mean motor improvement rates on the Unified Parkinson's Disease Rating Scale Part III (UPDRS-3) between OFF and ON stimulation without medication were 52.3% (95% CI: 45.4-59.2%) in the asleep group and 47.0% (95% CI: 23.8-70.2%) in the awake group, 6 months after surgery. Except for a subcutaneous hematoma, we did not observe any complications related to the surgery. Three patients (33%) in the awake group and 8 in the asleep group (40%) had at least one side effect potentially linked with neurostimulation. CONCLUSIONS Owing to its randomized design, our study supports the hypothesis that motor outcomes after asleep STN-DBS in PD may be noninferior to the standard awake procedure.
Collapse
Affiliation(s)
- Julien Engelhardt
- CHU de Bordeaux, Service de Neurochirurgie B, Bordeaux, France, .,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France, .,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France,
| | - François Caire
- Université de Limoges, CNRS, XLIM, UMR7252, Limoges, France.,CHU de Limoges, Service de Neurochirurgie, Limoges, France
| | - Nathalie Damon-Perrière
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | | | - Nicolas Auzou
- CHU de Bordeaux, Service de Neurologie, Bordeaux, France.,Laboratoire de Psychologie, Université de Bordeaux, Bordeaux, France
| | - François Tison
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Wassilios G Meissner
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service de Neurologie, Bordeaux, France
| | - Elsa Krim
- CH de Pau, Service de Neurologie, Pau, France
| | | | - Antoine Bénard
- CHU Bordeaux, Pôle de Santé Publique, Clinical Epidemiology Unit (USMR), Bordeaux, France
| | - Rémi Sitta
- CHU Bordeaux, Pôle de Santé Publique, Clinical Epidemiology Unit (USMR), Bordeaux, France
| | - Denys Fontaine
- CHU de Nice, Service de Neurochirurgie, Nice, France.,Université Côte d'Azur, Nice, France
| | - Xavier Hoarau
- Polyclinique de Navarre, Service de Neurochirurgie, Pau, France
| | - Pierre Burbaud
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CHU de Bordeaux, Service d'explorations Fonctionnelles du Système Nerveux, Bordeaux, France
| | - Emmanuel Cuny
- CHU de Bordeaux, Service de Neurochirurgie B, Bordeaux, France.,Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
5
|
Wei H, Zhang C, Wang T, He N, Li D, Zhang Y, Liu C, Yan F, Sun B. Precise targeting of the globus pallidus internus with quantitative susceptibility mapping for deep brain stimulation surgery. J Neurosurg 2020; 133:1605-1611. [PMID: 31604332 DOI: 10.3171/2019.7.jns191254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The goal of this study was to demonstrate the use of quantitative susceptibility mapping (QSM)-based images to precisely localize the globus pallidus internus (GPi) for deep brain stimulation (DBS) planning and to enhance postsurgical visualization of the DBS lead positions. METHODS Presurgical T1-weighted (T1w), T2-weighted (T2w), and QSM images as well as postsurgical CT images were obtained in 29 patients with Parkinson's disease. To enhance the contrast within the GP, a hybrid contrast was created by linearly combining T1w and QSM images. Contrast-to-noise ratios (CNRs) of the GPi on T1w, T2w, QSM, and hybrid images were compared. The CNR differences were tested using the 1-way ANOVA method. The visualization of the DBS lead position was demonstrated by merging the postsurgical CT with presurgical MR images. RESULTS The hybrid images yield the best CNRs for GPi depiction and the visualization of the postsurgical DBS lead position was significantly improved. CONCLUSIONS QSM-based images allow for confident localization of borders of the GPi that is superior to T1w and T2w images. High-contrast hybrid images can be used for precisely directed DBS targeting, e.g., GPi DBS for the treatment of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Hongjiang Wei
- 1Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University
| | - Chencheng Zhang
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Tao Wang
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Naying He
- 3Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University
| | - Dianyou Li
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Yuyao Zhang
- 4School of Information and Science and Technology, Shanghai Tech University, Shanghai, China
| | - Chunlei Liu
- 5Department of Electrical Engineering and Computer Sciences, University of California, Berkeley; and
- 6Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Fuhua Yan
- 3Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University
| | - Bomin Sun
- 2Department of Functional Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
6
|
Martino A, Darbin O, Templeton K, Dees D, Lammle M, Torres T, Williams D, Naritoku D. Physical Plasticity of the Brain and Deep Brain Stimulation Lead: Evolution in the First Post-operative Week. Front Surg 2020; 7:55. [PMID: 33062638 PMCID: PMC7477286 DOI: 10.3389/fsurg.2020.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Deep brain stimulation (DBS) is a therapy for movement disorders and psychiatric conditions. In the peri-operative period, brain shift occurs as the consequence of events related to the brain surgery which results in post-operative lead deformation. Objective: To quantify post-operative 3-dimensional DBS lead deformation after implantation. Methods: In 13 patients who had DBS lead implantation, we performed preoperative magnetic resonance imaging (MRI), preoperative computed tomography (CT) scans after placement of fiducial markers, and post-operative CT scans immediately, 24-48 h, and 7 days after implantation. The MRI scans were used to define brain orientation and merged with CT scans. Lead deviation was determined relative to a theoretical linear lead path defined by the skull entry and target lead tip points. Results: In the sagittal plane, we distinguished an initial period after surgery (<48 h) characterized by a deviation of the lead toward the rostral direction and a late period (over 1 week) characterized by a lead deviation toward the caudal direction. In the coronal plane, there was higher probability of lead deviation in the lateral than medial direction. During 7 days after implantation, there was net movement of the center of the lead anteriorly, and the half of the lead close to the entry point moved medially. These deviations appeared normative since all patients included in this study had benefits from DBS therapy with total power of charged comparable to those described in literature. Conclusion: DBS lead deviation occurs during 7 days after implantation. The range of deviation described in this study was not associated to adverse clinical effects and may be considered normative. Future multicenter studies would be helpful to define guide lines on DBS lead deformation and its contribution to clinical outcome.
Collapse
Affiliation(s)
- Anthony Martino
- Department of Neurosurgery, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Olivier Darbin
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Kelsey Templeton
- Department of Neurosurgery, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Daniel Dees
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Markus Lammle
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States.,Department of Radiology, Tulane University, New Orleans, LA, United States
| | - Tatiana Torres
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dakota Williams
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Dean Naritoku
- Department of Neurology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
7
|
Dimov AV, Gupta A, Kopell BH, Wang Y. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping. J Neurosurg 2019; 131:360-367. [PMID: 30095333 DOI: 10.3171/2018.3.jns172145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/01/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Faithful depiction of the subthalamic nucleus (STN) is critical for planning deep brain stimulation (DBS) surgery in patients with Parkinson's disease (PD). Quantitative susceptibility mapping (QSM) has been shown to be superior to traditional T2-weighted spin echo imaging (T2w). The aim of the study was to describe submillimeter QSM for preoperative imaging of the STN in planning of DBS. METHODS Seven healthy volunteers were included in this study. T2w and QSM were obtained for all healthy volunteers, and images of different resolutions were reconstructed. Image quality and visibility of STN anatomical features were analyzed by a radiologist using a 5-point scale, and contrast properties of the STN and surrounding tissue were calculated. Additionally, data from 10 retrospectively and randomly selected PD patients who underwent 3-T MRI for DBS were analyzed for STN size and susceptibility gradient measurements. RESULTS Higher contrast-to-noise ratio (CNR) values were observed in both high-resolution and low-resolution QSM images. Inter-resolution comparison demonstrated improvement in CNR for QSM, but not for T2w images. QSM provided higher inter-quadrant contrast ratios (CR) within the STN, and depicted a gradient in the distribution of susceptibility sources not visible in T2w images. CONCLUSIONS For 3-T MRI, submillimeter QSM provides accurate delineation of the functional and anatomical STN features for DBS targeting.
Collapse
Affiliation(s)
- Alexey V Dimov
- 1Meinig School of Biomedical Engineering, Cornell University, Ithaca
- 2Department of Radiology, Weill Medical College of Cornell University; and
| | - Ajay Gupta
- 2Department of Radiology, Weill Medical College of Cornell University; and
| | - Brian H Kopell
- 3Department of Neurosurgery, Mount Sinai Health System, New York, New York
| | - Yi Wang
- 1Meinig School of Biomedical Engineering, Cornell University, Ithaca
- 2Department of Radiology, Weill Medical College of Cornell University; and
| |
Collapse
|
8
|
Analysis of patient-specific stimulation with segmented leads in the subthalamic nucleus. PLoS One 2019; 14:e0217985. [PMID: 31216311 PMCID: PMC6584006 DOI: 10.1371/journal.pone.0217985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/19/2022] Open
Abstract
Objective Segmented deep brain stimulation leads in the subthalamic nucleus have shown to increase therapeutic window using directional stimulation. However, it is not fully understood how these segmented leads with reduced electrode size modify the volume of tissue activated (VTA) and how this in turn relates with clinically observed therapeutic and side effect currents. Here, we investigated the differences between directional and omnidirectional stimulation and associated VTAs with patient-specific therapeutic and side effect currents for the two stimulation modes. Approach Nine patients with Parkinson’s disease underwent DBS implantation in the subthalamic nucleus. Therapeutic and side effect currents were identified intraoperatively with a segmented lead using directional and omnidirectional stimulation (these current thresholds were assessed in a blinded fashion). The electric field around the lead was simulated with a finite-element model for a range of stimulation currents for both stimulation modes. VTAs were estimated from the electric field by numerical differentiation and thresholding. Then for each patient, the VTAs for given therapeutic and side effect currents were projected onto the patient-specific subthalamic nucleus and lead position. Results Stimulation with segmented leads with reduced electrode size was associated with a significant reduction of VTA and a significant increase of radial distance in the best direction of stimulation. While beneficial effects were associated with activation volumes confined within the anatomical boundaries of the subthalamic nucleus at therapeutic currents, side effects were associated with activation volumes spreading beyond the nucleus’ boundaries. Significance The clinical benefits of segmented leads are likely to be obtained by a VTA confined within the subthalamic nucleus and a larger radial distance in the best stimulation direction, while steering the VTA away from unwanted fiber tracts outside the nucleus. Applying the same concepts at a larger scale and in chronically implanted patients may help to predict the best stimulation area.
Collapse
|
9
|
Kaptan H, EkmekÇİ H. Long-term Results for Single Channel-Guided Deep Brain Stimulation Used to Treat Parkinson's Disease. ACTA ACUST UNITED AC 2019; 57:290-293. [PMID: 33354120 DOI: 10.29399/npa.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/28/2018] [Indexed: 11/07/2022]
Abstract
Introduction The optimal method for targeting the subthalamic nucleus (STN) and positioning the deep brain stimulation (DBS) electrode is still controversial. In this study, single channel-guided stimulations were used in order to determine the most proper way to target the STN. Findings were synthesised for use in clinical situations. This paper presents the long-term results of DBS applied using single-channel guidance. Methods We retrospectively reviewed 15 patients who had undergone STN-DBS to treat Parkinson's disease in-between 2010 and 2017. All patients were examined preoperatively, and they were routinely followed-up 2-7 years postoperatively. Results The use of single-channel guidance resulted in better outcomes of motor complaints of Parkinson's patients. Moreover, a significantly greater improvement in Unified Parkinson's Disease Rating Scale Score (UPDRS) was achieved in either ON or OFF periods of patients. Conclusion Single channel-guided STN-DBS is a safe procedure and it results in improved motor outcomes in advanced Parkinson's Disease.
Collapse
Affiliation(s)
- Hulagu Kaptan
- Department of Brain Surgery, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Hakan EkmekÇİ
- Department of Neurology, Selçuk University School of Medicine, Konya, Turkey
| |
Collapse
|
10
|
Tu PH, Liu ZH, Chen CC, Lin WY, Bowes AL, Lu CS, Lee ST. Indirect Targeting of Subthalamic Deep Brain Stimulation Guided by Stereotactic Computed Tomography and Microelectrode Recordings in Patients With Parkinson's Disease. Front Hum Neurosci 2018; 12:470. [PMID: 30568585 PMCID: PMC6290336 DOI: 10.3389/fnhum.2018.00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023] Open
Abstract
Objective: Magnetic resonance imaging fusion techniques guided by frame-based stereotactic computed tomography and microelectrode recordings are widely used to target the subthalamic nucleus. However, MRI is not always available. The aim of this study was to determine whether the indirect targeting of the subthalamic nucleus for deep brain stimulation using frame-based stereotactic computed tomography and microelectrode recording guidance in patients with advanced idiopathic Parkinson’s disease was an effective and safe treatment and to determine the factors that contributed to outcome. Methods: Thirty-four consecutive patients with Parkinson’s disease who were treated from 2010 to 2012 were enrolled in this retrospective cohort study. The patients were assessed with the Unified Parkinson’s Disease Rating Scale-part III (UPDRS-III) and other clinical profiles peri- and post-operatively. The horizontal and vertical distances between the midpoint of the head frame and the brain midline at the septum pellucidum level and the upper edge of the bilateral lens, respectively, on a thin-section brain computed tomography scan were defined as the horizontal and vertical deviations, respectively. Results: After the deep brain stimulation surgery, the patients’ UPDRS-III scores improved 48 ± 2.8% (range, 20–81%) compared to the patients’ baseline off-levodopa scores. No surgery-associated complications were found. The mean recorded length difference of the subthalamic nucleus between the initial and final single microelectrode recording trajectories was 5.37 ± 0.16 mm (range, 3.99–7.50). Multiple linear regression analyses revealed that the increased lengths of the vertical (regression coefficient [B]: -0.0626; 95% confidence interval [CI]: -0.113 to -0.013) and horizontal deviations (B: -0.0497; 95% CI: -0.083 to -0.017) were associated with less improvement in the patients’ UPDRS scores. Conclusion: These results showed that the indirect targeting of the subthalamic nucleus for deep brain stimulation using frame-based stereotactic computed tomography and microelectrode recording guidance in patients with advanced idiopathic Parkinson’s disease was effective and safe. Greater symmetry of the head frame fixation resulted in better outcomes of the deep brain stimulation of the subthalamic nucleus in patients with Parkinson’s disease, especially when the horizontal deviation was 2 mm or less and the vertical deviation was 1 mm or less.
Collapse
Affiliation(s)
- Po-Hsun Tu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan
| | - Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan
| | - Chiung Chu Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Wey Yil Lin
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Neurology, Landseed Hospital, Taoyuan, Taiwan
| | - Amy L Bowes
- Royal Free London NHS Foundation Trust, Royal Free Hospital, London, United Kingdom
| | - Chin Song Lu
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Shih-Tseng Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung Medical College and University, Linkou, Taiwan
| |
Collapse
|
11
|
Ispierto L, Muñoz J, Cladellas JM, Cuadras P, Capellades J, Latorre P, Dávalos A, Vancamp T, Álvarez R. Post-Operative Localization of Deep Brain Stimulation Electrodes in the Subthalamus Using Transcranial Sonography. Neuromodulation 2017; 21:574-581. [PMID: 29178240 DOI: 10.1111/ner.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The correct positioning of deep brain stimulation electrodes determines the success of surgery. In this study, we attempt to validate transcranial sonography (TCS) as a method for early postoperative confirmation of electrode location in the subthalamic nucleus (STN). MATERIALS AND METHODS Nineteen patients diagnosed with Parkinson's disease were enrolled in the study. Postoperative TCS was applied to measure the distance between the implanted electrodes and the third ventricle in the axial plane. Whether the electrodes were positioned within or outside the substantia nigra (SN) was evaluated through measurements in the coronal plane. The obtained metrics through TCS were compared with those from postoperative computed tomography (CT) and magnetic resonance imaging (MRI). RESULTS A statistically significant correlation between distances from electrode to third ventricle by TCS and CT/MRI (r = 0.75, p < 0.01) was observed. Distances from third ventricle to electrodes tips were different when sonographically they showed to be inside or outside the SN (p < 0.01). A cut-off value of 8.85mm in these distances was the most sensitive (100%) and specific (90.5%) to predict if electrodes were positioned inside the SN (CI 95% 0.81-10.30, p = 0.001). CONCLUSIONS Transcranial sonography is a useful technique to reliably identify targeted positioning of deep brain stimulation electrodes in or out of the SN.
Collapse
Affiliation(s)
- Lourdes Ispierto
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Muñoz
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Josep Maria Cladellas
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Patricia Cuadras
- Department of Radiology, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jaume Capellades
- Image Diagnosis Institute, Badalona, Spain.,Department of Medical Imaging Consorci MAR Parc de Salut, Barcelona, Spain
| | - Pilar Latorre
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Dávalos
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Tim Vancamp
- BRAI2N, St. Augustinus Hospital, Wilrijk, Belgium
| | - Ramiro Álvarez
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
12
|
Park SC, Lee CS, Kim SM, Choi EJ, Lee JK. Comparison of the Stereotactic Accuracies of Function-Guided Deep Brain Stimulation, Calculated Using Multitrack Target Locations Geometrically Inferred from Three-Dimensional Trajectory Rotations, and of Magnetic Resonance Imaging-Guided Deep Brain Stimulation and Outcomes. World Neurosurg 2017; 98:734-749.e7. [DOI: 10.1016/j.wneu.2016.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
|
13
|
Li Z, Zhang JG, Ye Y, Li X. Review on Factors Affecting Targeting Accuracy of Deep Brain Stimulation Electrode Implantation between 2001 and 2015. Stereotact Funct Neurosurg 2016; 94:351-362. [PMID: 27784015 DOI: 10.1159/000449206] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accurate implantation of a depth electrode into the brain is of the greatest importance in deep brain stimulation (DBS), and various stereotactic systems have been developed for electrode implantation. However, an updated analysis of depth electrode implantation in the modern era of DBS is lacking. OBJECTIVE This study aims at providing an updated review on targeting accuracy of DBS electrode implantation by analyzing contemporary DBS electrode implantation operations from the perspective of precision engineering. METHODS Eligible articles with information on targeting accuracy of DBS electrode implantation were searched in the PubMed database. RESULTS An average targeting error of DBS electrode implantation is reported to decrease toward 1 mm; the standard deviation of targeting error is decreasing toward 0.5 mm. Targeting accuracy is not only found to be affected by individual surgical steps, but also systematically affected by the architecture of the implantation operation. CONCLUSION A systematic strategy should be adopted to further improve the targeting accuracy of depth electrode implantation. Attention should be paid to optimizing the whole electrode implantation operation, which can help minimize error accumulation or amplification throughout the serially connected procedures for DBS electrode implantation.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
14
|
Wagle Shukla A, Okun MS. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective. IEEE Rev Biomed Eng 2016; 9:219-33. [PMID: 27411228 DOI: 10.1109/rbme.2016.2588399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.
Collapse
|
15
|
Sedation with α2 Agonist Dexmedetomidine During Unilateral Subthalamic Nucleus Deep Brain Stimulation: A Preliminary Report. World Neurosurg 2016; 89:320-8. [DOI: 10.1016/j.wneu.2016.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/23/2022]
|
16
|
Zrinzo L, Hariz M, Hyam JA, Foltynie T, Limousin P. Letter to the Editor: A paradigm shift toward MRI-guided and MRI-verified DBS surgery. J Neurosurg 2016; 124:1135-7. [DOI: 10.3171/2015.9.jns152061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ludvic Zrinzo
- 1UCL Institute of Neurology, University College London, London, United Kingdom
- 2National Hospital for Neurology and Neurosurgery, London, United Kingdom; and
| | - Marwan Hariz
- 1UCL Institute of Neurology, University College London, London, United Kingdom
- 3Umeå University, Umeå, Sweden
| | - Jonathan A. Hyam
- 1UCL Institute of Neurology, University College London, London, United Kingdom
- 2National Hospital for Neurology and Neurosurgery, London, United Kingdom; and
| | - Thomas Foltynie
- 1UCL Institute of Neurology, University College London, London, United Kingdom
| | - Patricia Limousin
- 1UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Liu Y, Dawant BM. Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures. ... IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS. IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS 2016; 2016:17-20. [PMID: 27754497 PMCID: PMC5042326 DOI: 10.1109/bhi.2016.7455824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation, as a primary surgical treatment for various neurological disorders, involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate pre-operative target selection is challenging due to the poor contrast in its surrounding region in MR images. In this paper, we present a learning-based method to automatically and rapidly localize the target using multi-modal images. A learning-based technique is applied first to spatially normalize the images in a common coordinate space. Given a point in this space, we extract a heterogeneous set of features that capture spatial and intensity contextual patterns at different scales in each image modality. Regression forests are used to learn a displacement vector of this point to the target. The target is predicted as a weighted aggregation of votes from various test samples, leading to a robust and accurate solution. We conduct five-fold cross validation using 100 subjects and compare our method to three indirect targeting methods, a state-of-the-art statistical atlas-based approach, and two variations of our method that use only a single modality image. With an overall error of 2.63±1.37mm, our method improves upon the single modality-based variations and statistically significantly outperforms the indirect targeting ones. Our technique matches state-of-the-art registration methods but operates on completely different principles. Both techniques can be used in tandem in processing pipelines operating on large databases or in the clinical flow for automated error detection.
Collapse
Affiliation(s)
- Yuan Liu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Benoit M Dawant
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Cui Z, Pan L, Song H, Xu X, Xu B, Yu X, Ling Z. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. J Neurosurg 2016; 124:62-9. [DOI: 10.3171/2015.1.jns141534] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The degree of clinical improvement achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. This study reports on the evaluation of intraoperative MRI (iMRI) for adjusting deviated electrodes to the accurate anatomical position during DBS surgery and acute intracranial changes.
METHODS
Two hundred and six DBS electrodes were implanted in the subthalamic nucleus (STN) in 110 patients with Parkinson disease. All patients underwent iMRI after implantation to define the accuracy of lead placement. Fifty-six DBS electrode positions in 35 patients deviated from the center of the STN, according to the result of the initial postplacement iMRI scans. Thus, we adjusted the electrode positions for placement in the center of the STN and verified this by means of second or third iMRI scans. Recording was performed in adjusted parameters in the x-, y-, and z-axes.
RESULTS
Fifty-six (27%) of 206 DBS electrodes were adjusted as guided by iMRI. Electrode position was adjusted on the basis of iMRI 62 times. The sum of target coordinate adjustment was −0.5 mm in the x-axis, −4 mm in the y-axis, and 15.5 mm in the z-axis; the total of distance adjustment was 74.5 mm in the x-axis, 88 mm in the y-axis, and 42.5 mm in the z-axis. After adjustment with the help of iMRI, all electrodes were located in the center of the STN. Intraoperative MRI revealed 2 intraparenchymal hemorrhages in 2 patients, brain shift in all patients, and leads penetrating the lateral ventricle in 3 patients.
CONCLUSIONS
The iMRI technique can guide surgeons as they adjust deviated electrodes to improve the accuracy of implanting the electrodes into the correct anatomical position. The iMRI technique can also immediately demonstrate acute changes such as hemorrhage and brain shift during DBS surgery.
Collapse
Affiliation(s)
- Zhiqiang Cui
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Longsheng Pan
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Huifang Song
- 2Department of Neurology, Hebei Province Luan County People’s Hospital, Luan County, Hebei Province, China
| | - Xin Xu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Bainan Xu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Xinguang Yu
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| | - Zhipei Ling
- 1Department of Neurosurgery, PLA General Hospital, PLA Postgraduate Medical School, Beijing; and
| |
Collapse
|
19
|
Pallavaram S, DʼHaese PF, Lake W, Konrad PE, Dawant BM, Neimat JS. Fully automated targeting using nonrigid image registration matches accuracy and exceeds precision of best manual approaches to subthalamic deep brain stimulation targeting in Parkinson disease. Neurosurgery 2015; 76:756-65. [PMID: 25988929 DOI: 10.1227/neu.0000000000000714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.
Collapse
Affiliation(s)
- Srivatsan Pallavaram
- *Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee; ‡Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
20
|
Lange M, Zech N, Seemann M, Janzen A, Halbing D, Zeman F, Doenitz C, Rothenfusser E, Hansen E, Brawanski A, Schlaier J. Anesthesiologic regimen and intraoperative delirium in deep brain stimulation surgery for Parkinson's disease. J Neurol Sci 2015; 355:168-73. [PMID: 26073485 DOI: 10.1016/j.jns.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/23/2015] [Accepted: 06/07/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In many centers the standard anesthesiological care for deep brain stimulation (DBS) surgery in Parkinson's disease patients is an asleep-awake-asleep procedure. However, sedative drugs and anesthetics can compromise ventilation and hemodynamic stability during the operation and some patients develop a delirious mental state after the initial asleep phase. Further, these drugs interfere with the patient's alertness and cooperativeness, the quality of microelectrode recordings, and the recognition of undesired stimulation effects. In this study, we correlated the incidence of intraoperative delirium with the amount of anesthetics used intraoperatively. METHODS The anesthesiologic approach is based on continuous presence and care, avoidance of negative suggestions, use of positive suggestions, and utilization of the patient's own resources. Clinical data from the operations were analyzed retrospectively, the occurrence of intraoperative delirium was extracted from patients' charts. The last 16 patients undergoing the standard conscious sedation procedure (group I) were compared to the first 22 (group II) psychologically-guided patients. RESULTS The median amount of propofol decreased from 146 mg (group I) to 0mg (group II), remifentanyl from 0.70 mg to 0.00 mg, respectively (P<0.001 for propofol and remifentanyl). Using the new procedure, 12 of 22 patients (55%) in group II required no anesthetics. Intraoperative delirium was significantly less frequent in group II (P=0.03). CONCLUSIONS The occurrence of intraoperative delirium correlates with the amount of intraoperative sedative and anesthetic drugs. Sedation and powerful analgesia are not prerequisites for patients' comfort during awake-DBS-surgery.
Collapse
Affiliation(s)
- M Lange
- Department of Neurosurgery, University of Regensburg, Medical Center, Germany; Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany
| | - N Zech
- Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany; Department of Anesthesiology, University of Regensburg, Medical Center, Germany
| | - M Seemann
- Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany; Department of Anesthesiology, University of Regensburg, Medical Center, Germany
| | - A Janzen
- Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany; Department of Neurology, University of Regensburg, Medical Center, Germany
| | - D Halbing
- Department of Neurosurgery, University of Regensburg, Medical Center, Germany
| | - F Zeman
- Center for Clinical Studies, University of Regensburg, Medical Center, Germany
| | - C Doenitz
- Department of Neurosurgery, University of Regensburg, Medical Center, Germany
| | - E Rothenfusser
- Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany; Department of Neurology, University of Regensburg, Medical Center, Germany
| | - E Hansen
- Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany; Department of Anesthesiology, University of Regensburg, Medical Center, Germany
| | - A Brawanski
- Department of Neurosurgery, University of Regensburg, Medical Center, Germany
| | - J Schlaier
- Department of Neurosurgery, University of Regensburg, Medical Center, Germany; Centre for Deep Brain Stimulation, University of Regensburg, Medical Center, Germany.
| |
Collapse
|
21
|
Sadeghi Y, Pralong E, Knebel JF, Vingerhoets F, Pollo C, Levivier M, Bloch J. Bilateral Deep Brain Stimulation: The Placement of the Second Electrode Is Not Necessarily Less Accurate Than That of the First One. Stereotact Funct Neurosurg 2015; 93:160-7. [DOI: 10.1159/000368439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
|
22
|
Houshmand L, Cummings KS, Chou KL, Patil PG. Evaluating indirect subthalamic nucleus targeting with validated 3-tesla magnetic resonance imaging. Stereotact Funct Neurosurg 2014; 92:337-45. [PMID: 25358805 DOI: 10.1159/000366286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVES Indirect targeting of the subthalamic nucleus (STN) is commonly utilized at deep brain stimulation (DBS) centers around the world. The superiority of either midcommissural point (MCP)-based or red nucleus (RN)-based indirect targeting remains to be established. METHODS The location of the STN was determined and statistically compared to MCP- and RN-based predictions in 58 STN DBS patients, using a validated 3-tesla MRI protocol. The influence of additional neuroanatomical parameters on STN midpoint location was evaluated. Linear regression analysis was utilized to produce an optimized MCP/RN targeting model. Targeting coordinates at 1.5 T were compared to results at 3 T. RESULTS Accuracy and precision for RN-based targeting was superior to MCP-based targeting to predict STN midpoint location for each coordinate dimension (p < 0.01 and p < 0.05, respectively). RN-based targeting was statistically equivalent to an optimized regression-based targeting strategy incorporating multiple neuroanatomical parameters, including third-ventricle width and overall brain size. RN-based targeting at 1.5 T yielded equivalent coordinates to targeting at 3 T. CONCLUSIONS RN-based targeting is statistically superior to MCP-based STN targeting and accommodates broad variations in neuroanatomical parameters. Neurosurgeons utilizing indirect targeting of the STN may consider favoring RN-based over MCP-based indirect targeting methods.
Collapse
Affiliation(s)
- Layla Houshmand
- Surgical Therapies Improving Movement Program, University of Michigan, Ann Arbor, Mich., USA
| | | | | | | |
Collapse
|
23
|
Schlaier JR, Hanson C, Janzen A, Fellner C, Hochreiter A, Proescholdt M, Brawanski A, Lange M. Deep brain stimulation in Parkinson’s disease: motor effects relative to the MRI-defined STN. Neurosurg Rev 2014; 37:461-70; discussion 470-1. [DOI: 10.1007/s10143-014-0521-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/01/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
|
24
|
Wagle Shukla A, Okun MS. Surgical treatment of Parkinson's disease: patients, targets, devices, and approaches. Neurotherapeutics 2014; 11:47-59. [PMID: 24198187 PMCID: PMC3899492 DOI: 10.1007/s13311-013-0235-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Surgical treatment for Parkinson's disease (PD) has evolved from ablative procedures, within a variety of brain regions, to implantation of electrodes into specific targets of the basal ganglia. Electrode implantation surgery, referred to as deep brain stimulation (DBS), is preferred to ablative procedures by many experts owing to its reversibility, programmability, and the ability to be safely performed bilaterally. Several randomized clinical studies have demonstrated the effectiveness of DBS surgery for control of PD symptoms. Many brain targets, including the subthalamic nucleus and the globus pallidus internus, have emerged as potentially effective, with each target being closely associated with important pros and cons. Selection of appropriate PD candidates through a methodical interdisciplinary screening is considered a prerequisite for a successful surgical outcome. Despite recent growth in DBS knowledge, there is currently no consensus on the ideal surgical technique, the best surgical approach, and the most appropriate surgical target. DBS is now targeted towards treating specific PD-related symptoms in a given individual, and not simply addressing the disease with one pre-defined approach. In this review we will discuss the historical aspects of surgical treatments, the selection of an appropriate DBS candidate, the current surgical techniques, and recently introduced DBS-related technologies. We will address important pre- and postoperative issues related to DBS. We will also discuss the lessons learned from the randomized clinical studies for DBS and the shifting paradigm to tailor to a more patient-centered and symptom-specific approach.
Collapse
Affiliation(s)
- Aparna Wagle Shukla
- Center for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, 3450 Hull Road, Gainesville, FL, 32607, USA,
| | | |
Collapse
|
25
|
Patil PG, Conrad EC, Aldridge JW, Chenevert TL, Chou KL. The Anatomical and Electrophysiological Subthalamic Nucleus Visualized by 3-T Magnetic Resonance Imaging. Neurosurgery 2013; 71:1089-95; discussion 1095. [DOI: 10.1227/neu.0b013e318270611f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT
BACKGROUND:
Accurate localization of the subthalamic nucleus (STN) is critical to the success of deep brain stimulation surgery for Parkinson disease. Recent developments in high-field-strength magnetic resonance imaging (MRI) have made it possible to visualize the STN in greater detail. However, the relationship of the MR-visualized STN to the anatomic, electrophysiological, or atlas-predicted STN remains controversial.
OBJECTIVE:
To evaluate the size of the STN visualized on 3-T MRI compared with anatomic measurements in cadaver studies and to compare the predictions of 3-T MRI and those of the Schaltenbrand-Wahren (SW) atlas for intraoperative STN microelectrode recordings.
METHODS:
We evaluated the STN by 3-T MRI and intraoperative microelectrode recordings in 20 Parkinson disease patients undergoing deep brain stimulation surgery. We compared our findings with anatomic cadaver studies and with the individually scaled SW atlas-based predictions for each patient.
RESULTS:
The dimensions of the 3-T MR-visualized STN were very similar to those of the largest anatomic study (MRI length, width, and height: 9.8 ± 1.6, 11.5 ± 1.6, and 3.7 ± 0.7 mm, respectively; n = 40; cadaver length, width, and height: 9.3 ± 0.7, 10.6 ± 0.9, and 3.1 ± 0.5 mm, respectively; n = 100). The amount of STN traversed during intraoperative microelectrode recordings was better correlated to the 3-T MR-visualized STN than the SW atlas-predicted STN (R = 0.38 vs R = −0.17).
CONCLUSION:
The STN as visualized on 3-T MRI corresponds well with cadaveric anatomic studies and intraoperative electrophysiology. STN visualization with 3-T MRI may be an improvement over SW atlas-based localization for STN deep brain stimulation surgery in Parkinson disease.
Collapse
Affiliation(s)
- Parag G. Patil
- Surgical Therapies Improving Movement Program, University of Michigan Health System, Ann Arbor, Michigan
- Departments of Neurosurgery
- Departments of Neurology
- Departments of Biomedical Engineering
| | - Erin C. Conrad
- Surgical Therapies Improving Movement Program, University of Michigan Health System, Ann Arbor, Michigan
- Departments of Neurosurgery
| | - J. Wayne Aldridge
- Surgical Therapies Improving Movement Program, University of Michigan Health System, Ann Arbor, Michigan
- Departments of Neurosurgery
| | | | - Kelvin L. Chou
- Surgical Therapies Improving Movement Program, University of Michigan Health System, Ann Arbor, Michigan
- Departments of Neurosurgery
- Departments of Neurology
| |
Collapse
|
26
|
Thani NB, Bala A, Swann GB, Lind CRP. Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 2013; 69:207-14; discussion 214. [PMID: 21792120 DOI: 10.1227/neu.0b013e318218c7ae] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Knowledge of the anatomic location of the deep brain stimulation (DBS) electrode in the brain is essential in quality control and judicious selection of stimulation parameters. Postoperative computed tomography (CT) imaging coregistered with preoperative magnetic resonance imaging (MRI) is commonly used to document the electrode location safely. The accuracy of this method, however, depends on many factors, including the quality of the source images, the area of signal artifact created by the DBS lead, and the fusion algorithm. OBJECTIVE To calculate the accuracy of determining the location of active contacts of the DBS electrode by coregistering postoperative CT image to intraoperative MRI. METHODS Intraoperative MRI with a surrogate marker (carbothane stylette) was digitally coregistered with postoperative CT with DBS electrodes in 8 consecutive patients. The location of the active contact of the DBS electrode was calculated in the stereotactic frame space, and the discrepancy between the 2 images was assessed. RESULTS The carbothane stylette significantly reduces the signal void on the MRI to a mean diameter of 1.4 ± 0.1 mm. The discrepancy between the CT and MRI coregistration in assessing the active contact location of the DBS lead is 1.6 ± 0.2 mm, P < .001 with iPlan (BrainLab AG, Erlangen, Germany) and 1.5 ± 0.2 mm, P < .001 with Framelink (Medtronic, Minneapolis, Minnesota) software. CONCLUSION CT/MRI coregistration is an acceptable method of identifying the anatomic location of DBS electrode and active contacts.
Collapse
Affiliation(s)
- Nova B Thani
- West Australian Neurosurgical Service, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | |
Collapse
|
27
|
Lumsden DE, Ashmore J, Charles-Edwards G, Lin JP, Ashkan K, Selway R. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir (Wien) 2013; 155:823-36. [PMID: 23430231 DOI: 10.1007/s00701-013-1629-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accuracy of electrode placement is an important determinant of outcome following deep brain stimulation (DBS) surgery. Data on accuracy of electrode placement into the globus pallidum interna (GPi) in paediatric patients is limited, particularly those with non-primary dystonia who often have smaller GPi. Pallidal DBS is known to be more effective in the treatment of primary dystonia compared with secondary dystonia. OBJECTIVES We aimed to determine if accuracy of pallidal electrode placement differed between primary, secondary and NBIA (neuronal degeneration and brain iron accumulation) associated dystonia and how this related to motor outcome following surgery. METHODS A retrospective review of a consecutive cohort of children and young people undergoing DBS surgery in a single centre. Fused in frame preoperative planning magnetic resonance imaging (MRI) and postoperative computed tomography (CT) brain scans were used to determine the accuracy of placement of DBS electrode tip in Leskell stereotactic system compared with the planned target. The differences along X, Y, and Z coordinates were calculated, as was the Euclidean distance of electrode tip from the target. The relationship between proximity to target and change in Burke-Fahn-Marsden Dystonia Rating Scale at 1 year was also measured. RESULTS Data were collected from 88 electrodes placed in 42 patients (14 primary dystonia, 18 secondary dystonia and 10 NBIA associated dystonia). Median differences between planned target and actual position were: left-side X-axis 1.05 mm, Y-axis 0.85 mm, Z-axis 0.94 mm and Euclidean difference 2.04 mm; right-side X-axis 1.28 mm, Y-axis 0.70 mm, Z-axis 0.70 mm and Euclidean difference 2.45 mm. Accuracy did not differ between left and right-sided electrodes. No difference in accuracy was seen between primary, secondary or NBIA associated dystonia. Dystonia reduction at 1 year post surgery did not appear to relate to proximity of implanted electrode to surgical target across the cohort. CONCLUSIONS Accuracy of surgical placement did not differ between primary, secondary or NBIA associated dystonia. Decreased efficacy of pallidal DBS in secondary and NBIA associated dystonia is unlikely to be related to difficulties in achieving the planned electrode placement.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Chrastina J, Novák Z, Baláž M, Říha I, Bočková M, Rektor I. The role of brain shift, patient age, and Parkinson's disease duration in the difference between anatomical and electrophysiological targets for subthalamic stimulation. Br J Neurosurg 2013; 27:676-82. [DOI: 10.3109/02688697.2013.771726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Kerl HU, Gerigk L, Brockmann MA, Huck S, Al-Zghloul M, Groden C, Hauser T, Nagel AM, Nölte IS. Imaging for deep brain stimulation: The zona incerta at 7 Tesla. World J Radiol 2013; 5:5-16. [PMID: 23494089 PMCID: PMC3596566 DOI: 10.4329/wjr.v5.i1.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/24/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate different promising magnetic resonance imaging (MRI) methods at 7.0 Tesla (T) for the pre-stereotactic visualization of the zona incerta (ZI).
METHODS: Two neuroradiologists qualitatively and quantitatively examined T2-turbo spin-echo (T2-TSE), T1-weighted gradient-echo, as well as FLASH2D-T2Star and susceptibility-weighted imaging (SWI) for the visualization of the ZI at 7.0 T MRI. Delineation and image quality for the ZI were independently examined using a 6-scale grading system. Inter-rater reliability using Cohen’s kappa coefficient (κ) were assessed. Contrast-to-noise ratios (CNR), and signal-to-noise ratios (SNR) for the ZI were calculated for all sequences. Differences in delineation, SNR, and CNR between the sequences were statistically assessed using a paired t-test. For the anatomic validation the coronal FLASH2D-T2Star images were co-registered with a stereotactic atlas (Schaltenbrand-Wahren).
RESULTS: The rostral part of the ZI (rZI) could easily be identified and was best and reliably visualized in the coronal FLASH2D-T2Star images. The caudal part was not definable in any of the sequences. No major artifacts in the rZI were observed in any of the scans. FLASH2D-T2Star and SWI imaging offered significant higher CNR values for the rZI compared to T2-TSE images (P > 0.05). The co-registration of the coronal FLASH2D-T2Star images with the stereotactic atlas schema (Schaltenbrand-Wahren) confirmed the correct localization of the ZI in all cases.
CONCLUSION: FLASH2D-T2Star imaging (particularly coronal view) provides the reliable and currently optimal visualization of the rZI at 7.0 T. These results can facilitate a better and more precise targeting of the caudal part of the ZI than ever before.
Collapse
|
30
|
Savas A, Bozkurt M, Akbostancı C. A comparison between stereotactic targeting methods of the subthalamic nucleus in cases with Parkinson's disease. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 117:35-41. [PMID: 23652654 DOI: 10.1007/978-3-7091-1482-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Several methods are used for targeting of the subthalamic nucleus (STN) for the surgical treatment of Parkinson's disease (PD). The goal of this study is to determine the most suitable morphological method for localizing the STN in order to perform deep brain stimulation (DBS) in the treatment of PD. METHODS Twelve cases with PD underwent bilateral STN-DBS and followed up for 5 years. Indirect calculation of the STN using AC-PC coordinates, and direct targeting of the STN using stereotactic CT/MRI fusion, were used for targeting. A microelectrode recording method was used to localize the STN. RESULTS Direct targeting of the STN using CT/MRI fusion was very precise in every case, based upon evaluation of the intraoperative microelectrode recordings, postoperative MRI scans, and clinical follow-up of the cases. The coordinate differences obtained from these two methods were statistically significant. CONCLUSION Direct targeting method of the STN using CT/MRI fusion provided higher precision than the indirect calculation method. This method may be used as a standard targeting technique, and may obviate the need for using complicated technologies such as microelectrode recording, which may sometimes be risky and counterproductive.
Collapse
Affiliation(s)
- Ali Savas
- School of Medicine, Department of Neurosurgery, Ankara University, PK 243 Kavaklidere, Ankara, 06100, Turkey,
| | | | | |
Collapse
|
31
|
Kerl HU, Gerigk L, Pechlivanis I, Al-Zghloul M, Groden C, Nölte IS. The subthalamic nucleus at 7.0 Tesla: evaluation of sequence and orientation for deep-brain stimulation. Acta Neurochir (Wien) 2012; 154:2051-62. [PMID: 22930282 DOI: 10.1007/s00701-012-1476-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep-brain stimulation (DBS) of the subthalamic nucleus (STN) is an accepted neurosurgical technique for the treatment of medication-resistant Parkinson's disease and other neurological disorders. The accurate targeting of the STN is facilitated by precise and reliable identification in pre-stereotactic magnetic resonance imaging (MRI). The aim of the study was to compare and evaluate different promising MRI methods at 7.0 T for the pre-stereotactic visualisation of the STN METHODS: MRI (T2-turbo spin-echo [TSE], T1-gradient echo [GRE], fast low-angle shot [FLASH] two-dimensional [2D] T2* and susceptibility-weighted imaging [SWI]) was performed in nine healthy volunteers. Delineation and image quality for the STN were independently evaluated by two neuroradiologists using a six-point grading system. Inter-rater reliability, contrast-to-noise ratios (CNRs) and signal-to-noise ratios (SNRs) for the STN were calculated. For the anatomical validation, the coronal FLASH 2D T2* images were co-registered with a stereotactic atlas (Schaltenbrand-Wahren). RESULTS The STN was clearly and reliably visualised in FLASH 2D T2* imaging (particularly coronal view), with a sharp delineation between the STN, the substantia nigra and the zona incerta. No major artefacts in the STN were observed in any of the sequences. FLASH 2D T2* and SWI images offered significantly higher CNR for the STN compared with T2-TSE. The co-registration of the coronal FLASH 2D T2* images with the stereotactic atlas affirmed the correct localisation of the STN in all cases. CONCLUSION The STN is best and reliably visualised in FLASH 2D T2* imaging (particularly coronal orientation) at 7.0-T MRI.
Collapse
Affiliation(s)
- Hans U Kerl
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Kerl HU, Gerigk L, Pechlivanis I, Al-Zghloul M, Groden C, Nölte I. The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol: clinical article. J Neurosurg 2012; 117:1155-65. [PMID: 23039154 DOI: 10.3171/2012.8.jns111930] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT Reliable visualization of the subthalamic nucleus (STN) is indispensable for accurate placement of electrodes in deep brain stimulation (DBS) surgery for patients with Parkinson disease (PD). The aim of the study was to evaluate different promising new MRI methods at 3.0 T for preoperative visualization of the STN using a standard installation protocol. METHODS Magnetic resonance imaging studies (T2-FLAIR, T1-MPRAGE, T2*-FLASH2D, T2-SPACE, and susceptibility-weighted imaging sequences) obtained in 9 healthy volunteers and in 1 patient with PD were acquired. Two neuroradiologists independently analyzed image quality and visualization of the STN using a 6-point scale. Interrater reliability, contrast-to-noise ratios, and signal-to-noise ratios for the STN were calculated. For illustration of the anatomical accuracy, coronal T2*-FLASH2D images were fused with the corresponding coronal section schema of the Schaltenbrand and Wahren stereotactic atlas. RESULTS The STN was best and reliably visualized on T2*-FLASH2D imaging (in particular, the coronal view). No major artifacts in the STN were observed in any of the sequences. Susceptibility-weighted, T2-SPACE, and T2*-FLASH2D imaging provided significantly higher contrast-to-noise ratio values for the STN than standard T2-weighted imaging. Fusion of the coronal T2*-FLASH2D and the digitized coronal atlas view projected the STN clearly within the boundaries of the STN found in anatomical sections. CONCLUSIONS For 3.0-T MRI, T2*-FLASH2D (particularly the coronal view) provides optimal delineation of the STN using a standard installation protocol.
Collapse
Affiliation(s)
- Hans U Kerl
- Department of Neuroradiology, University of Heidelberg, Medical Faculty Mannheim, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Nölte IS, Gerigk L, Al-Zghloul M, Groden C, Kerl HU. Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla. Acta Neurochir (Wien) 2012; 154:481-94. [PMID: 22167532 DOI: 10.1007/s00701-011-1242-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Deep-brain stimulation (DBS) of the internal globus pallidus (GPi) has shown remarkable therapeutic benefits for treatment-resistant neurological disorders including dystonia and Parkinson's disease (PD). The success of the DBS is critically dependent on the reliable visualization of the GPi. The aim of the study was to evaluate promising 3.0 Tesla magnetic resonance imaging (MRI) methods for pre-stereotactic visualization of the GPi using a standard installation protocol. METHODS MRI at 3.0 T of nine healthy individuals and of one patient with PD was acquired (FLAIR, T1-MPRAGE, T2-SPACE, T2*-FLASH2D, susceptibility-weighted imaging mapping (SWI)). Image quality and visualization of the GPi for each sequence were assessed by two neuroradiologists independently using a 6-point scale. Axial, coronal, and sagittal planes of the T2*-FLASH2D images were compared. Inter-rater reliability, contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) for the GPi were determined. For illustration, axial T2*-FLASH2D images were fused with a section schema of the Schaltenbrand-Wahren stereotactic atlas. RESULTS The GPi was best and reliably visualized in axial and to a lesser degree on coronal T2*-FLASH2D images. No major artifacts in the GPi were observed in any of the sequences. SWI offered a significantly higher CNR for the GPi compared to standard T2-weighted imaging using the standard parameters. The fusion of the axial T2*-FLASH2D images and the atlas projected the GPi clearly in the boundaries of the section schema. CONCLUSIONS Using a standard installation protocol at 3.0 T T2*-FLASH2D imaging (particularly axial view) provides optimal and reliable delineation of the GPi.
Collapse
Affiliation(s)
- Ingo S Nölte
- Medical Faculty Mannheim, Department of Neuroradiology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
34
|
Visualisation of the zona incerta for deep brain stimulation at 3.0 Tesla. Clin Neuroradiol 2012; 22:55-68. [PMID: 22349435 DOI: 10.1007/s00062-012-0136-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/27/2012] [Indexed: 12/23/2022]
Abstract
PURPOSE Deep-brain stimulation (DBS) of the zona incerta (ZI) has shown promising results for medication-refractory neurological disorders including Parkinson's disease (PD) and essential tremor (ET). The success of the intervention is indispensably dependent on the reliable visualisation of the ZI. The aim of the study was to evaluate different promising new magnetic resonance imaging (MRI) methods at 3.0 Tesla for pre-stereotactic visualisation of the ZI using a standard installation the protocol. METHODS MRI of nine healthy volunteers was acquired (T1-MPRAGE, T2-FLAIR, T2*-FLASH2D, T2-SPACE and susceptibility-weighted imaging (SWI). Image quality and visualisation of the ZI for each sequence were analysed independently by two neuroradiologists using a 6-point scale. For T2*-FLASH2D the axial, coronal and sagittal planes were compared. The delineation of the ZI versus the internal capsule, the subthalamic nucleus and the pallidofugal fibres was evaluated in all sequences and compared to T2-FLAIR using a paired t-test. Inter-rater reliability, contrast-to-noise ratios (CNR), and signal-to-noise ratios (SNR) for the ZI were computed. For illustration, coronal T2*-FLASH2D images were co-registered with the corresponding section schema of the Schaltenbrand-Wahren stereotactic atlas. RESULTS Only the rostral part of the ZI (rZI) could be identified. The rZI was best and reliably visualised in T2*-FLASH2D (particularly coronal orientation; p < 0.05). No major artifacts in the rZI were observed in any of the sequences. SWI, T2-SPACE, and T2*-FLASH imaging offered significant higher CNR values for the rZI compared to T2-FLAIR imaging using standard parameters. The co-registration of the coronal T2*-FLASH2D images projected the ZI clearly into the boundaries of the anatomical sections. CONCLUSIONS The delineation of the rZI is best possible in T2*-FLASH2D (particularly coronal view) using a standard installation protocol at 3.0 T. The caudal ZI could not be discerned in any of the sequences.
Collapse
|
35
|
Foubert-Samier A, Maurice S, Hivert S, Guelh D, Rigalleau V, Burbaud P, Cuny E, Meissner W, Tison F. A long-term follow-up of weight changes in subthalamic nucleus stimulated Parkinson's disease patients. Rev Neurol (Paris) 2012; 168:173-6. [DOI: 10.1016/j.neurol.2011.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/18/2011] [Accepted: 04/26/2011] [Indexed: 10/16/2022]
|
36
|
Guimarães J, Matos E, Rosas MJ, Vieira-Coelho A, Borges N, Correia F, Vaz R, Garrett C. Modulation of nutritional state in Parkinsonian patients with bilateral subthalamic nucleus stimulation. J Neurol 2012; 256:2072-8. [PMID: 19633906 DOI: 10.1007/s00415-009-5252-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/21/2009] [Accepted: 07/07/2009] [Indexed: 01/22/2023]
Abstract
Chronic bilateral subthalamic stimulation (DBS-STN) provides considerable clinical benefits in Parkinson disease patients, with improvement in primary symptoms and resolution of side effects of chronic pharmacological treatment. Apart from its therapeutic effects on PD symptoms, DBS-STN also appears to induce weight gain, which may itself induce critical metabolic disorders and limit the benefits of surgery. No data are available in literature showing the efficacy of a nutritional intervention to prevent rapid and/or excessive weight gain after DBSSTN. Fifty-seven PD patients were included in this study and were divided into two groups: Group 1 comprised 16 patients with a nutritional intervention immediately after surgery (1 week after); Group 2 comprised 41 patients with a nutritional intervention in a later period after surgery (mean time of 2.5 ± 1.6 years). Weight, body mass index (BMI), percentage of fat mass, levodopa daily dose (LDD) and part III of the Unified Parkinson's disease rating scale (UPDRS) were studied before and after an individualized and structured nutritional intervention. Three months after nutritional intervention, Group 1 had a mean BMI (24.1 ± 2.99), that was not significantly different (p = 0.114) from BMI before intervention, with stability of the weight and in percentage of fat mass. In Group 2 all the patients gained weight, reaching to 13.17 ± 10%; a total of 63% of patients became overweight (BMI 25 kg/m(2)). Three months after nutritional intervention, Group 2 had a mean BMI (24.80 ± 2.45) that was significantly (p = 0.03) different from BMI before intervention (26.75 ± 2.99), although percentage of fat mass was higher in women. With this study, we have conclude that nutritional intervention adequate to patient-age, disease characteristics, medical therapy with L-dopa and physical activity, is effective incontrolling weight after DBS-STN surgery.
Collapse
Affiliation(s)
- Joana Guimarães
- Department of Neurology, Faculty of Medicine, University of Porto, Hospital de São João, São João Hospital, Alameda Hernani Monteiro, 4202-451 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Precision is the ultimate aim of stereotactic technique. Demands on stereotactic precision reach a pinnacle in stereotactic functional neurosurgery. Pitfalls are best avoided by possessing in-depth knowledge of the techniques employed and the equipment used. The engineering principles of arc-centered stereotactic frames maximize surgical precision at the target, irrespective of the surgical trajectory, and provide the greatest degree of surgical precision in current clinical practice. Stereotactic magnetic resonance imaging (MRI) provides a method of visualizing intracranial structures and fiducial markers on the same image without introducing significant errors during an image fusion process. Although image distortion may potentially limit the utility of stereotactic MRI, near-complete distortion correction can be reliably achieved with modern machines. Precision is dependent on minimizing errors at every step of the stereotactic procedure. These steps are considered in turn and include frame application, image acquisition, image manipulation, surgical planning of target and trajectory, patient positioning and the surgical procedure itself. Audit is essential to monitor and improve performance in clinical practice. The level of stereotactic precision is best analyzed by routine postoperative stereotactic MRI. This allows the stereotactic and anatomical location of the intervention to be compared with the anatomy and coordinates of the intended target, avoiding significant image fusion errors.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
38
|
Nakano N, Taneda M, Watanabe A, Kato A. Computed three-dimensional atlas of subthalamic nucleus and its adjacent structures for deep brain stimulation in Parkinson's disease. ISRN NEUROLOGY 2012; 2012:592678. [PMID: 22389840 PMCID: PMC3265216 DOI: 10.5402/2012/592678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/25/2011] [Indexed: 11/23/2022]
Abstract
Background. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is one of the standard surgical treatments for advanced Parkinson's disease. However, it has been difficult to accurately localize the stimulated contact area of the electrode in the subthalamic nucleus and its adjacent structures using a two-dimensional atlas. The goal of this study is to verify the real and detailed localization of stimulated contact of the DBS electrode therapeutically inserted into the STN and its adjacent structures using a novel computed three-dimensional atlas built by a personal computer. Method. A three-dimensional atlas of the STN and its adjacent structures (3D-Subthalamus atlas) was elaborated on the basis of sagittal slices from the Schaltenbrand and Wahren stereotactic atlas on a personal computer utilizing a commercial software. The electrode inserted into the STN and its adjacent structures was superimposed on our 3D-Subthalamus atlas based on intraoperative third ventriculography in 11 cases. Findings. Accurate localization of the DBS electrode was identified using the 3D-Subthalamus atlas, and its clinical efficacy of the electrode stimulation was investigated in all 11 cases. Conclusion. This study demonstrates that the 3D-Subthalamus atlas is a useful tool for understanding the morphology of deep brain structures and for the precise anatomical position findings of the stimulated contact of a DBS electrode. The clinical analysis using the 3D atlas supports the contention that the stimulation of structures adjacent to the STN, particularly the zona incerta or the field of Forel H, is as effective as the stimulation of the STN itself for the treatment of advanced Parkinson's disease.
Collapse
Affiliation(s)
- Naoki Nakano
- Department of Neurosurgery, Faculty of Medicine, Kinki University, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | | | | |
Collapse
|
39
|
Harries AM, Kausar J, Roberts SAG, Mocroft AP, Hodson JA, Pall HS, Mitchell RD. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg 2012; 116:107-13. [DOI: 10.3171/2011.7.jns11319] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors analyze long-term outcome in a substantial number of patients who underwent subthalamic nucleus (STN) deep brain stimulation (DBS) surgery under general anesthesia.
Methods
Eighty-two patients underwent bilateral placement of DBS electrodes under general anesthesia for advanced Parkinson disease; the STN was the target in all cases. All patients underwent intraoperative microelectrode recording of the STN. No intraoperative macrostimulation was performed. Unified Parkinson's Disease Rating Scale (UPDRS) data were recorded in 28 patients. Assessment of outcome was performed using the UPDRS (in 28 cases), the electrophysiological recordings (in all 82 cases), medication reduction (in 78 cases), and complications (in 82 cases).
Results
There was improvement in UPDRS scores across all measures following surgery. The total UPDRS score, off medication, improved from 68.78 (geometrical mean, 95% CI 61.76–76.60) preoperatively to 45.89 (geometrical mean, 95% CI 34.86–60.41) at 1 year postoperatively (p = 0.003, data available in 26 patients). Improvements were obtained in UPDRS Part II (Activities of Daily Living) off medication (p = 0.001) and also UPDRS Part III (Motor Examination) off medication (p < 0.001). Results for the on-medication and on-stimulation states also showed a statistically significant improvement for UPDRS Part III (p = 0.047). Good microelectrode recording of the STN was obtained under general anesthesia; the median first-track length was 4.0 mm, and the median number of tracks passed per patient was 3.0. The median reduction in levodopa medication was 58.1% (interquartile range 42.9%–73.3%). One patient had an intracerebral hemorrhage in the track of 1 electrode but did not require surgical evacuation. One patient had generalized convulsive seizures 24 hours postoperatively and was intubated for seizure control. Unified Parkinson's Disease Rating Scale scores were obtained in 26 patients at 1 year, 28 patients at 3 years, 17 at 5 years, and 7 at 7 years postoperatively. Up to 7 years postoperatively, there was sustained improvement in the total UPDRS score. The results in these patients showed minimal deterioration in the motor section of the UPDRS over time, up to 7 years following the operation. The authors found no evidence that the UPDRS Part II scores changed significantly over the period of 1–7 years after surgery (p = 0.671, comparison of mean scores at 1 and 7 years using generalized estimating equations).
Conclusions
Long-term outcomes confirm that it is both safe and effective to perform STN DBS under general anesthesia. As part of patient choice, this option should be offered to all DBS candidates with advanced Parkinson disease to enable more of these patients to undergo this beneficial surgery.
Collapse
Affiliation(s)
| | | | | | | | - James A. Hodson
- 3Department of Statistics, Wolfson Computer Laboratory, Queen Elizabeth Hospital, Birmingham; and
| | - Hardev S. Pall
- 4Department of Neurology, School of Clinical and Experimental Medicine, College of Medicine, University of Birmingham, United Kingdom
| | | |
Collapse
|
40
|
Ben-Haim S, Gologorsky Y, Monahan A, Weisz D, Alterman RL. Fiducial registration with spoiled gradient-echo magnetic resonance imaging enhances the accuracy of subthalamic nucleus targeting. Neurosurgery 2011; 69:870-5; discussion 875. [PMID: 21552170 DOI: 10.1227/neu.0b013e318222ae33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A variety of imaging strategies may be used to derive reliable stereotactic coordinates when performing deep brain stimulation lead implants. No single technique has yet proved optimal. OBJECTIVE To compare the relative accuracy of stereotactic coordinates for the subthalamic nucleus (STN) derived either from fast spin echo/inversion recovery (FSE/IR) magnetic resonance imaging MRI alone (group 1) or FSE/IR in conjunction with T1-weighted spoiled gradient-echo MRI (group 2). METHODS A retrospective analysis of 145 consecutive STN deep brain stimulation lead placements (group 1, n = 72; group 2, n = 73) was performed in 81 Parkinson disease patients by 1 surgical team. From the operative reports, we recorded the number of microelectrode recording trajectories required to localize the desired STN target and the span of STN traversed along the implantation trajectory. In addition, we calculated the 3-dimensional vector difference between the initial MRI-derived coordinates and the final physiologically refined coordinates. RESULTS The proportion of implants completed with just 1 microelectrode recording trajectory was greater (81% vs 58%; P < .001) and the 3-dimensional vector difference between the anatomically selected target and the microelectrode recording-refined target was smaller (0.6 ± 1.2 vs 0.9 ± 1.3; P = .04) in group 2 than in group 1. At the same time, the mean expanse of STN recorded along the implantation trajectory was 8% greater in group 2 (4.8 ± 0.6 vs 5.2 ± 0.6 mm; P < .001). CONCLUSION A combination of stereotactic FSE/IR and spoiled gradient-echo MRI yields more accurate coordinates for the STN than FSE/IR MRI alone.
Collapse
Affiliation(s)
- Sharona Ben-Haim
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
41
|
Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir (Wien) 2011; 153:2307-18. [PMID: 21744142 DOI: 10.1007/s00701-011-1081-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of our study was to evaluate discrepancies between the electrophysiologically and MRI-defined subthalamic nucleus (STN) in order to contribute to the ongoing debate of whether or not microelectrode recording (MER) provides additional information to image-guided targeting in deep brain stimulation. METHODS Forty-four STNs in 22 patients with Parkinson's disease were investigated. The three-dimensional MRI-defined STN was derived from segmentations of axial and coronal T2-weighted images. The electrophysiological STNs were generated from intraoperative MERs in 1,487 locations. The stereotactical coordinates of positive and negative STN recordings were re-imported to the planning software, where a three-dimensional reconstruction of the electrophysiological STN was performed and fused to the MRI data set. The estimated borders of the MRI- and MER-STN were compared. For statistical analysis Student's t, Mann-Whitney rank sum and Fisher's exact tests were used. RESULTS MER-STN volumes, which were found outside the MRI-STN, ranged from 0 mm(3) to 87 mm(3) (mean: 45 mm(3)). A mean of 44% of the MER-STN volumes exceeded the MRI-STN (maximum: 85.1%; minimum: 15.1 %); 53.4% (n = 793) of the microelectrode recordings were concordant and 46.6% (n = 694) discordant with the MRI-defined anatomical STN. Regarding the dorsal borders, we found discrepancies between the MER- and MRI-STN of 0.27 mm (= mean; SD: 0.51 mm) on the first operated side and 1.51 mm (SD: 1.5 mm) on the second (p = 0.010, t-test). CONCLUSIONS MER provides additional information to high-resolution anatomical MR images and may help to detect the amount and direction of brain shift.
Collapse
|
42
|
Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, Zrinzo L. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery 2011; 67:437-47. [PMID: 21099570 DOI: 10.1227/neu.0b013e3181f7422a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly used in the treatment of movement disorders such as Parkinson disease (PD), dystonia, and other tremors. OBJECTIVE To examine systematic errors in image-guided DBS electrode placement and to explore a calibration strategy for stereotactic targeting. METHODS Pre- and postoperative stereotactic MR images were analyzed in 165 patients. The perpendicular error between planned target coordinates and electrode trajectory was calculated geometrically for all 312 DBS electrodes implanted. Improvement in motor unified PD rating scale III subscore was calculated for those patients with PD with at least 6 months of follow-up after bilateral subthalamic DBS. RESULTS Mean (standard deviation) scalar error of all electrodes was 1.4(0.9) mm with a significant difference between left and right hemispheres. Targeting error was significantly higher for electrodes with coronal approach angle (ARC) ≥10° (P < .001). Mean vector error was X: -0.6, Y: -0.7, and Z: -0.4 mm (medial, posterior, and superior directions, respectively). Targeting error was significantly improved by using a systematic calibration strategy based on ARC and target hemisphere (mean: 0.6 mm, P < .001) for 47 electrodes implanted in 24 patients. Retrospective theoretical calibration for all 312 electrodes would have reduced the mean (standard deviation) scalar error from 1.4(0.9) mm to 0.9(0.5) mm (36% improvement). With calibration, 97% of all electrodes would be within 2 mm of the intended target as opposed to 81% before calibration. There was no significant correlation between the degree of error and clinical outcome from bilateral subthalamic nucleus DBS (R = 0.07). CONCLUSION After calibration of a systematic targeting error an MR image-guided stereotactic approach would be expected to deliver 97% of all electrodes to within 2 mm of the intended target point with a single brain pass.
Collapse
Affiliation(s)
- Etienne M Holl
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Thani NB, Bala A, Lind CRP. Accuracy of magnetic resonance imaging-directed frame-based stereotaxis. Neurosurgery 2011; 70:114-23; discussion 123-4. [PMID: 21849920 DOI: 10.1227/neu.0b013e3182320bd6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Accurate placement of a probe to the deep regions of the brain is an important part of neurosurgery. In the modern era, magnetic resonance image (MRI)-based target planning with frame-based stereotaxis is the most common technique. OBJECTIVE To quantify the inaccuracy in MRI-guided frame-based stereotaxis and to assess the relative contributions of frame movements and MRI distortion. METHODS The MRI-directed implantable guide-tube technique was used to place carbothane stylettes before implantation of the deep brain stimulation electrodes. The coordinates of target, dural entry point, and other brain landmarks were compared between preoperative and intraoperative MRIs to determine the inaccuracy. RESULTS The mean 3-dimensional inaccuracy of the stylette at the target was 1.8 mm (95% confidence interval [CI], 1.5-2.1. In deep brain stimulation surgery, the accuracy in the x and y (axial) planes is important; the mean axial inaccuracy was 1.4 mm (95% CI, 1.1-1.8). The maximal mean deviation of the head frame compared with brain over 24.1 ± 1.8 hours was 0.9 mm (95% CI, 0.5-1.1). The mean 3-dimensional inaccuracy of the dural entry point of the stylette was 1.8 mm (95% CI, 1.5-2.1), which is identical to that of the target. CONCLUSION Stylette positions did deviate from the plan, albeit by 1.4 mm in the axial plane and 1.8 mm in 3-dimensional space. There was no difference between the accuracies at the dura and the target approximately 70 mm deep in the brain, suggesting potential feasibility for accurate planning along the whole trajectory.
Collapse
Affiliation(s)
- Nova B Thani
- West Australian Neurosurgical Service, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | |
Collapse
|
44
|
Caire F, Maubon A, Moreau JJ, Cuny E. The Mamillothalamic Tract Is a Good Landmark for the Anterior Border of the Subthalamic Nucleus on Axial MR Images. Stereotact Funct Neurosurg 2011; 89:286-90. [DOI: 10.1159/000329356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 05/02/2011] [Indexed: 11/19/2022]
|
45
|
Brunenberg EJL, Platel B, Hofman PAM, Ter Haar Romeny BM, Visser-Vandewalle V. Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg 2011; 115:971-84. [PMID: 21800960 DOI: 10.3171/2011.6.jns101571] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The authors reviewed 70 publications on MR imaging-based targeting techniques for identifying the subthalamic nucleus (STN) for deep brain stimulation in patients with Parkinson disease. Of these 70 publications, 33 presented quantitatively validated results. There is still no consensus on which targeting technique to use for surgery planning; methods vary greatly between centers. Some groups apply indirect methods involving anatomical landmarks, or atlases incorporating anatomical or functional data. Others perform direct visualization on MR imaging, using T2-weighted spin echo or inversion recovery protocols. The combined studies do not offer a straightforward conclusion on the best targeting protocol. Indirect methods are not patient specific, leading to varying results between cases. On the other hand, direct targeting on MR imaging suffers from lack of contrast within the subthalamic region, resulting in a poor delineation of the STN. These deficiencies result in a need for intraoperative adaptation of the original target based on test stimulation with or without microelectrode recording. It is expected that future advances in MR imaging technology will lead to improvements in direct targeting. The use of new MR imaging modalities such as diffusion MR imaging might even lead to the specific identification of the different functional parts of the STN, such as the dorsolateral sensorimotor part, the target for deep brain stimulation.
Collapse
Affiliation(s)
- Ellen J L Brunenberg
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Targeting the subthalamic nucleus for deep brain stimulation--a comparative study between magnetic resonance images alone and fusion with computed tomographic images. World Neurosurg 2011; 75:132-7; discussion 22-4, 29-31. [PMID: 21492677 DOI: 10.1016/j.wneu.2010.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 09/13/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND The aim of this study is to determine whether stereotactic computed tomographic (CT) images fused with magnetic resonance images (MRI) is superior to stereotactic MRI alone in accuracy for targeting the subthalamic nucleus (STN) in deep brain stimulation (DBS). METHODS During 2006 to 2007, 21 consecutive patients with Parkinson's disease were enrolled in this retrospective cohort study. CT Fusion group included 10 patients who underwent 20 procedures of STN-DBS under MRI-directed targeting in which the MRIs were fused to stereotactic CT images for surgical coordinates. MRI group included 11 patients who underwent 20 procedures under MRI-directed targeting alone. RESULTS After DBS surgery, in comparison to baseline levodopa (L-dopa) OFF, Unified Parkinson Disease Rating Scale, Part III scores improved by 43.6% ± 20.3% and 39.0% ± 15.6% (P = 0.60) in CT Fusion group and MRI group, respectively (L-dopa OFF/DBS ON). The mean decrease in L-dopa equivalent daily dose was 38.9% ± 26.3% and 36.7% ± 30.5% (P = 0.87), respectively. Single microelectrode recording (MER) trajectory procedure was experienced in 65% of patients in the CT Fusion group (13/20) and 45% of patients in the MRI group (9/20). The mean recorded STN length from initial to final MER trajectory in the CT Fusion and MRI groups was 4.3 mm (standard deviation [SD] = 1.8 mm)/5.1 mm (SD = 0.5 mm) and 3.6 mm (SD = 1.7 mm) (P = 0.214)/4.5 mm (SD = 0.7 mm) (P = 0.006), respectively. The final recorded STN length was significantly longer in the CT Fusion group. CONCLUSIONS In-frame-based stereotactic STN targeting, an image fusion technique between stereotactic CT and MRI, can record a significantly longer STN length through limited MER compared with MRI alone. Whether this could translate into better clinical outcome and less morbidity still need a large and randomized trial.
Collapse
|
47
|
Deogaonkar M, Freitas T, Machado A, Rezai A. Subthalamic nucleus targeting using interpeduncular cistern as an internal landmark. Neurosurgery 2011; 69:ons225-9. [PMID: 21709594 DOI: 10.1227/neu.0b013e31822a5453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Internal landmarks for the subthalamic nucleus (STN) have been used in past. This study uses a yet-unused internal landmark to refine STN targeting. OBJECTIVE To determine the effect of the width of the interpeduncular cistern (IPC) on STN targeting during placement of deep brain stimulation (DBS) for Parkinson disease. METHODS Fifty consecutive patients with Parkinson disease underwent 90 STN DBS implantations. X, Y, and Z coordinates for the tip of the DBS electrodes and the active contact were recorded. Internal landmarks such as width of the third ventricle, width of IPC at a predefined point, and anterior commissure-posterior commissure length were measured. Statistical analysis was done using linear regression analysis and Pearson correlation coefficient. RESULTS The average IPC diameter at the predefined point was 7.59 mm (range, 5- to 14 mm). Average X, Y, and Z coordinates for the location of the tip of lead were 11.5, -3.5, -5.4, and those of the location of active contact were 12.5, -1.9, -1.4 from the midcommissural point. The mediolateral location of the tip of the DBS as well as the location of the active contact for long-term stimulation were greatly dependent on IPC width (r = 0.83) (P = .0022). CONCLUSION The width of the IPC is a strong predictor of laterality of STN DBS electrode placement in patients with Parkinson disease. It can be used as an additional internal landmark for refining STN targeting using the simple formula X coordinate for STN target = 0.6 × IPC width + 7 mm.
Collapse
Affiliation(s)
- Milind Deogaonkar
- Department of Neurosurgery, Cleveland Clinic Foundation, Center for Neurological Restoration, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
48
|
Petersen EA, Holl EM, Martinez-Torres I, Foltynie T, Limousin P, Hariz MI, Zrinzo L. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery 2010; 67:ons213-21; discussion ons221. [PMID: 20679927 DOI: 10.1227/01.neu.0000380991.23444.08] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stereotactic functional neurosurgical interventions depend on precise anatomic targeting before lesioning or deep brain stimulation (DBS) electrode placement. OBJECTIVE To examine the degree of subcortical brain shift observed when adopting an image-guided approach to stereotactic functional neurosurgery. METHODS Coordinates for the anterior and posterior commissural points (AC and PC) were recorded on thin-slice stereotactic magnetic resonance imaging (MRI) scans performed before and immediately after DBS electrode implantation in 136 procedures. The changes in length of AC-PC and in stereotactic coordinates for AC and PC were calculated for each intervention. In patients with Parkinson disease undergoing bilateral subthalamic nucleus (STN) DBS with at least 6 months of follow-up, pre- and postoperative scores of the motor part of the Unified Parkinson's Disease Rating Scale (UPDRS-III) were reviewed. RESULTS Mean (SD) change in AC-PC length (DeltaAC-PC) was 0.6 (0.4) mm. There was no statistically significant difference in DeltaAC-PC between groups when examining anatomic target subgroups (P =.95), age subgroups (P = .63), sex (P = .59), and unilateral versus bilateral implantation (P =.15). The mean (SD) vector changes for the commissural points were: -0.1 (0.3) mm in X, -0.4 (0.6) mm in Y, and -0.1 (0.7) mm in Z for the AC; and -0.1 (0.3) mm in X, -0.2 (0.7) mm in Y, and 0.0 (0.7) mm in Z for the PC. There was a negligible correlation between the magnitude of brain shift and percentage improvement in UPDRS-III off-medication in patients undergoing STN DBS for PD (R <0.01). CONCLUSION Brain shift has long been considered an issue in stereotactic targeting during DBS procedures. However, with the image-guided approach and surgical technique used in this study, subcortical brain shift was extremely limited and did not appear to adversely affect clinical outcome.
Collapse
Affiliation(s)
- Erika A Petersen
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square, London, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Vitek JL, Lyons KE, Bakay R, Benabid AL, Deuschl G, Hallett M, Kurlan R, Pancrazio JJ, Rezai A, Walter BL, Lang AE. Standard guidelines for publication of deep brain stimulation studies in Parkinson's disease (Guide4DBS-PD). Mov Disord 2010; 25:1530-7. [PMID: 20544809 DOI: 10.1002/mds.23151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
While the use of deep brain stimulation (DBS) for the treatment of neurological disorders has risen substantially over the last decade, it is often difficult to compare the results from different studies due to the lack of consistent reporting of key study parameters. We present guidelines to standardize the reporting of clinical studies of DBS for Parkinson's disease (PD). These guidelines provide a minimal set of required data elements to facilitate the interpretation and comparison of results across published clinical studies. The guidelines, summarized in the format of a checklist, may also have utility in the planning of clinical studies of DBS for PD as well as other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Jerrold L Vitek
- Neuromodulation Research Center, Department Neurology and Neuroscience, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG, Kim YB, Paek SH, Lozano AM, Lee KH. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg 2010; 113:639-47. [PMID: 20380532 PMCID: PMC3160785 DOI: 10.3171/2010.3.jns091385] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECT A challenge associated with deep brain stimulation (DBS) in treating advanced Parkinson disease (PD) is the direct visualization of brain nuclei, which often involves indirect approximations of stereotactic targets. In the present study, the authors compared T2*-weighted images obtained using 7-T MR imaging with those obtained using 1.5- and 3-T MR imaging to ascertain whether 7-T imaging enables better visualization of targets for DBS in PD. METHODS The authors compared 1.5-, 3-, and 7-T MR images obtained in 11 healthy volunteers and 1 patient with PD. RESULTS With 7-T imaging, distinct images of the brain were obtained, including the subthalamic nucleus (STN) and internal globus pallidus (GPi). Compared with the 1.5- and 3-T MR images of the STN and GPi, the 7-T MR images showed marked improvements in spatial resolution, tissue contrast, and signal-to-noise ratio. CONCLUSIONS Data in this study reveal the superiority of 7-T MR imaging for visualizing structures targeted for DBS in the management of PD. This finding suggests that by enabling the direct visualization of neural structures of interest, 7-T MR imaging could be a valuable aid in neurosurgical procedures.
Collapse
Affiliation(s)
- Zang-Hee Cho
- Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|