1
|
Iranmanesh N, Hosseini M, Tajaddini A, Shayan L, Fazeli P, Akerdi AT, Abbasi HR, Bolandparvaz S, Abdolrahimzadeh Fard H, Paydar S. Improving trauma patient management: Predisposing factors for trauma-induced physiological disorders and the importance of damage control surgery. Curr Probl Surg 2024; 61:101473. [PMID: 38823892 DOI: 10.1016/j.cpsurg.2024.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 06/03/2024]
Affiliation(s)
- Najmeh Iranmanesh
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hosseini
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Tajaddini
- Department of surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Shayan
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Fazeli
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Taheri Akerdi
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Abbasi
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Bolandparvaz
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Abdolrahimzadeh Fard
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahram Paydar
- Truama Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Pordel S, McCloskey AP, Almahmeed W, Sahebkar A. The protective effects of statins in traumatic brain injury. Pharmacol Rep 2024; 76:235-250. [PMID: 38448729 DOI: 10.1007/s43440-024-00582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Traumatic brain injury (TBI), often referred to as the "silent epidemic", is the most common cause of mortality and morbidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clinical management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological mechanisms, including inflammation, oxidative stress, blood-brain barrier (BBB) disruption, ionic disturbance, excitotoxicity, mitochondrial dysfunction, neuronal necrosis, and apoptosis. Statins have several beneficial pleiotropic effects (anti-excitotoxicity, anti-inflammatory, anti-oxidant, anti-thrombotic, immunomodulatory activity, endothelial and vasoactive properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such as statins that target numerous and diverse pathological mechanisms, may be more effective than a single-target approach in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic application of statins are also discussed.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Poblete RA, Zhong C, Patel A, Kuo G, Sun PY, Xiao J, Fan Z, Sanossian N, Towfighi A, Lyden PD. Post-Traumatic Cerebral Infarction: A Narrative Review of Pathophysiology, Diagnosis, and Treatment. Neurol Int 2024; 16:95-112. [PMID: 38251054 PMCID: PMC10801491 DOI: 10.3390/neurolint16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is a common diagnosis requiring acute hospitalization. Long-term, TBI is a significant source of health and socioeconomic impact in the United States and globally. The goal of clinicians who manage TBI is to prevent secondary brain injury. In this population, post-traumatic cerebral infarction (PTCI) acutely after TBI is an important but under-recognized complication that is associated with negative functional outcomes. In this comprehensive review, we describe the incidence and pathophysiology of PTCI. We then discuss the diagnostic and treatment approaches for the most common etiologies of isolated PTCI, including brain herniation syndromes, cervical artery dissection, venous thrombosis, and post-traumatic vasospasm. In addition to these mechanisms, hypercoagulability and microcirculatory failure can also exacerbate ischemia. We aim to highlight the importance of this condition and future clinical research needs with the goal of improving patient outcomes after TBI.
Collapse
Affiliation(s)
- Roy A. Poblete
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Charlotte Zhong
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Anish Patel
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Grace Kuo
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Philip Y. Sun
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Jiayu Xiao
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Zhaoyang Fan
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Nerses Sanossian
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Amytis Towfighi
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
| | - Patrick D. Lyden
- Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA; (C.Z.); (A.P.); (G.K.); (J.X.); (Z.F.); (N.S.); (A.T.); (P.D.L.)
- Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Kalyani P, Lippa SM, Werner JK, Amyot F, Moore CB, Kenney K, Diaz-Arrastia R. Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1629-1640. [PMID: 37697134 PMCID: PMC10684467 DOI: 10.1007/s13311-023-01430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Multiple phase III randomized controlled trials (RCTs) for pharmacologic interventions in traumatic brain injury (TBI) have failed despite promising results in experimental models. The heterogeneity of TBI, in terms of pathomechanisms and impacted brain structures, likely contributes to these failures. Biomarkers have been recommended to identify patients with relevant pathology (predictive biomarkers) and confirm target engagement and monitor therapy response (pharmacodynamic biomarkers). Our group focuses on traumatic cerebrovascular injury as an understudied endophenotype of TBI and is validating a predictive and pharmacodynamic imaging biomarker (cerebrovascular reactivity; CVR) in moderate-severe TBI. We aim to extend these studies to milder forms of TBI to determine the optimal dose of sildenafil for maximal improvement in CVR. We will conduct a phase II dose-finding study involving 160 chronic TBI patients (mostly mild) using three doses of sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor. The study measures baseline CVR and evaluates the effect of escalating sildenafil doses on CVR improvement. A 4-week trial of thrice daily sildenafil will assess safety, tolerability, and clinical efficacy. This dual-site 4-year study, funded by the Department of Defense and registered in ClinicalTrials.gov (NCT05782244), plans to launch in June 2023. Biomarker-informed RCTs are essential for developing effective TBI interventions, relying on an understanding of underlying pathomechanisms. Traumatic microvascular injury (TMVI) is an attractive mechanism which can be targeted by vaso-active drugs such as PDE-5 inhibitors. CVR is a potential predictive and pharmacodynamic biomarker for targeted interventions aimed at TMVI. (Trial registration: NCT05782244, ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Priyanka Kalyani
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| | - Sara M Lippa
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - J Kent Werner
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Franck Amyot
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
| | - Carol B Moore
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Kimbra Kenney
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Liu L, Deng QJ. Role of platelet-derived extracellular vesicles in traumatic brain injury-induced coagulopathy and inflammation. Neural Regen Res 2022; 17:2102-2107. [PMID: 35259815 PMCID: PMC9083154 DOI: 10.4103/1673-5374.335825] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are composed of fragments of exfoliated plasma membrane, organelles or nuclei and are released after cell activation, apoptosis or destruction. Platelet-derived extracellular vesicles are the most abundant type of extracellular vesicle in the blood of patients with traumatic brain injury. Accumulated laboratory and clinical evidence shows that platelet-derived extracellular vesicles play an important role in coagulopathy and inflammation after traumatic brain injury. This review discusses the recent progress of research on platelet-derived extracellular vesicles in coagulopathy and inflammation and the potential of platelet-derived extracellular vesicles as therapeutic targets for traumatic brain injury.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Quan-Jun Deng
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
What Are We Measuring? A Refined Look at the Process of Disrupted Autoregulation and the Limitations of Cerebral Perfusion Pressure in Preventing Secondary Injury after Traumatic Brain Injury. Clin Neurol Neurosurg 2022; 221:107389. [PMID: 35961231 DOI: 10.1016/j.clineuro.2022.107389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
8
|
Khalin I, Adarsh N, Schifferer M, Wehn A, Groschup B, Misgeld T, Klymchenko A, Plesnila N. Size-Selective Transfer of Lipid Nanoparticle-Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200302. [PMID: 35384294 DOI: 10.1002/smll.202200302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The current lack of understanding about how nanocarriers cross the blood-brain barrier (BBB) in the healthy and injured brain is hindering the clinical translation of nanoscale brain-targeted drug-delivery systems. Here, the bio-distribution of lipid nano-emulsion droplets (LNDs) of two sizes (30 and 80 nm) in the mouse brain after traumatic brain injury (TBI) is investigated. The highly fluorescent LNDs are prepared by loading them with octadecyl rhodamine B and a bulky hydrophobic counter-ion, tetraphenylborate. Using in vivo two-photon and confocal imaging, the circulation kinetics and bio-distribution of LNDs in the healthy and injured mouse brain are studied. It is found that after TBI, LNDs of both sizes accumulate at vascular occlusions, where specifically 30 nm LNDs extravasate into the brain parenchyma and reach neurons. The vascular occlusions are not associated with bleedings, but instead are surrounded by processes of activated microglia, suggesting a specific opening of the BBB. Finally, correlative light-electron microscopy reveals 30 nm LNDs in endothelial vesicles, while 80 nm particles remain in the vessel lumen, indicating size-selective vesicular transport across the BBB via vascular occlusions. The data suggest that microvascular occlusions serve as "gates" for the transport of nanocarriers across the BBB.
Collapse
Affiliation(s)
- Igor Khalin
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| | - Nagappanpillai Adarsh
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
- Department of Polymer Chemistry, Government College Attingal, Kerala, 695101, India
| | - Martina Schifferer
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
| | - Thomas Misgeld
- Cluster for Systems Neurology, Munich, Germany
- German Center for Neurodegenerative Diseases, 81377, Munich, Germany
- Institute of Neuronal Cell Biology, School of Medicine, Technical University of Munich, 80802, Munich, Germany
| | - Andrey Klymchenko
- Laboratory de Biophotonique et Pharmacologie, University of Strasbourg, Strasbourg, 67401, France
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, University of Munich Medical Center, 81377, Munich, Germany
- Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
9
|
Ragurajaprakash K, Senthilkumar R, Sathish Prabu S, Madeswaran K, Kiruthika P. Post-traumatic cerebral venous sinus thrombosis – Institutional study and literature review. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Wada T, Shiraishi A, Gando S, Yamakawa K, Fujishima S, Saitoh D, Kushimoto S, Ogura H, Abe T, Mayumi T, Sasaki J, Kotani J, Takeyama N, Tsuruta R, Takuma K, Shiraishi SI, Shiino Y, Nakada TA, Okamoto K, Sakamoto Y, Hagiwara A, Fujimi S, Umemura Y, Otomo Y. Pathophysiology of Coagulopathy Induced by Traumatic Brain Injury Is Identical to That of Disseminated Intravascular Coagulation With Hyperfibrinolysis. Front Med (Lausanne) 2021; 8:767637. [PMID: 34869481 PMCID: PMC8634586 DOI: 10.3389/fmed.2021.767637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Traumatic brain injury (TBI)-associated coagulopathy is a widely recognized risk factor for secondary brain damage and contributes to poor clinical outcomes. Various theories, including disseminated intravascular coagulation (DIC), have been proposed regarding its pathomechanisms; no consensus has been reached thus far. This study aimed to elucidate the pathophysiology of TBI-induced coagulopathy by comparing coagulofibrinolytic changes in isolated TBI (iTBI) to those in non-TBI, to determine the associated factors, and identify the clinical significance of DIC diagnosis in patients with iTBI. Methods: This secondary multicenter, prospective study assessed patients with severe trauma. iTBI was defined as Abbreviated Injury Scale (AIS) scores ≥4 in the head and neck, and ≤2 in other body parts. Non-TBI was defined as AIS scores ≥4 in single body parts other than the head and neck, and the absence of AIS scores ≥3 in any other trauma-affected parts. Specific biomarkers for thrombin and plasmin generation, anticoagulation, and fibrinolysis inhibition were measured at the presentation to the emergency department (0 h) and 3 h after arrival. Results: We analyzed 34 iTBI and 40 non-TBI patients. Baseline characteristics, transfusion requirements and in-hospital mortality did not significantly differ between groups. The changes in coagulation/fibrinolysis-related biomarkers were similar. Lactate levels in the iTBI group positively correlated with DIC scores (rho = −0.441, p = 0.017), but not with blood pressure (rho = −0.098, p = 0.614). Multiple logistic regression analyses revealed that the injury severity score was an independent predictor of DIC development in patients with iTBI (odds ratio = 1.237, p = 0.018). Patients with iTBI were further subdivided into two groups: DIC (n = 15) and non-DIC (n = 19) groups. Marked thrombin and plasmin generation were observed in all patients with iTBI, especially those with DIC. Patients with iTBI and DIC had higher requirements for massive transfusion and emergency surgery, and higher in-hospital mortality than those without DIC. Furthermore, DIC development significantly correlated with poor hospital survival; DIC scores at 0 h were predictive of in-hospital mortality. Conclusions: Coagulofibrinolytic changes in iTBI and non-TBI patients were identical, and consistent with the pathophysiology of DIC. DIC diagnosis in the early phase of TBI is key in predicting the outcomes of severe TBI.
Collapse
Affiliation(s)
- Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan.,Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan.,Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Joji Kotani
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoshi Takeyama
- Advanced Critical Care Center, Aichi Medical University Hospital, Nagakute, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency & Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Kiyotsugu Takuma
- Emergency & Critical Care Center, Kawasaki Municipal Hospital, Kawasaki, Japan
| | | | - Yasukazu Shiino
- Department of Acute Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kohji Okamoto
- Department of Surgery, Center for Gastroenterology and Liver Disease, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yuichiro Sakamoto
- Emergency and Critical Care Medicine, Saga University Hospital, Saga, Japan
| | - Akiyoshi Hagiwara
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Sumiyoshi, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Sumiyoshi, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Liu HB, Xu WM, Wang SS, Wei LF, Hong JF, Wang C, Xian L. Analysis of changes in the volume of edema around brain contusions and the influencing factors: A single-center, retrospective, observational study. Medicine (Baltimore) 2021; 100:e27246. [PMID: 34559127 PMCID: PMC8462588 DOI: 10.1097/md.0000000000027246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/26/2021] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI), a common neurosurgical condition, has well-known treatment guidelines. However, the mechanisms underlying the varying severity of brain edema secondary to TBI are largely unknown, leading to controversial treatments.This study seeks to measure edema volumes around brain contusions in different regions, analyze factors related to differences in edema volume and provide a theoretical basis for brain edema treatment.Data from 113 brain contusion patients treated at the Department of Neurosurgery of Fuzhou General Hospital from January 2017 to November 2019 were analyzed retrospectively. Based on computed tomography (CT) data, the patients were divided into the venous group (brain contusion in regions with large cortical veins, n = 47) and the nonvenous group (brain contusions in other regions, n = 66). Here, 3D Slicer software was used to calculate the brain contusion volume on the first CT obtained after injury and the brain contusion volume and its surrounding edema on the 5th day after injury. The brain contusion volume to surrounding edema volume ratio was calculated, and the number of patients who showed brain contusion progression requiring surgery was determined. Hematocrit (Hct), fibrinogen (Fg), and d-dimer levels within 6 hours and on the 5th day after admission were also compared.Patients in the venous group had a significantly increased percentage of area with edema around the brain contusion compared with patients in the nonvenous group (P < .05), and the 2 groups showed no significant difference in the number of patients with brain contusion progression or surgical treatment (P > .05) or Hct, Fg, or d-dimer (D-D) levels. For all patients, Hct, Fg, and D-D levels within 6 hours after admission were significantly different from those on the 5th day (P < .05 for all).Cortical venous obstruction may be the most important factor influencing edema around brain contusions. The Fg level decreased slightly, and the D-D level increased to its peak rapidly after mild-moderate TBI. This change was followed by a gradual increase in the former and a gradual decrease in the latter.
Collapse
Affiliation(s)
- Hai-Bing Liu
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei-Ming Xu
- Department of Neurosurgery, Hospital of Fuzhou Changle District, Fuzhou, Fujian Province, China
| | - Shou-Sen Wang
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liang-Feng Wei
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jing-Fang Hong
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Wang
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liang Xian
- Department of Neurosurgery of the 900th Hospital, Fuzong Clinical Medical School of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
12
|
Clark IA. Background to new treatments for COVID-19, including its chronicity, through altering elements of the cytokine storm. Rev Med Virol 2021; 31:1-13. [PMID: 33580566 PMCID: PMC7883210 DOI: 10.1002/rmv.2210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
13
|
Haber M, Amyot F, Lynch CE, Sandsmark DK, Kenney K, Werner JK, Moore C, Flesher K, Woodson S, Silverman E, Chou Y, Pham D, Diaz-Arrastia R. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1924-1938. [PMID: 33444092 PMCID: PMC8327117 DOI: 10.1177/0271678x20985156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.
Collapse
Affiliation(s)
- Margalit Haber
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Cillian E Lynch
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kelley Flesher
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah Woodson
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Mayer AR, Ling JM, Dodd AB, Rannou-Latella JG, Stephenson DD, Dodd RJ, Mehos CJ, Patton DA, Cullen DK, Johnson VE, Pabbathi Reddy S, Robertson-Benta CR, Gigliotti AP, Meier TB, Vermillion MS, Smith DH, Kinsler R. Reproducibility and Characterization of Head Kinematics During a Large Animal Acceleration Model of Traumatic Brain Injury. Front Neurol 2021; 12:658461. [PMID: 34177763 PMCID: PMC8219951 DOI: 10.3389/fneur.2021.658461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acceleration parameters have been utilized for the last six decades to investigate pathology in both human and animal models of traumatic brain injury (TBI), design safety equipment, and develop injury thresholds. Previous large animal models have quantified acceleration from impulsive loading forces (i.e., machine/object kinematics) rather than directly measuring head kinematics. No study has evaluated the reproducibility of head kinematics in large animal models. Nine (five males) sexually mature Yucatan swine were exposed to head rotation at a targeted peak angular velocity of 250 rad/s in the coronal plane. The results indicated that the measured peak angular velocity of the skull was 51% of the impulsive load, was experienced over 91% longer duration, and was multi- rather than uni-planar. These findings were replicated in a second experiment with a smaller cohort (N = 4). The reproducibility of skull kinematics data was mostly within acceptable ranges based on published industry standards, although the coefficients of variation (8.9% for peak angular velocity or 12.3% for duration) were higher than the impulsive loading parameters produced by the machine (1.1 vs. 2.5%, respectively). Immunohistochemical markers of diffuse axonal injury and blood-brain barrier breach were not associated with variation in either skull or machine kinematics, suggesting that the observed levels of variance in skull kinematics may not be biologically meaningful with the current sample sizes. The findings highlight the reproducibility of a large animal acceleration model of TBI and the importance of direct measurements of skull kinematics to determine the magnitude of angular velocity, refine injury criteria, and determine critical thresholds.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Psychology Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Julie G. Rannou-Latella
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Carissa J. Mehos
- Neurosciences Department, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria E. Johnson
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sharvani Pabbathi Reddy
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | | | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Douglas H. Smith
- Department of Neurosurgery and Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel Kinsler
- Enroute Care Group, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| |
Collapse
|
15
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
16
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Poblete RA, Arenas M, Sanossian N, Freeman WD, Louie SG. The role of bioactive lipids in attenuating the neuroinflammatory cascade in traumatic brain injury. Ann Clin Transl Neurol 2020. [PMCID: PMC7732250 DOI: 10.1002/acn3.51240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity, mortality, and economic burden. Despite this, there are no proven medical therapies in the pharmacologic management of TBI. A better understanding of disease pathophysiology might lead to novel approaches. In one area of increasing interest, bioactive lipids known to attenuate inflammation might serve as an important biomarker and mediator of disease after TBI. In this review, we describe the pathophysiology of inflammation following TBI, the actions of endogenous bioactive lipids in attenuating neuroinflammation, and their possible therapeutic role in the management of TBI. In particular, specialized pro‐resolving lipid mediators (SPMs) of inflammation represent endogenous compounds that might serve as important biomarkers of disease and potential therapeutic targets. We aim to discuss the current literature from animal models of TBI and limited human experiences that suggest that bioactive lipids and SPMs are mechanistically important to TBI recovery, and by doing so, aim to highlight the need for further clinical and translational research. Early investigations of dietary and parenteral supplementation of pro‐resolving bioactive lipids have been promising. Given the high morbidity and mortality that occurs with TBI, novel approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Marcela Arenas
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - Nerses Sanossian
- Department of Neurology Keck School of MedicineUniversity of Southern California Los Angeles CaliforniaUSA
| | - William D. Freeman
- Department of Neurology and Neurosurgery Mayo Clinic Florida 4500 San Pablo Road Jacksonville Florida32224USA
| | - Stan G. Louie
- Department of Clinical Pharmacy School of Pharmacy University of Southern California Los Angeles CaliforniaUSA
| |
Collapse
|
18
|
Morris MC, John D, Singer KE, Moran R, McGlone E, Veile R, Goetzman HS, Makley AT, Caldwell CC, Goodman MD. Post-TBI splenectomy may exacerbate coagulopathy and platelet activation in a murine model. Thromb Res 2020; 193:211-217. [PMID: 32798961 DOI: 10.1016/j.thromres.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) induces acute hypocoagulability, subacute hypercoagulability, and persistently elevated risk for thromboembolic events. Splenectomy is associated with increased mortality in patients with moderate or severe TBI. We hypothesized that the adverse effects of splenectomy in TBI patients may be secondary to the exacerbation of pathologic coagulation and platelet activation changes. METHODS An established murine weight-drop TBI model was utilized and a splenectomy was performed immediately following TBI. Sham as well as TBI and splenectomy alone mice were used as injury controls. Mice were sacrificed for blood draws at 1, 6, and 24 h, as well as 7 days post-TBI. Viscoelastic coagulation parameters were assessed by rotational thromboelastometry (ROTEM) and platelet activation was measured by expression of P-selectin via flow cytometry analysis of platelet rich plasma samples. RESULTS At 6 h following injury, TBI/splenectomy demonstrated hypocoagulability with prolonged clot formation time (CFT) compared to TBI alone. By 24 h following injury, TBI/splenectomy and splenectomy mice were hypercoagulable with a shorter CFT, a higher alpha angle, and increased MCF, despite a lower percentage of platelet contribution to clot compared to TBI alone. However, only the TBI/splenectomy continued to display this hypercoagulable state at 7 days. While TBI/splenectomy had greater P-selectin expression at 1-h post-injury, TBI alone had significantly greater P-selectin expression at 24 h post-injury compared to TBI/splenectomy. Interestingly, P-selectin expression remained elevated only in TBI/splenectomy at 7 days post-injury. CONCLUSION Splenectomy following TBI exacerbates changes in the post-injury coagulation state. The combination of TBI and splenectomy induces an acute hypocoagulable state that could contribute to an increase in intracranial bleeding. Subacutely, the addition of splenectomy to TBI exacerbates post-injury hypercoagulability and induces persistent platelet activation. These polytrauma effects on coagulation may contribute to the increased mortality observed in patients with combined brain and splenic injuries.
Collapse
Affiliation(s)
| | - Devin John
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Kathleen E Singer
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan Moran
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Emily McGlone
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Rosalie Veile
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Holly S Goetzman
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Division of Research, Shriners Hospital for Children, Cincinnati, OH, USA
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Division of Research, Shriners Hospital for Children, Cincinnati, OH, USA
| | - Michael D Goodman
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Gao C, Wang H, Wang T, Luo C, Wang Z, Zhang M, Chen X, Tao L. Platelet regulates neuroinflammation and restores blood-brain barrier integrity in a mouse model of traumatic brain injury. J Neurochem 2020; 154:190-204. [PMID: 32048302 DOI: 10.1111/jnc.14983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/14/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Neuroinflammation accompanied by microglial activation triggers multiple cell death after traumatic brain injury (TBI). The secondary injury caused by inflammation may persist for a long time. Recently, platelet C-type lectin-like 2 receptor (CLEC-2) has been shown to regulate inflammation in certain diseases. However, its possible effects on TBI remain poorly understood. Here, we aimed to investigate the role of platelet CLEC-2 in the pathological process of neuroinflammation after TBI. In this study, mice were subjected to sham or controlled cortical impact injury, and arbitrarily received recombinant platelet CLEC-2. In parallel, BV2 cells were treated with lipopolysaccharide (LPS) to mimic microglial activation after TBI. Primary endothelial cells were also subjected to LPS in order to replicate the inflammatory damage caused by TBI. We used western blot analysis, reverse transcription polymerase chain reaction (RT-PCR), and immunostaining to evaluate the role of platelet CLEC-2 in TBI. In conditional knock out platelet CLEC-2 mice, trauma worsened the integrity of the blood-brain barrier and amplified the release of inflammatory cytokines. In wild type mice subjected to controlled cortical impact injury, recombinant platelet CLEC-2 administration altered the secretion of inflammatory cytokines, reduced brain edema, and improved neurological function. In vitro, the polarization phenotype of microglia induced by LPS was transformed by recombinant platelet CLEC-2, and this conversion depended on the mammalian target of rapamycin (mTOR) pathway. Endothelial cell injury by LPS was ameliorated when microglia expressed mostly M2 phenotype markers. In conclusion, platelet CLEC-2 regulates trauma-induced neuroinflammation and restores blood-brain barrier integrity.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Delaney SL, Gendreau JL, D'Souza M, Feng AY, Ho AL. Optogenetic Modulation for the Treatment of Traumatic Brain Injury. Stem Cells Dev 2020; 29:187-197. [DOI: 10.1089/scd.2019.0187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
| | | | | | - Austin Y. Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| | - Allen L. Ho
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Georgia
| |
Collapse
|
21
|
Oxygenation extremes after traumatic brain injury transiently affect coagulation. Thromb Res 2020; 186:58-63. [DOI: 10.1016/j.thromres.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
|
22
|
Hemorrhage Associated Mechanisms of Neuroinflammation in Experimental Traumatic Brain Injury. J Neuroimmune Pharmacol 2019; 15:181-195. [DOI: 10.1007/s11481-019-09882-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
23
|
Amyot F, Kenney K, Spessert E, Moore C, Haber M, Silverman E, Gandjbakhche A, Diaz-Arrastia R. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2019; 25:102086. [PMID: 31790877 PMCID: PMC6909332 DOI: 10.1016/j.nicl.2019.102086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Traumatic cerebral vascular injury (TCVI) is a frequent, but under-recognized, endophenotype of traumatic brain injury (TBI). It likely contributes to functional deficits after TBI and TBI-related chronic disability, and represents an attractive target for targeted therapeutic interventions. The aim of this prospective study is to assess microvascular injury/dysfunction in chronic TBI by measuring cerebral vascular reactivity (CVR) by 2 methods, functional magnetic resonance imaging (fMRI) and functional Near InfraRed Spectroscopy (fNIRS) imaging, as each has attractive features relevant to clinical utility. 42 subjects (27 chronic TBI, 15 age- and gender-matched non-TBI volunteers) were enrolled and underwent outpatient CVR testing by 2 methods, MRI-BOLD and fNIRS, each with hypercapnia challenge, a neuropsychological testing battery, and symptom survey questionnaires. Chronic TBI subjects showed a significant reduction in global CVR compared to HC (p < 0.0001). Mean CVR measures by fMRI were 0.225 ± 0.014 and 0.183 ± 0.026 %BOLD/mmHg for non-TBI and TBI subjects respectively and 12.3 ± 1.8 and 9.2 ± 1.7 mM/mmHg by fNIRS for non-TBI versus TBI subjects respectively. Global CVR measured by fNIRS imaging correlates with results by MRI-BOLD (R = 0.5). Focal CVR deficits seen on CVR maps by fMRI are also observed in the same areas by fNIRS in the frontal regions. Global CVR is significantly lower in chronic TBI patients and is reliably measured by both fMRI and fNIRS, the former with better spatial and the latter with better temporal resolution. Both methods show promise as non-invasive measures of CVR function and microvascular integrity after TBI.
Collapse
Affiliation(s)
- Franck Amyot
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Emily Spessert
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
24
|
Desmopressin is a transfusion sparing option to reverse platelet dysfunction in patients with severe traumatic brain injury. J Trauma Acute Care Surg 2019; 88:80-86. [DOI: 10.1097/ta.0000000000002521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Platelet Function Changes in a Time-Dependent Manner Following Traumatic Brain Injury in a Murine Model. Shock 2019; 50:551-556. [PMID: 29140832 DOI: 10.1097/shk.0000000000001056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) results in systemic changes in coagulation and inflammation that contribute to post-traumatic morbidity and mortality. The potential interaction of platelets and pro-inflammatory cytokines in the modulation of coagulation, microthrombosis, and venous thromboembolic events after moderate TBI has not been determined. Using a murine model, we hypothesized that the degree of platelet-induced coagulation varies depending on the platelet aggregation agonist platelet-induced coagulation changes in a time-dependent manner following TBI, and changes in platelet-induced coagulation are mirrored by changes in the levels of circulating pro-inflammatory cytokines. An established weight-drop model was used to induce TBI in anesthetized mice. Blood samples were collected at intervals after injury for measurements of platelet count, serum fibrinogen, pro-inflammatory cytokines, and determination of soluble P-selectin levels. Thromboelastometry was used to evaluate changes in hemostasis. Platelet function was determined using whole blood impedance aggregometry. Ten minutes following TBI, adenosine diphosphate-induced platelet aggregation decreased as measured by platelet aggregometry. Despite no changes in platelet counts and serum fibrinogen, platelet aggregation, pro-inflammatory cytokines, and soluble P-selectin were increased at 6 h after TBI. Rotation thromboelastometry demonstrated increased maximal clot firmness at 6 h. Platelet function and coagulability returned to baseline levels 24 h following head injury. Our data demonstrate that after TBI, acute platelet dysfunction occurs followed by rebound platelet hyperaggregation. Alterations in post-TBI platelet aggregation are reflected in whole blood thromboelastometry and are temporally associated with the systemic pro-inflammatory response.
Collapse
|
26
|
Goal-directed platelet transfusions correct platelet dysfunction and may improve survival in patients with severe traumatic brain injury. J Trauma Acute Care Surg 2019; 85:881-887. [PMID: 30124626 DOI: 10.1097/ta.0000000000002047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Platelet dysfunction, defined as adenosine diphosphate inhibition greater than 60% on thromboelastogram, is an independent predictor of increased mortality in patients with severe traumatic brain injury (TBI). We changed our practice to transfuse platelets for all patients with severe TBI and platelet dysfunction. We hypothesized that platelet transfusions would correct platelet dysfunction and improve mortality in patients with severe TBI. METHODS This retrospective review included adult trauma patients admitted to our Level I trauma center from July 2015 to October 2016 with severe TBI (head Abbreviated Injury Scale score ≥ 3) who presented with platelet dysfunction and subsequently received a platelet transfusion. Serial thromboelastograms were obtained to characterize the impact of platelet transfusion on clot strength. Subsequently, the platelet transfusion group was compared to a group of historical controls with severe TBI patients and platelet dysfunction who did not receive platelet transfusion. RESULTS A total of 35 patients with severe TBI presented with platelet dysfunction. Following platelet transfusion clot strength improved as represented by decreased K time, increased α angle, maximum amplitude, and G-value, as well as correction of adenosine diphosphate inhibition. When comparing to 51 historic controls with severe TBI and platelet dysfunction, the 35 study patients who received a platelet transfusion had a lower mortality (9% vs. 35%; p = 0.005). In stepwise logistic regression, platelet transfusion was independently associated with decreased mortality (odds ratio, 0.23; 95% confidence interval, 0.06-0.92; p = 0.038). CONCLUSION In patients with severe TBI and platelet dysfunction, platelet transfusions correct platelet inhibition and may be associated with decreased mortality. LEVEL OF EVIDENCE Therapeutic, level II.
Collapse
|
27
|
Stolla M, Zhang F, Meyer MR, Zhang J, Dong JF. Current state of transfusion in traumatic brain injury and associated coagulopathy. Transfusion 2019; 59:1522-1528. [PMID: 30980753 DOI: 10.1111/trf.15169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/10/2018] [Accepted: 11/17/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI)-induced coagulopathy has long been recognized as a significant risk for poor outcomes in patients with TBI, but its pathogenesis remains poorly understood. As a result, current treatment options for the condition are limited and ineffective. The lack of information is most significant for the impact of blood transfusions on patients with isolated TBI and in the absence of confounding influences from trauma to the body and limbs and the resultant hemorrhagic shock. Here we discuss recent progress in understanding the pathogenesis of TBI-induced coagulopathy and the current state of blood transfusions for patients with TBI and associated coagulopathy.
Collapse
Affiliation(s)
- Moritz Stolla
- Bloodworks Research Institute, Seattle, Washington.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, Washington
| | - Fangyi Zhang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Michael R Meyer
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Jianning Zhang
- Tianjin Institute of Neurology, Tianjin, China.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, Washington
| |
Collapse
|
28
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
29
|
Management of Head Trauma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Griemert E, Schwarzmaier SM, Hummel R, Gölz C, Yang D, Neuhaus W, Burek M, Förster CY, Petkovic I, Trabold R, Plesnila N, Engelhard K, Schäfer MK, Thal SC. Plasminogen activator inhibitor-1 augments damage by impairing fibrinolysis after traumatic brain injury. Ann Neurol 2019; 85:667-680. [PMID: 30843275 PMCID: PMC6593843 DOI: 10.1002/ana.25458] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Plasminogen activator inhibitor-1 (PAI-1) is the key endogenous inhibitor of fibrinolysis, and enhances clot formation after injury. In traumatic brain injury, dysregulation of fibrinolysis may lead to sustained microthrombosis and accelerated lesion expansion. In the present study, we hypothesized that PAI-1 mediates post-traumatic malfunction of coagulation, with inhibition or genetic depletion of PAI-1 attenuating clot formation and lesion expansion after brain trauma. METHODS We evaluated PAI-1 as a possible new target in a mouse controlled cortical impact (CCI) model of traumatic brain injury. We performed the pharmacological inhibition of PAI-1 with PAI-039 and stimulation by tranexamic acid, and we confirmed our results in PAI-1-deficient animals. RESULTS PAI-1 mRNA was time-dependently upregulated, with a 305-fold peak 12 hours after CCI, which effectively counteracted the 2- to 3-fold increase in cerebral tissue-type/urokinase plasminogen activator expression. PAI-039 reduced brain lesion volume by 26% at 24 hours and 43% at 5 days after insult. This treatment also attenuated neuronal apoptosis and improved neurofunctional outcome. Moreover, intravital microscopy demonstrated reduced post-traumatic thrombus formation in the pericontusional cortical microvasculature. In PAI-1-deficient mice, the therapeutic effect of PAI-039 was absent. These mice also displayed 13% reduced brain damage compared with wild type. In contrast, inhibition of fibrinolysis with tranexamic acid increased lesion volume by 25% compared with vehicle. INTERPRETATION This study identifies impaired fibrinolysis as a critical process in post-traumatic secondary brain damage and suggests that PAI-1 may be a central endogenous inhibitor of the fibrinolytic pathway, promoting a procoagulatory state and clot formation in the cerebral microvasculature. Ann Neurol 2019;85:667-680.
Collapse
Affiliation(s)
- Eva‐Verena Griemert
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Susanne M. Schwarzmaier
- Department of AnesthesiologyLudwig‐Maximilians‐University (LMU) Munich Medical CenterMunichGermany
| | - Regina Hummel
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Christina Gölz
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Dong Yang
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Winfried Neuhaus
- Austrian Institute of Technology, Department Health and EnvironmentMolecular DiagnosticsViennaAustria
| | - Malgorzata Burek
- Department of Anesthesia and Critical CareUniversity of WürzburgWürzburgGermany
| | - Carola Y. Förster
- Department of Anesthesia and Critical CareUniversity of WürzburgWürzburgGermany
| | - Ivan Petkovic
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Raimund Trabold
- Institute for Surgical Research at the Walter Brendel Center of Experimental MedicineUniversity of Munich Medical CenterMunichGermany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD)Ludwig‐Maximilians‐University (LMU) Munich Medical Center, Munich, Germany and Munich Cluster for Systems Neurology (Synergy)MunichGermany
| | - Kristin Engelhard
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Michael K. Schäfer
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
- Focus Program Translational NeuroscienceUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| | - Serge C. Thal
- Department of AnesthesiologyUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
- Focus Program Translational NeuroscienceUniversity Medical Center of Johannes‐Gutenberg‐University MainzMainzGermany
| |
Collapse
|
31
|
Zhao Z, Zhou Y, Hilton T, Li F, Han C, Liu L, Yuan H, Li Y, Xu X, Wu X, Zhang F, Thiagarajan P, Cap A, Shi FD, Zhang J, Dong JF. Extracellular mitochondria released from traumatized brains induced platelet procoagulant activity. Haematologica 2019; 105:209-217. [PMID: 30975909 PMCID: PMC6939511 DOI: 10.3324/haematol.2018.214932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 01/10/2023] Open
Abstract
Coagulopathy often develops soon after acute traumatic brain injury and its cause remains poorly understood. We have shown that injured brains release cellular microvesicles that disrupt the endothelial barrier and induce consumptive coagulopathy. Morphologically intact extracellular mitochondria accounted for 55.2% of these microvesicles, leading to the hypothesis that these extracellular mitochondria are metabolically active and serve as a source of oxidative stress that activates platelets and renders them procoagulant. In testing this hypothesis experimentally, we found that the extracellular mitochondria purified from brain trauma mice and those released from brains subjected to freeze-thaw injury remained metabolically active and produced reactive oxygen species. These extracellular mitochondria bound platelets through the phospholipid-CD36 interaction and induced α-granule secretion, microvesiculation, and procoagulant activity in an oxidant-dependent manner, but failed to induce aggregation. These results define an extracellular mitochondria-induced and redox-dependent intermediate phenotype of platelets that contribute to the pathogenesis of traumatic brain injury-induced coagulopathy and inflammation.
Collapse
Affiliation(s)
- Zilong Zhao
- BloodWorks Research Institute, Seattle, WA, USA.,Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Zhou
- BloodWorks Research Institute, Seattle, WA, USA.,Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Fanjian Li
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- BloodWorks Research Institute, Seattle, WA, USA
| | - Li Liu
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengjie Yuan
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Li
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Xu
- BloodWorks Research Institute, Seattle, WA, USA
| | - Xiaoping Wu
- BloodWorks Research Institute, Seattle, WA, USA
| | - Fangyi Zhang
- Department of Neurosurgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Perumal Thiagarajan
- Departments of Medicine and Pathology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Andrew Cap
- US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Fu-Dong Shi
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jianning Zhang
- Tianjin Institute of Neurology, Departments of Neurosurgery and Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Fei Dong
- BloodWorks Research Institute, Seattle, WA, USA .,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| |
Collapse
|
32
|
Albert-Weissenberger C, Hopp S, Nieswandt B, Sirén AL, Kleinschnitz C, Stetter C. How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 2018; 326:9-13. [PMID: 30445364 DOI: 10.1016/j.jneuroim.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/01/2023]
Abstract
Traumatic brain injury (TBI) is characterized by mechanical disruption of brain tissue due to an external force and by subsequent secondary injury. Secondary brain injury events include inflammatory responses and the activation of coagulation resulting in microthrombi formation in the brain vasculature. Recent research suggests that these mechanisms do not work independently. There is strong evidence that FXII and platelet activation connects both, inflammation and the formation of microthrombi. This review summarizes the current knowledge on posttraumatic microthrombus formation and its link to inflammation.
Collapse
Affiliation(s)
- Christiane Albert-Weissenberger
- Institute of Physiology, Department of Neurophysiology, Julius Maximilian University, Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Sarah Hopp
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Duisburg-Essen, Essen, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Kumar MA, Cao W, Pham HP, Raju D, Nawalinski K, Maloney-Wilensky E, Schuster J, Zheng XL. Relative Deficiency of Plasma A Disintegrin and Metalloprotease with Thrombospondin Type 1 Repeats 13 Activity and Elevation of Human Neutrophil Peptides in Patients with Traumatic Brain Injury. J Neurotrauma 2018; 36:222-229. [PMID: 29848170 DOI: 10.1089/neu.2018.5696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic microvascular injury (tMVI) is a universal endophenotype of traumatic brain injury (TBI) that is responsible for significant neurological morbidity and mortality. The mechanism underlying tMVI is not fully understood. The present study aims to determine plasma levels of von Willebrand factor (VWF), a disintegrin and metalloprotease with thrombospondin type 1 repeats (ADAMTS) 13 activity, and human neutrophil peptides (HNP) 1-3 and to correlate these biomarkers with functional outcomes after moderate-severe TBI. Thirty-one consecutive TBI patients (Glasgow Coma Scale [GCS] range, 3-12) were enrolled into the study between February 2010 and November 2014. Blood samples were collected on 0, 1, 2, 3, and 5 days after admission and analyzed for plasma levels of VWF antigen (VWFAg), collagen-binding activity (VWFAc), ADAMTS13 activity, and HNP1-3 proteins. Mean values of plasma VWFAg, VWFAc, and HNP1-3 were significantly increased in TBI patients compared to those in healthy controls (n = 30). Conversely, mean plasma values of ADAMTS13 activity in TBI patients were significantly decreased during the first 2 days after admission. This resulted in a dramatic reduction in the ratio of ADAMTS13 activity to VWFAg or ADAMTS13 to VWFAc in all 5 post-TBI days. Cluster analysis demonstrated that high median plasma levels of VWFAg and HNP1-3 were observed in the cluster with a high mortality rate. These results demonstrate that a relative deficiency of plasma ADAMTS13 activity, resulting from activation of neutrophils and endothelium, may contribute to the formation of microvascular thrombosis and mortality after moderate-severe TBI.
Collapse
Affiliation(s)
- Monisha A Kumar
- 1 Department of Neurology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,3 Department of Anesthesiology and Critical Care, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wenjing Cao
- 4 Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Huy P Pham
- 5 Department of Pathology, Keck School of Medicine of USC, Los Angeles, California
| | - Dheeraj Raju
- 6 Department of Acute, Chronic, and Continuing Care, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kelsey Nawalinski
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eileen Maloney-Wilensky
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James Schuster
- 2 Department of Neurosurgery, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - X Long Zheng
- 4 Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Sahyouni R, Mahmoodi A, Mahmoodi A, Rajaii RR, Hasjim BJ, Bustillo D, Huang M, Tran DK, Chen JW. Interactive iBook-Based Patient Education in a NeuroTrauma Clinic. Neurosurgery 2018; 81:787-794. [PMID: 28368534 DOI: 10.1093/neuros/nyx095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Educational interventions may alleviate the burden of TBI for patients and their families. Interactive modalities that involve engagement with the educational material may enhance patient knowledge acquisition when compared to static text-based educational material. OBJECTIVE To determine the effects of educational interventions in the outpatient setting on self-reported patient knowledge, with a focus on iPad-based (Apple, Cupertino, California) interactive modules. METHODS Patients and family members presenting to a NeuroTrauma clinic at a tertiary care academic medical center completed a presurvey assessing baseline knowledge of TBI or concussion, depending on the diagnosis. Subjects then received either an interactive iBook (Apple) on TBI or concussion, or an informative pamphlet with identical information in text format. Subjects then completed a postsurvey prior to seeing the neurosurgeon. RESULTS All subjects (n = 152) significantly improved on self-reported knowledge measures following administration of either an iBook (Apple) or pamphlet (P < .01, 95% confidence interval [CI]). Subjects receiving the iBook (n = 122) performed significantly better on the postsurvey (P < .01, 95% CI), despite equivalent presurvey scores, when compared to those receiving pamphlets (n = 30). Lastly, patients preferred the iBook to pamphlets (P < .01, 95% CI). CONCLUSION Educational interventions in the outpatient NeuroTrauma setting led to significant improvement in self-reported measures of patient and family knowledge. This improved understanding may increase compliance with the neurosurgeon's recommendations and may help reduce the potential anxiety and complications that arise following a TBI.
Collapse
Affiliation(s)
| | - Amin Mahmoodi
- UC Irvine Department of Biomedical Engineering, Irvine, California
| | - Amir Mahmoodi
- UC Irvine Department of Neurological Surgery, Irvine, California
| | | | | | - David Bustillo
- UC Irvine Department of Neurological Surgery, Irvine, California
| | - Melissa Huang
- UC Irvine Department of Neurological Surgery, Irvine, California
| | - Diem Kieu Tran
- UC Irvine Department of Neurological Surgery, Irvine, California
| | - Jefferson W Chen
- UC Irvine Department of Neurological Surgery, Irvine, California
| |
Collapse
|
35
|
Radisavljević M, Stojanović N, Radisavljević M, Novak V, Kostić A, Mitić R. COAGULATION DISORDER S AFTER TRAUMATIC BR AIN INJURY. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Coagulopathy induced by traumatic brain injury: systemic manifestation of a localized injury. Blood 2018; 131:2001-2006. [PMID: 29507078 DOI: 10.1182/blood-2017-11-784108] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI)-induced coagulopathy is a common and well-recognized risk for poor clinical outcomes, but its pathogenesis remains poorly understood, and treatment options are limited and ineffective. We discuss the recent progress and knowledge gaps in understanding this lethal complication of TBI. We focus on (1) the disruption of the brain-blood barrier to disseminate brain injury systemically by releasing brain-derived molecules into the circulation and (2) TBI-induced hypercoagulable and hyperfibrinolytic states that result in persistent and delayed intracranial hemorrhage and systemic bleeding.
Collapse
|
37
|
Frendl I, Katko M, Galgoczi E, Boda J, Zsiros N, Nemeti Z, Bereczky Z, Hudak R, Kappelmayer J, Erdei A, Turchanyi B, Nagy EV. Plasminogen Activator Inhibitor Type 1: A Possible Novel Biomarker of Late Pituitary Dysfunction after Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:3238-3244. [DOI: 10.1089/neu.2017.5198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Istvan Frendl
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Monika Katko
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Galgoczi
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Boda
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Noemi Zsiros
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Nemeti
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renata Hudak
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Janos Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bela Turchanyi
- Department of Trauma and Hand Surgery, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V. Nagy
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
38
|
Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats. Brain Res 2017. [DOI: 10.1016/j.brainres.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Wada T, Gando S, Maekaw K, Katabami K, Sageshima H, Hayakawa M, Sawamura A. Disseminated intravascular coagulation with increased fibrinolysis during the early phase of isolated traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:219. [PMID: 28826407 PMCID: PMC5568862 DOI: 10.1186/s13054-017-1808-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/01/2017] [Indexed: 12/19/2022]
Abstract
Background There is evidence to demonstrate that the coagulopathy which occurs in patients with traumatic brain injury coincides with disseminated intravascular coagulation (DIC). We hypothesized that DIC with increased fibrinolysis during the early stage of isolated traumatic brain injury (iTBI) affects the outcome of the patients and that hypoperfusion contributes to hyperfibrinolysis in the DIC. Methods This retrospective study included 92 patients with iTBI who were divided into DIC and non-DIC groups according to the Japanese Association Acute Medicine DIC scoring system. The DIC patients were subdivided into those with and without hyperfibrinolysis. The platelet counts and global markers of coagulation and fibrinolysis were measured. Systemic inflammatory response syndrome (SIRS), organ dysfunction (assessed by the Sequential Organ Failure Assessment score), tissue hypoperfusion (assessed by the lactate levels) and the transfusion volume were also evaluated. The outcome measure was all-cause hospital mortality. Results DIC patients showed consumption coagulopathy, lower antithrombin levels and higher fibrin/fibrinogen degradation products (FDP) and D-dimer levels than non-DIC patients. All of the DIC patients developed SIRS accompanied by organ dysfunction and required higher blood transfusion volumes, leading to a worse outcome than non-DIC patients. These changes were more prominent in DIC with hyperfibrinolysis. A higher FDP/D-dimer ratio suggests that DIC belongs to the fibrinolytic phenotype and involves fibrin(ogen)olysis. The mean blood pressures of the patients with and without DIC on arrival were identical. Hypoperfusion and the lactate levels were not identified as independent predictors of hyperfibrinolysis. Conclusions DIC, especially DIC with hyperfibrinolysis, affects the outcome of patients with iTBI. Low blood pressure-induced tissue hypoperfusion does not contribute to hyperfibrinolysis in this type of DIC. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1808-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Kunihiko Maekaw
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kenichi Katabami
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hisako Sageshima
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mineji Hayakawa
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Atsushi Sawamura
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
40
|
Zhao Z, Zhou Y, Tian Y, Li M, Dong JF, Zhang J. Cellular microparticles and pathophysiology of traumatic brain injury. Protein Cell 2017; 8:801-810. [PMID: 28466387 PMCID: PMC5676589 DOI: 10.1007/s13238-017-0414-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The finding that cellular microparticles (MPs) generated by injured cells profoundly impact on pathological courses of TBI has paved the way for new diagnostic and therapeutic strategies. MPs are subcellular fragments or organelles that serve as carriers of lipids, adhesive receptors, cytokines, nucleic acids, and tissue-degrading enzymes that are unique to the parental cells. Their sub-micron sizes allow MPs to travel to areas that parental cells are unable to reach to exercise diverse biological functions. In this review, we summarize recent developments in identifying a casual role of MPs in the pathologies of TBI and suggest that MPs serve as a new class of therapeutic targets for the prevention and treatment of TBI and associated systemic complications.
Collapse
Affiliation(s)
- Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,BloodWorks Northwest Research Institute, Seattle, WA, 98102, USA
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.,BloodWorks Northwest Research Institute, Seattle, WA, 98102, USA
| | - Ye Tian
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing-Fei Dong
- BloodWorks Northwest Research Institute, Seattle, WA, 98102, USA. .,Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
41
|
Fluid Biomarkers of Traumatic Brain Injury and Intended Context of Use. Diagnostics (Basel) 2016; 6:diagnostics6040037. [PMID: 27763536 PMCID: PMC5192512 DOI: 10.3390/diagnostics6040037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability around the world. The lack of validated biomarkers for TBI is a major impediment to developing effective therapies and improving clinical practice, as well as stimulating much work in this area. In this review, we focus on different settings of TBI management where blood or cerebrospinal fluid (CSF) biomarkers could be utilized for predicting clinically-relevant consequences and guiding management decisions. Requirements that the biomarker must fulfill differ based on the intended context of use (CoU). Specifically, we focus on fluid biomarkers in order to: (1) identify patients who may require acute neuroimaging (cranial computerized tomography (CT) or magnetic resonance imaging (MRI); (2) select patients at risk for secondary brain injury processes; (3) aid in counseling patients about their symptoms at discharge; (4) identify patients at risk for developing postconcussive syndrome (PCS), posttraumatic epilepsy (PTE) or chronic traumatic encephalopathy (CTE); (5) predict outcomes with respect to poor or good recovery; (6) inform counseling as to return to work (RTW) or to play. Despite significant advances already made from biomarker-based studies of TBI, there is an immediate need for further large-scale studies focused on identifying and innovating sensitive and reliable TBI biomarkers. These studies should be designed with the intended CoU in mind.
Collapse
|
42
|
Hopp S, Albert-Weissenberger C, Mencl S, Bieber M, Schuhmann MK, Stetter C, Nieswandt B, Schmidt PM, Monoranu CM, Alafuzoff I, Marklund N, Nolte MW, Sirén AL, Kleinschnitz C. Targeting coagulation factor XII as a novel therapeutic option in brain trauma. Ann Neurol 2016; 79:970-82. [PMID: 27043916 PMCID: PMC5074329 DOI: 10.1002/ana.24655] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. METHODS We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. RESULTS Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. INTERPRETATION The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. Ann Neurol 2016;79:970-982.
Collapse
Affiliation(s)
- Sarah Hopp
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christiane Albert-Weissenberger
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Stine Mencl
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Bieber
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (DZHI), University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center, German Research Society Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany
| | - Peter M Schmidt
- CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, Comprehensive Cancer Center Mainfranken, Julius Maximilian University, Würzburg, Germany
| | - Irina Alafuzoff
- Department of Immunology, Uppsala University, Uppsala, Sweden.,Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
43
|
Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, Plesnila N. The Formation of Microthrombi in Parenchymal Microvessels after Traumatic Brain Injury Is Independent of Coagulation Factor XI. J Neurotrauma 2016; 33:1634-44. [PMID: 26886854 DOI: 10.1089/neu.2015.4173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microthrombus formation and bleeding worsen the outcome after traumatic brain injury (TBI). The aim of the current study was to characterize these processes in the brain parenchyma after experimental TBI and to determine the involvement of coagulation factor XI (FXI). C57BL/6 mice (n = 101) and FXI-deficient mice (n = 15) were subjected to controlled cortical impact (CCI). Wild-type mice received an inhibitory antibody against FXI (14E11) or control immunoglobulin G 24 h before or 30 or 120 min after CCI. Cerebral microcirculation was visualized in vivo by 2-photon microscopy 2-3 h post-trauma and histopathological outcome was assessed after 24 h. TBI induced hemorrhage and microthrombus formation in the brain parenchyma (p < 0.001). Inhibition of FXI activation or FXI deficiency did not reduce cerebral thrombogenesis, lesion volume, or hemispheric swelling. However, it also did not increase intracranial hemorrhage. Formation of microthrombosis in the brain parenchyma after TBI is independent of the intrinsic coagulation cascade since it was not reduced by inhibition of FXI. However, since targeting FXI has well-established antithrombotic effects in humans and experimental animals, inhibition of FXI could represent a reasonable strategy for the prevention of deep venous thrombosis in immobilized patients with TBI.
Collapse
Affiliation(s)
- Susanne M Schwarzmaier
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany .,3 Department of Anesthesiology, University of Munich Medical Center , Munich, Germany
| | - Ciaran de Chaumont
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland
| | - Matilde Balbi
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany
| | - Nicole A Terpolilli
- 2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany
| | | | - Andras Gruber
- 5 Departments of Biomedical Engineering and Medicine, Knight Cardiovascular Institute, Oregon Health and Science University , School of Medicine, Portland, Oregon
| | - Nikolaus Plesnila
- 1 Department of Neurodegeneration, Royal College of Surgeons in Ireland (RCSI) , Dublin, Ireland .,2 Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center , Munich, Germany .,6 SyNergy, Munich Cluster for Systems Neurology , Munich, Germany
| |
Collapse
|
44
|
Abstract
BACKGROUND The presence of coagulopathy is common after severe trauma. The aim of this study was to identify whether isolated severe traumatic brain injury (TBI) is an independent risk factor for coagulopathy. METHODS Prospective observational cohort of adult patients admitted to a Level I Trauma Center within 6 h of injury. Patients were categorized according to the abbreviated injury scale (AIS): Group 1-isolated severe TBI (AIS head ≥ 3 + AIS non-head < 3); Group 2-severe multisystem trauma associated with severe TBI (AIS head ≥ 3 + AIS non-head ≥ 3); Group 3-severe multisystem trauma without TBI (AIS head < 3 + AIS non-head ≥ 3). Primary outcome was the development of coagulopathy. Secondary outcome was in-hospital mortality. RESULTS Three hundred and forty five patients were included (Group 1 = 48 patients, Group 2 = 137, and Group 3 = 160). Group 1 patients had the lowest incidence of coagulopathy and disseminated intravascular coagulopathy, and in general presented with better coagulation profile measured by either classic coagulation tests, thromboelastography or clotting factors. Isolated severe TBI was not an independent risk factor for the development of coagulopathy (OR 1.06; 0.35-3.22 CI, p = 0.92), however, isolated severe TBI patients who developed coagulopathy had higher mortality rates than isolated severe TBI patients without coagulopathy (66 vs. 16.6 %, p < 0.05). The presence of coagulopathy (OR 5.61; 2.65-11.86 CI, p < 0.0001) and isolated severe TBI (OR 11.51; 3.9-34.2 CI, p < 0.0001) were independent risk factors for in-hospital mortality. CONCLUSION Isolated severe TBI is not an independent risk factor for the development of coagulopathy. However, severe TBI patients who develop coagulopathy have extremely high mortality rates.
Collapse
|
45
|
Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods Mol Biol 2016; 1462:289-324. [PMID: 27604725 DOI: 10.1007/978-1-4939-3816-2_17] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA. .,Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - James P Harris
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Kevin D Browne
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - John A Wolf
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David F Meaney
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105C Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105D Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Kenney K, Amyot F, Haber M, Pronger A, Bogoslovsky T, Moore C, Diaz-Arrastia R. Cerebral Vascular Injury in Traumatic Brain Injury. Exp Neurol 2016; 275 Pt 3:353-366. [DOI: 10.1016/j.expneurol.2015.05.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
|
47
|
Liu S, Wan X, Wang S, Huang L, Zhu M, Zhang S, Liu X, Xiao Q, Gan C, Li C, Shu K, Lei T. Posttraumatic cerebral infarction in severe traumatic brain injury: characteristics, risk factors and potential mechanisms. Acta Neurochir (Wien) 2015; 157:1697-704. [PMID: 26306582 DOI: 10.1007/s00701-015-2559-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/14/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Posttraumatic cerebral infarction (PTCI) is a severe secondary insult of traumatic brain injury (TBI). This study aimed to evaluate the characteristics and risk factors of PTCI after severe TBI (sTBI) and explore possible mechanism. METHODS This retrospective study included a cohort of 339 patients with sTBI; they were divided into the PTCI and non-PTCI groups. Clinical data and follow-up charts were reviewed for comparison. The logistic regression model was used for multivariate analysis to detect the risk factors of PTCI. The Glasgow Outcome Scale (GOS) and Barthel index (BI) for activities of daily living (ADL) were applied to evaluate their outcome. RESULTS PTCI led to an increased mortality (43.5 % vs. 10.7 %, P < 0.001) and days of intensive care unit stay (14.3 days vs. 7.1 days, P < 0.001), decreased GOS (3.1 vs. 4.1, P < 0.001) and BI (25.0 vs. 77.9, P < 0.001). Increased infarction volume led to poor outcome assessed by GOS (r = -0.46, P < 0.0001) and BI for ADL (r = -0.36, P = 0.026) for surviving patients. Compared with non-PTCI patients, PTCI patients had a high incidence of midline shift (36.2 % vs. 20.7 %, P = 0.011) and posttraumatic vasospasm (PTV) (42.0 % vs. 27.4 %, P = 0.027). Daily prevalence of PTCI occurred in two peaks: one (73.9 %) was in the first 24 h after injury, while the other (18.8 %) was in the span of 43 to 60 h postinjury. In multivariate analysis, hyperthermia [adjusted odds ratio (OR), 3.11; P = 0.001] in the first 24 h, thrombocytopenia (OR, 27.08; P < 0.001), abnormal prothrombin time (OR, 7.66; P < 0.001) and traumatic subarachnoid hemorrhage (OR, 2.33; P = 0.022) were independent predictors for PTCI. CONCLUSIONS PTCI deteriorates the outcome of sTBI patients. Mechanical compression and hemocoagulative disturbance serve as potential mechanisms mediating this pathophysiological process. PTV may also contribute to PTCI, but its association with PTCI is weak and needs further exploration. Early recognition and intervention of these factors might be beneficial for preventing PTCI.
Collapse
Affiliation(s)
- Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China.
| | - Lulu Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Xing Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Qungen Xiao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Chaoxi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei Province, 430030, People's Republic of China
| |
Collapse
|
48
|
|
49
|
MAEGELE M, BRAUN M, WAFAISADE A, SCHÄFER N, LIPPERT-GRUENER M, KREIPKE C, RAFOLS J, SCHÄFER U, ANGELOV DN, STUERMER E. Long-Term Effects of Enriched Environment on Neurofunctional Outcome and CNS Lesion Volume After Traumatic Brain Injury in Rats. Physiol Res 2015; 64:129-45. [DOI: 10.33549/physiolres.932664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To determine whether the exposure to long term enriched environment (EE) would result in a continuous improvement of neurological recovery and ameliorate the loss of brain tissue after traumatic brain injury (TBI) vs. standard housing (SH). Male Sprague-Dawley rats (300-350 g, n=28) underwent lateral fluid percussion brain injury or SHAM operation. One TBI group was held under complex EE for 90 days, the other under SH. Neuromotor and sensorimotor dysfunction and recovery were assessed after injury and at days 7, 15, and 90 via Composite Neuroscore (NS), RotaRod test, and Barnes Circular Maze (BCM). Cortical tissue loss was assessed using serial brain sections. After day 7 EE animals showed similar latencies and errors as SHAM in the BCM. SH animals performed notably worse with differences still significant on day 90 (p<0.001). RotaRod test and NS revealed superior results for EE animals after day 7. The mean cortical volume was significantly higher in EE vs. SH animals (p=0.003). In summary, EE animals after lateral fluid percussion (LFP) brain injury performed significantly better than SH animals after 90 days of recovery. The window of opportunity may be wide and also lends further credibility to the importance of long term interventions in patients suffering from TBI.
Collapse
Affiliation(s)
- M. MAEGELE
- Department for Traumatology and Orthopedic Surgery, Cologne-Merheim Medical Center (CMMC), University Witten-Herdecke (Campus Cologne-Merheim), Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 2014; 28:1491-503. [PMID: 25111457 DOI: 10.3109/02699052.2014.943288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
ShanghaiPR China
| | - Bo-Ding Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| |
Collapse
|