1
|
Ruhl T, Christer T, Rhode SC, Beier JP. Time course of functional recovery after 1 cm sciatic nerve resection in rats with or without surgical intervention - measured by grip strength and locomotor activity. Neurosci Res 2023; 190:78-84. [PMID: 36470474 DOI: 10.1016/j.neures.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The rat sciatic nerve (SN) is the most frequently used model in experimental research on peripheral nerve injuries. Within the broad range of evaluation methods to determine the experimental outcome, recovery of behavior represents the major criterion to assess functional regeneration. The grasping test indicates when recovery begins and its improvement with time. However, lesions of the SN have yet remained unstudied with this method. Therefore, rats received a SN resection and were divided into experimental groups: 1) control with lesion only, 2) nerve bridge, and 3) autograft. During weekly sessions, the grasping test measured the grip strength, and the locomotor behavior was assessed in the open field. Finally, the nerves were prepared for electrophysiology and histomorphometry. Autograft recovered grasping after 7 weeks with the strongest improvement afterwards. Nerve tube allowed grasping by week 12. Control animals did not recover. In the open field, no differences were observed between the groups. Recordings were possible only in the autograft group, which could be explained by higher number of regenerated fibers. This study indicates that grasping data correspond with physiological and anatomical findings. We conclude that the grasping test is a valid method to evaluate functional recovery after SN resection in rats.
Collapse
Affiliation(s)
- Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | - Tim Christer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Current affiliation) Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - Sophie Ch Rhode
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany; (Current affiliation) Department of Plastic, Reconstructive and Aesthetic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Trigeminal Sensory Supply Is Essential for Motor Recovery after Facial Nerve Injury. Int J Mol Sci 2022; 23:ijms232315101. [PMID: 36499425 PMCID: PMC9740813 DOI: 10.3390/ijms232315101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.
Collapse
|
3
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
4
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
5
|
Merolli A, Li M, Voronin G, Bright L. A sciatic nerve gap-injury model in the rabbit. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:14. [PMID: 35061121 PMCID: PMC8782784 DOI: 10.1007/s10856-022-06642-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
There has been an increased number of studies of nerve transection injuries with the sciatic nerve gap-injury model in the rabbit in the past 2 years. We wanted to define in greater detail what is needed to test artificial nerve guides in a sciatic nerve gap-injury model in the rabbit. We hope that this will help investigators to fully exploit the robust translational potential of the rabbit sciatic nerve gap-injury model in its capacity to test devices whose diameter and length are in the range of those commonly applied in hand and wrist surgery (diameter ranging between 2 and 4 mm; length up to 30 mm). We suggest that the rabbit model should replace the less translational rat model in nerve regeneration research. The rabbit sciatic model, however, requires an effective strategy to prevent and control self-mutilation of the foot in the postoperative period, and to prevent pressure ulcers.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA.
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA.
| | - Michelle Li
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA
| | - Gregory Voronin
- In Vivo Research Services, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Bright
- Comparative Medicine Resources, Rutgers-The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Tamura R, Hashikawa K, Sakakibara S, Osaki T, Kitano D, Maruguchi H, Nomura T, Sugiyama D, Terashi H. Experimental study on the efficacy of a hybrid artificial nerve: The hot dog method. Int J Artif Organs 2021; 44:711-717. [PMID: 34144663 DOI: 10.1177/03913988211026000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION We hypothesized that hybrid artificial nerves might overcome the limitations of a nerve conduit by isolating nerve fascicles from autologous nerves. Nerve sacrifice during harvest, a drawback of conventional autologous nerve transplantation, may be reduced by the hot dog method. The hot dog method (based on the morphology of hybrid artificial nerves) adds nerve conduits to autologous nerve fascicles. METHODS Forty-eight rats with a 10-mm sciatic nerve defect were divided into six groups (n = 8 per group) according to the neural reconstruction method: autologous nerve transplantation, the hot dog method, nerve conduit, nerve fascicle transplantation, sham control, and nerve fascicle isolation were classified as Groups I, II, III, IV, V, and VI, respectively. The sciatic nerve function was assessed in these groups, a histological evaluation was performed, and statistical analyses were conducted based on these data. RESULTS Group III (nerve conduit) and Group IV (nerve fascicle transplantation) showed the lowest functional and axonal regenerative effects, followed by Group II (hot dog method) and Group I (autologous nerve transplantation). Group VI (nerve fascicle isolation) tended to achieve better recovery in motor function and axonal regeneration than Group I (autologous nerve transplantation). CONCLUSIONS The hot dog method is simple, safe, and easy to execute. This method can serve as a new neural reconstruction method that uses artificial nerves.
Collapse
Affiliation(s)
- Ryosuke Tamura
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazunobu Hashikawa
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shunsuke Sakakibara
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeo Osaki
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daiki Kitano
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hayato Maruguchi
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tadashi Nomura
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Daisuke Sugiyama
- Faculty of Nursing and Medical Care, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroto Terashi
- Department of Plastic and Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
7
|
Millesi F, Weiss T, Mann A, Haertinger M, Semmler L, Supper P, Pils D, Naghilou A, Radtke C. Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve-associated fibroblasts. FASEB J 2021; 35:e21196. [PMID: 33210360 PMCID: PMC7894153 DOI: 10.1096/fj.202001447r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023]
Abstract
The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
Collapse
Affiliation(s)
- Flavia Millesi
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Tamara Weiss
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Mann
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Maximilian Haertinger
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Lorenz Semmler
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Paul Supper
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Dietmar Pils
- Division of General SurgeryDepartment of SurgeryComprehensive Cancer Center ViennaMedical University of ViennaViennaAustria
| | - Aida Naghilou
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Christine Radtke
- Research Laboratory of the Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Division of Plastic and Reconstructive SurgeryDepartment of SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
8
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
9
|
A Systematic Review of the Effectiveness of Cell-Based Therapy in Repairing Peripheral Nerve Gap Defects. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2030014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nerve prostheses are widely utilized to reconstruct segmental (gap) defects in peripheral nerves as an alternative to nerve grafting. However, with increasing gap length, the effectiveness of a nerve prosthesis becomes sub-optimal, which subsequently has made repairing larger gaps in peripheral nerves a significant challenge in the field of regenerative medicine. Recently, the structure of nerve prostheses has been significantly revised, which interestingly, has provided a promising avenue for the housing and proliferation of supportive cells. In this systematic review, cell implantation in synthetic nerve prostheses to enhance the regenerative capability of an injured nerve with a focus on identifying the cell type and mode of cell delivery is discussed. Of interest are the studies employing supportive cells to bridge gaps greater than 10 mm without the aid of nerve growth factors. The results have shown that cell therapy in conjunction with nerve prostheses becomes inevitable and has dramatically boosted the ability of these prostheses to maintain sustainable nerve regeneration across larger gaps and helped to attain functional recovery, which is the ultimate goal. The statistical analysis supports the use of differentiated bone-marrow-derived mesenchymal stem cells suspended in oxygen-carrying hydrogels in chitosan prostheses for bridging gaps of up to 40 mm; however, based on the imperfect repair outcomes, nerve grafting should not yet be replaced altogether.
Collapse
|
10
|
Functionalized nerve conduits for peripheral nerve regeneration: A literature review. HAND SURGERY & REHABILITATION 2020; 39:343-351. [PMID: 32485240 DOI: 10.1016/j.hansur.2020.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Functionalized neurotube are a third-generation of conduits with chemical or architectural bioactivity developed for axonal proliferation. The goal of this review is to provide a synopsis of the functionalized nerve conduits described in the literature according to their chemical and architectural properties and answer two questions: what are their mechanisms of action? Has their efficacy been proven compared to the autologous nerve graft? Our literature review relates all kind of conduits corresponding to functionalized neurotubes in peripheral nerve regeneration found in Medline and PubMed Central. Studies developing nerve gaps, chemotactic or structural features promoting each conduit, results, efficiency were selected. Fifty-five studies were selected and classified in: (a) intraluminal neurotrophic factors; (b) cell-based therapy (combined-in-vein muscles, amniotic membrane, Schwann cells, stem cells); (c) extracellular matrix proteins; (d) tissue engineering; (e) bioimplants. Functionalized neurotubes showed significantly better functional results than after end-to-end nerve suture. No studies can be able to show that neurotube results were better than autologous nerve graft results. We included all studies regardless of effectives to evaluate quality of reinnervation with modern tubulization. Functionalized neurotubes promote basic conduits for peripheral nerve regeneration. Thanks to bioengineering and microsurgery improvement, further neurotubes could promote best level of regeneration and functional recovery to successfully bridge a critical nerve gap.
Collapse
|
11
|
Muratori L, Fregnan F, Ronchi G, Haastert-Talini K, Metzen J, Bertolo R, Porpiglia F, Geuna S. New basic insights on the potential of a chitosan-based medical device for improving functional recovery after radical prostatectomy. BJU Int 2019; 124:1063-1076. [PMID: 31134718 DOI: 10.1111/bju.14834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate: (i) the neuro-regenerative potential of chitosan membrane (CS-Me) on acutely axotomised autonomic neurones in vitro; (ii) to exclude the possibility that a pro-regenerative biomaterial could interfere with the proliferation activity of prostate cancer cell lines; (iii) to provide an in vivo proof of the biocompatibility and regeneration promoting effect of CS-Me in a standardised rat model of peripheral nerve injury and repair; (iv) finally, to evaluate the tissue reaction induced by the degrading material; as previous studies have shown promising effects of CS-Me for protection of the neurovascular bundles for potency recovery in patients that undergo nerve-sparing radical prostatectomy (RP). MATERIALS AND METHODS Addressing aim (i), the neuro-regenerative potential, organotypic cultures derived from primary sympathetic ganglia were cultured on CS-Me over 3 days and neurite extension and axonal sprouting were evaluated. Addressing aim (ii), effects of CS on cancer cells, different human prostate cancer cell lines (PC3, DU-145, LN-Cap) were seeded on CS-coated plates or cultured in the presence of CS-Me dissolution products. Addressing aims (iii) and (iv), functional recovery of peripheral nerve fibres and tissue reaction with the biomaterial, CS-Me and CS nerve guides were used to repair a median nerve injury in the rat. Functional recovery was evaluated during the post-recovery time by the behavioural grasping test. RESULTS CS-Me significantly stimulated axon elongation from autonomic ganglia in comparison to control conditions in organotypic three-dimensional cultures. CS coating, as well as the dissolution products of CS-Me, led to a significantly lower proliferation rate of prostate cancer cell lines in vitro. Tissue reaction towards CS-Me and standard CS nerve guides was similar in the rat median nerve model, as was the outcome of nerve fibre regeneration and functional recovery. CONCLUSION The results of this study provide the first experimental evidence in support of the clinical safety of CS-Me and of their postulated effectiveness for improving functional recovery after RP. The presented results are coherent in demonstrating that acutely axotomised autonomic neurones show increased neurite outgrowth on CS-Me substrate, whilst the same substrate reduces prostate cancer cell line proliferation in vitro. Furthermore, CS-Me do not demonstrate any disadvantage for peripheral nerve repair in a standard animal model.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Orbassano, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Orbassano, Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Orbassano, Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Jennifer Metzen
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Riccardo Bertolo
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Francesco Porpiglia
- Division of Urology, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
- Department of Clinical and Biological Sciences, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Orbassano, Italy
| |
Collapse
|
12
|
Dong R, Liu Y, Yang Y, Wang H, Xu Y, Zhang Z. MSC-Derived Exosomes-Based Therapy for Peripheral Nerve Injury: A Novel Therapeutic Strategy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6458237. [PMID: 31531362 PMCID: PMC6719277 DOI: 10.1155/2019/6458237] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Although significant advances have been made in synthetic nerve conduits and surgical techniques, complete regeneration following peripheral nerve injury (PNI) remains far from optimized. The repair of PNI is a highly heterogeneous process involving changes in Schwann cell phenotypes, the activation of macrophages, and the reconstruction of the vascular network. At present, the efficacy of MSC-based therapeutic strategies for PNI can be attributed to paracrine secretion. Exosomes, as a product of paracrine secretion, are considered to be an important regulatory mediator. Furthermore, accumulating evidence has demonstrated that exosomes from mesenchymal stem cells (MSCs) can shuttle bioactive components (proteins, lipids, mRNA, miRNA, lncRNA, circRNA, and DNA) that participate in almost all of the abovementioned processes. Thus, MSC exosomes may represent a novel therapeutic tool for PNI. In this review, we discuss the current understanding of MSC exosomes related to peripheral nerve repair and provide insights for developing a cell-free MSC therapeutic strategy for PNI.
Collapse
Affiliation(s)
- Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
13
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Dietzmeyer N, Förthmann M, Leonhard J, Helmecke O, Brandenberger C, Freier T, Haastert-Talini K. Two-Chambered Chitosan Nerve Guides With Increased Bendability Support Recovery of Skilled Forelimb Reaching Similar to Autologous Nerve Grafts in the Rat 10 mm Median Nerve Injury and Repair Model. Front Cell Neurosci 2019; 13:149. [PMID: 31133803 PMCID: PMC6523043 DOI: 10.3389/fncel.2019.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Tension-free surgical reconstruction of transected digital nerves in humans is regularly performed using autologous nerve grafts (ANGs) or bioartificial nerve grafts. Nerve grafts with increased bendability are needed to protect regenerating nerves in highly mobile extremity parts. We have recently demonstrated increased bendability and regeneration supporting properties of chitosan nerve guides with a corrugated outer wall (corrCNGs) in the common rat sciatic nerve model (model of low mobility). Here, we further modified the hollow corrCNGs into two-chambered nerve guides by inserting a perforated longitudinal chitosan-film (corrCNG[F]s) and comprehensively monitored functional recovery in the advanced rat median nerve model. In 16 adult female Lewis rats, we bilaterally reconstructed 10 mm median nerve gaps with either ANGs, standard chitosan nerve guides (CNGs), CNGs (CNG[F]s), or corrCNG[F]s (n = 8, per group). Over 16 weeks, functional recovery of each forelimb was separately surveyed using the grasping test (reflex-based motor task), the staircase test (skilled forelimb reaching task), and non-invasive electrophysiological recordings from the thenar muscles. Finally, regenerated tissue harvested from the distal part of the nerve grafts was paraffin-embedded and cross-sections were analyzed regarding the number of Neurofilament 200-immunopositive axons and the area of newly formed blood vessels. Nerve tissue harvested distal to the grafts was epon-embedded and semi-thin cross-sections underwent morphometrical analyses (e.g., number of myelinated axons, axon and fiber diameters, and myelin thicknesses). Functional recovery was fastest and most complete in the ANG group (100% recovery rate regarding all parameters), but corrCNG[F]s accelerated the recovery of all functions evaluated in comparison to the other nerve guides investigated. Furthermore, corrCNG[F]s supported recovery of reflex-based grasping (87.5%) and skilled forelimb reaching (100%) to eventually significantly higher rates than the other nerve guides (grasping test: CNGs: 75%, CNG[F]s: 62.5%; staircase test: CNGs: 66.7%, CNG[F]s: 83.3%). Histological and nerve morphometrical evaluations, in accordance to the functional results, demonstrated best outcome in the ANG group and highest myelin thicknesses in the corrCNG[F] group compared to the CNG and CNG[F] groups. We thus clearly demonstrate that corrCNG[F]s represent promising innovative nerve grafts for nerve repair in mobile body parts such as digits.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Julia Leonhard
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | | | | | | | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| |
Collapse
|
15
|
Tao J, Zhang J, Du T, Xu X, Deng X, Chen S, Liu J, Chen Y, Liu X, Xiong M, Luo Y, Cheng H, Mao J, Cardon L, Gou M, Wei Y. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater 2019; 90:49-59. [PMID: 30930306 DOI: 10.1016/j.actbio.2019.03.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Nerve conduits provide an advanced tool for repairing the injured peripheral nerve that often causes disability and mortality. Currently, the efficiency of conduits in repairing peripheral nerve is unsatisfying. Here, we show a functional nanoparticle-enhanced nerve conduit for promoting the regeneration of peripheral nerves. This conduit, which consists of gelatin-methacryloyl (GelMA) hydrogels with drug loaded poly(ethylene glycol)- poly(3-caprolactone) (MPEG-PCL) nanoparticles dispersed in the hydrogel matrix, is rapidly fabricated by a continuous three-dimensional (3D) printing process. While the 3D-printed hydrogel conduit with customized size, shape and structure provides a physical microenvironment for axonal elongation, the nanoparticles sustained release the drug to facilitate the nerve regeneration. The drug, 4-((5,10-dimethyl-6-oxo-6,10-dihydro-5H-pyrimido[5,4-b]thieno[3,2-e][1,4]diazepin-2-yl)amino) benzenesulfonamide, is a Hippo pathway inhibitor with multiple functions including improving the proliferation and migration of Schwann cells and up-regulating neurotrophic factors genes. The descried functional nerve conduit efficiently induced the recovery of sciatic injuries in morphology, histopathology and functions in vivo, showing the potential clinical application in peripheral nerve repair. STATEMENTS OF SIGNIFICANCE: Functional nerve conduit provides a promising strategy alternative to autografts. In this work, we rapidly customized a nanoparticle-enhanced conduit by the continuous bioprinting process. This nanoparticle in the conduit can release a Hippo pathway inhibitor to facilitate the nerve regeneration and function restoration. The efficacy of the conduits is comparable to that of autograft, suggesting the potential clinical applications.
Collapse
Affiliation(s)
- Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China; School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Ting Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaochen Chen
- NanoEngineering Department, University of California, San Diego, USA
| | - Jinlu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Yi Luo
- Department of Orthopedics, West China Hospital of Sichuan University, Wai Nan Guo Xue Xiang 37#, 610041 Chengdu, Sichuan, China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| | - Jian Mao
- School of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ludwig Cardon
- Center for Polymer and Material Technologies, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 915, Zwijnaarde, Ghent, Belgium
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
Rink S, Bendella H, Akkin SM, Manthou M, Grosheva M, Angelov DN. Experimental Studies on Facial Nerve Regeneration. Anat Rec (Hoboken) 2019; 302:1287-1303. [DOI: 10.1002/ar.24123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/09/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral MedicineUniversity of Cologne Cologne Germany
| | - Habib Bendella
- Department of NeurosurgeryUniversity of Witten/Herdecke, Cologne Merheim Medical Center (CMMC) Cologne Germany
| | - Salih Murat Akkin
- Department of Anatomy, School of MedicineSANKO University Gaziantep Turkey
| | - Marilena Manthou
- Department of Histology and EmbryologyAristotle University Thessaloniki Thessaloniki Greece
| | - Maria Grosheva
- Department of Oto‐Rhino‐LaryngologyUniversity of Cologne Cologne Germany
| | | |
Collapse
|
17
|
Wong YM. Letter to the Editor: Acupuncture is not a unique explanation for reflex excitatory cardiovascular responses. Am J Physiol Regul Integr Comp Physiol 2018; 315:R983. [PMID: 30362828 DOI: 10.1152/ajpregu.00218.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yiu Ming Wong
- Hong Kong Physically Handicapped and Able-Bodied (PHAB) Association, Shamshuipo, Kowl, Hong Kong
| |
Collapse
|
18
|
Riccio M, Marchesini A, Pugliese P, Francesco F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol 2018; 234:3362-3375. [DOI: 10.1002/jcp.27299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Pierfrancesco Pugliese
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Francesco Francesco
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| |
Collapse
|
19
|
Jones I, Novikova LN, Novikov LN, Renardy M, Ullrich A, Wiberg M, Carlsson L, Kingham PJ. Regenerative effects of human embryonic stem cell-derived neural crest cells for treatment of peripheral nerve injury. J Tissue Eng Regen Med 2018; 12:e2099-e2109. [PMID: 29327452 PMCID: PMC5947619 DOI: 10.1002/term.2642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Laboratory of Neural Repair and Cellular Therapy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Liudmila N Novikova
- Laboratory of Neural Repair and Cellular Therapy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Laboratory of Neural Repair and Cellular Therapy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Monika Renardy
- ITV Denkendorf Product Service GmbH, Denkendorf, Germany
| | | | - Mikael Wiberg
- Laboratory of Neural Repair and Cellular Therapy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Hand and Plastic Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Paul J Kingham
- Laboratory of Neural Repair and Cellular Therapy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Novikova LN, Kolar MK, Kingham PJ, Ullrich A, Oberhoffner S, Renardy M, Doser M, Müller E, Wiberg M, Novikov LN. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury. Acta Biomater 2018; 66:177-191. [PMID: 29174588 DOI: 10.1016/j.actbio.2017.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is often associated with scarring and cavity formation and therefore bridging strategies are essential to provide a physical substrate for axonal regeneration. In this study we investigated the effects of a biodegradable conduit made from trimethylene carbonate and ε-caprolactone (TC) containing poly-p-dioxanone microfilaments (PDO) with longitudinal grooves on regeneration after SCI in adult rats. In vitro studies demonstrated that different cell types including astrocytes, meningeal fibroblasts, Schwann cells and adult sensory dorsal root ganglia neurons can grow on the TC and PDO material. For in vivo experiments, the TC/PDO conduit was implanted into a small 2-3 mm long cavity in the C3-C4 cervical segments immediately after injury (acute SCI) or at 2-5 months after initial surgery (chronic SCI). At 8 weeks after implantation into acute SCI, numerous 5HT-positive descending raphaespinal axons and sensory CGRP-positive axons regenerated across the conduit and were often associated with PDO microfilaments and migrated host cells. Implantation into chronically injured SCI induced regeneration mainly of the sensory CGRP-positive axons. Although the conduit had no effect on the density of OX42-positive microglial cells when compared with SCI control, the activity of GFAP-positive astrocytes was reduced. The results suggest that a TC/PDO conduit can support axonal regeneration after acute and chronic SCI even without addition of exogenous glial or stem cells. STATEMENT OF SIGNIFICANCE Biosynthetic conduits can support regeneration after spinal cord injury but often require addition of cell therapy and neurotrophic factors. This study demonstrates that biodegradable conduits made from trimethylene carbonate and ε-caprolactone with poly-p-dioxanone microfilaments alone can promote migration of different host cells and stimulate axonal regeneration after implantation into acute and chronic spinal cord injury. These results can be used to develop biosynthetic conduits for future clinical applications.
Collapse
|
21
|
Stößel M, Rehra L, Haastert-Talini K. Reflex-based grasping, skilled forelimb reaching, and electrodiagnostic evaluation for comprehensive analysis of functional recovery-The 7-mm rat median nerve gap repair model revisited. Brain Behav 2017; 7:e00813. [PMID: 29075572 PMCID: PMC5651396 DOI: 10.1002/brb3.813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION The rat median nerve injury and repair model gets increasingly important for research on novel bioartificial nerve grafts. It allows follow-up evaluation of the recovery of the forepaw functional ability with several sensitive techniques. The reflex-based grasping test, the skilled forelimb reaching staircase test, as well as electrodiagnostic recordings have been described useful in this context. Currently, no standard values exist, however, for comparison or comprehensive correlation of results obtained in each of the three methods after nerve gap repair in adult rats. METHODS Here, we bilaterally reconstructed 7-mm median nerve gaps with autologous nerve grafts (ANG) or autologous muscle-in-vein grafts (MVG), respectively. During 8 and 12 weeks of observation, functional recovery of each paw was separately monitored using the grasping test (weekly), the staircase test, and noninvasive electrophysiological recordings from the thenar muscles (both every 4 weeks). Evaluation was completed by histomorphometrical analyses at 8 and 12 weeks postsurgery. RESULTS The comprehensive evaluation detected a significant difference in the recovery of forepaw functional motor ability between the ANG and MVG groups. The correlation between the different functional tests evaluated precisely displayed the recovery of distinct levels of forepaw functional ability over time. CONCLUSION Thus, this multimodal evaluation model represents a valuable preclinical model for peripheral nerve reconstruction approaches.
Collapse
Affiliation(s)
- Maria Stößel
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Hannover Germany.,Center for Systems Neuroscience (ZSN) Hannover Hannover Germany
| | - Lena Rehra
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Hannover Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology Hannover Medical School Hannover Germany.,Center for Systems Neuroscience (ZSN) Hannover Hannover Germany
| |
Collapse
|
22
|
Efficacy and Safety of the Babysitter Procedure With Different Percentages of Partial Neurectomy. Ann Plast Surg 2017; 79:286-292. [PMID: 28570458 DOI: 10.1097/sap.0000000000001103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND After 2 months of denervation, the number of motor units in the muscle decreases; after 6 months of denervation, muscle atrophy and weakness are irreversible and successful nerve reconstruction does not generally restore function. The babysitter procedure was reported to successfully avoid muscle atrophy. One study found that the babysitter procedure with a 40% neurectomy was most suitable; however, the amount of donor nerve that can be borrowed for the babysitter procedure in peripheral nerve injury is unknown. METHOD One hundred adult female Sprague-Dawley rats were used in this study. The rats were randomly allocated to 5 groups (groups A-E; n = 20 each). The rats underwent different surgeries based on their grouping. At 6, 12, 18, and 24 weeks after surgery, 5 rats in each group were selected for electrophysiology and muscle force tests. These rats were then killed, and the gastrocnemius and tibialis anterior muscles were harvested for weight measurement and cross-sectional muscle measurement. RESULT The results of the effects on the peroneal nerves and tibialis anterior muscles after the babysitter procedure with 40% and 80% neurectomies showed that the functional ability of the recipient nerves was maintained and the muscle was effectively prevented from atrophy, whereas the 20% neurectomy and end-to-side procedures showed relatively poor performance. The results of the effects on the tibial nerve and gastrocnemius muscles after the babysitter procedure with 20% and 40% neurectomies showed that there was little effect on the donor nerve. By contrast, 80% neurectomy strongly and negatively affected the donor nerve. CONCLUSIONS Our results indicate that the babysitter procedure using a donor nerve with a partial neurectomy of 40% was the best choice for effectively treating peripheral (peroneal) nerve injury in rats.
Collapse
|
23
|
Ortuño-Lizarán I, Vilariño-Feltrer G, Martínez-Ramos C, Pradas MM, Vallés-Lluch A. Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication 2016; 8:045011. [DOI: 10.1088/1758-5090/8/4/045011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
25
|
Effect of Artificial Nerve Conduit Vascularization on Peripheral Nerve in a Necrotic Bed. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e665. [PMID: 27257595 PMCID: PMC4874309 DOI: 10.1097/gox.0000000000000652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Several types of artificial nerve conduit have been used for bridging peripheral nerve gaps as an alternative to autologous nerves. However, their efficacy in repairing nerve injuries accompanied by surrounding tissue damage remains unclear. We fabricated a novel nerve conduit vascularized by superficial inferior epigastric (SIE) vessels and evaluated whether it could promote axonal regeneration in a necrotic bed. METHODS A 15-mm nerve conduit was implanted beneath the SIE vessels in the groin of a rat to supply it with blood vessels 2 weeks before nerve reconstruction. We removed a 13-mm segment of the sciatic nerve and then pressed a heated iron against the dorsal thigh muscle to produce a burn. The defects were immediately repaired with an autograft (n = 10), nerve conduit graft (n = 8), or vascularized nerve conduit graft (n = 8). Recovery of motor function was examined for 18 weeks after surgery. The regenerated nerves were electrophysiologically and histologically evaluated. RESULTS The vascularity of the nerve conduit implanted beneath the SIE vessels was confirmed histologically 2 weeks after implantation. Between 14 and 18 weeks after surgery, motor function of the vascularized conduit group was significantly better than that of the nonvascularized conduit group. Electrophysiological and histological evaluations revealed that although the improvement did not reach the level of reinnervation achieved by an autograft, the vascularized nerve conduit improved axonal regeneration more than did the conduit alone. CONCLUSION Vascularization of artificial nerve conduits accelerated peripheral nerve regeneration, but further research is required to improve the quality of nerve regeneration.
Collapse
|
26
|
Zhou W, Stukel JM, Cebull HL, Willits RK. Tuning the Mechanical Properties of Poly(Ethylene Glycol) Microgel-Based Scaffolds to Increase 3D Schwann Cell Proliferation. Macromol Biosci 2016; 16:535-44. [PMID: 26726886 DOI: 10.1002/mabi.201500336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/30/2015] [Indexed: 12/14/2022]
Abstract
2D in vitro studies have demonstrated that Schwann cells prefer scaffolds with mechanical modulus approximately 10× higher than the modulus preferred by nerves, limiting the ability of many scaffolds to promote both neuron extension and Schwann cell proliferation. Therefore, the goals of this work are to develop and characterize microgel-based scaffolds that are tuned over the stiffness range relevant to neural tissue engineering and investigate Schwann cell morphology, viability, and proliferation within 3D scaffolds. Using thiol-ene reaction, microgels with surface thiols are produced and crosslinked into hydrogels using a multiarm vinylsulfone (VS). By varying the concentration of VS, scaffold stiffness ranges from 0.13 to 0.76 kPa. Cell morphology in all groups demonstrates that cells are able to spread and interact with the scaffold through day 5. Although the viability in all groups is high, proliferation of Schwann cells within the scaffold of G* = 0.53 kPa is significantly higher than other groups. This result is ≈ 5× lower than previously reported optimal stiffnesses on 2D surfaces, demonstrating the need for correlation of 3D cell response to mechanical modulus. As proliferation is the first step in Schwann cell integration into peripheral nerve conduits, these scaffolds demonstrate that the stiffness is a critical parameter to optimizing the regenerative process.
Collapse
Affiliation(s)
- Wenda Zhou
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | - Jessica M Stukel
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | - Hannah L Cebull
- Biomedical Engineering, The University of Akron, Akron, OH, 44325-0302, USA
| | | |
Collapse
|
27
|
PERIPHERAL NERVE REGENERATION: CELL THERAPY AND NEUROTROPHIC FACTORS. Rev Bras Ortop 2015; 46:643-9. [PMID: 27027067 PMCID: PMC4799329 DOI: 10.1016/s2255-4971(15)30319-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/16/2011] [Indexed: 12/25/2022] Open
Abstract
Peripheral nerve trauma results in functional loss in the innervated organ, and recovery without surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair.
Collapse
|
28
|
|
29
|
Peripheral nerve regeneration inside collagen-based artificial nerve guides in humans. J Appl Biomater Funct Mater 2015; 13:61-5. [PMID: 24744230 DOI: 10.5301/jabfm.5000188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2013] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Nerve gap injuries may be associated with lesions in other structures, like tendons or bones; in these cases, it is common to plan a second surgery to improve functional recovery. Since macroscopic observations of nerve regeneration in humans are rare, we exploited these second surgeries for the purpose of studying nerve regeneration in humans. METHODS We assessed the clinical outcomes of 50 implants of collagen-based nerve guides in the upper limb. We performed a second look at 20, assessing macroscopically both nerve regeneration and collagen degradation. RESULTS AND CONCLUSIONS Pain was never recorded in these patients. An adequate sensory recovery took place whenever nerve regeneration was found inside the guide. Motor recovery seemed to occur only when the gap lesion was shorter than 10 mm. The degree of degradation appeared to be variable and was not directly correlated with time; we hypothesize that it could be associated with the site of implantation. Such a large number of second looks in humans has never been previously reported in the literature.
Collapse
|
30
|
Liang X, Cai H, Hao Y, Sun G, Song Y, Chen W. Sciatic nerve repair using adhesive bonding and a modified conduit. Neural Regen Res 2014; 9:594-601. [PMID: 25206861 PMCID: PMC4146232 DOI: 10.4103/1673-5374.130099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 11/05/2022] Open
Abstract
When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and repaired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well. Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the average operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect.
Collapse
Affiliation(s)
- Xiangdang Liang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China
| | - Hongfei Cai
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China
| | - Yongyu Hao
- Wei Zikeng Clinic of General Armament Department of Chinese PLA, Beijing, China
| | - Geng Sun
- Department of Orthopedics, 252 Hospital of Chinese PLA, Hebei Province, China
| | - Yaoyao Song
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China
| | - Wen Chen
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
31
|
Does pulsed magnetic field therapy influence nerve regeneration in the median nerve model of the rat? BIOMED RESEARCH INTERNATIONAL 2014; 2014:401760. [PMID: 25143937 PMCID: PMC4131097 DOI: 10.1155/2014/401760] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the impact of pulsed magnetic field therapy on peripheral nerve regeneration after median nerve injury and primary coaptation in the rat. Both median nerves were surgically exposed and denervated in 24 female Wistar rats. A microsurgical coaptation was performed on the right side, whereas on the left side a spontaneous healing was prevented. The study group underwent a daily pulsed magnetic field therapy; the other group served as a control group. The grasping force was recorded 2 weeks after the surgical intervention for a period of 12 weeks. The right median nerve was excised and histologically examined. The histomorphometric data and the functional assessments were analyzed by t-test statistics and one-way ANOVA. One-way ANOVA indicated a statistically significant influence of group affiliation and grasping force (P = 0.0078). Grasping strength was higher on a significant level in the experimental group compared to the control group permanently from the 9th week to the end of the study. T-test statistics revealed a significantly higher weight of the flexor digitorum sublimis muscle (P = 0.0385) in the experimental group. The histological evaluation did not reveal any statistically significant differences concerning the histomorphometric parameters. Our results suggest that the pulsed magnetic field therapy has a positive influence on the functional aspects of neural regeneration. More studies are needed to precisely evaluate and optimize the intensity and duration of the application.
Collapse
|
32
|
Sensoric protection after median nerve injury: babysitter-procedure prevents muscular atrophy and improves neuronal recovery. BIOMED RESEARCH INTERNATIONAL 2014; 2014:724197. [PMID: 25133176 PMCID: PMC4123520 DOI: 10.1155/2014/724197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous nerve grafting from the contralateral median nerve in the babysitter and the control groups. Grasping tests measured functional recovery over 15 weeks. At the end of the observation period the weight of the flexor digitorum sublimis muscle was determined. The median nerve was excised for histological examinations. Muscle weight (P < 0.0001) was significantly superior in the babysitter group compared to the control group at the end of the study. The histological evaluation revealed a significantly higher diameter of axons (P = 0.0194), nerve fiber (P = 0.0409), and nerve surface (P = 0.0184) in the babysitter group. We conclude that sensory protection of a motor nerve is capable of preserving muscule weight and we may presume that metabolism of the sensory nerve was sufficient to keep the target muscle's weight and vitality.
Collapse
|
33
|
Abstract
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
Collapse
|
34
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Koudehi MF, Fooladi AAI, Mansoori K, Jamalpoor Z, Amiri A, Nourani MR. Preparation and evaluation of novel nano-bioglass/gelatin conduit for peripheral nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:363-373. [PMID: 24186149 DOI: 10.1007/s10856-013-5076-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
Peripheral nerves are exposed to physical injuries usually caused by trauma that may lead to a significant loss of sensory or motor functions and is considered as a serious health problem for societies today. This study was designed to develop a novel nano bioglass/gelatin conduit (BGGC) for the peripheral nerve regeneration. The bioglass nanoparticles were prepared by sol-gel technique and characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis. The interfacial bonding interaction between the nano-bioglass and gelatin in the developed conduits was assessed by FTIR. The surface morphology and pore size of the nanocomposite were investigated through scanning electron microscopy with the pore size of the conduits being 10-40 μm. Biocompatibility was assessed by MTT assay which indicated the BGGC to have good cytocompatibility. The guidance channel was examined and used to regenerate a 10 mm gap in the right sciatic nerve of a male Wistar rat. Twenty rats were randomly divided into two experimental groups, one with the BGGC and the other being normal rats. The gastrocnemius muscle contractility was also examined at one, two and three months post-surgery in all groups using electromyography (EMAP). Histological and functional evaluation and the results obtained from electromyography indicated that at three months, nerve regeneration of the BGGC group was statistically equivalent to the normal group (p > 0.05). Our result suggests that the BGGC can be a suitable candidate for peripheral nerve repair.
Collapse
Affiliation(s)
- Masoumeh Foroutan Koudehi
- Tissue Engineering Division, Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
36
|
Tran RT, Choy WM, Cao H, Qattan I, Chiao JC, Ip WY, Yeung KWK, Yang J. Fabrication and characterization of biomimetic multichanneled crosslinked-urethane-doped polyester tissue engineered nerve guides. J Biomed Mater Res A 2013; 102:2793-804. [PMID: 24115502 DOI: 10.1002/jbm.a.34952] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/06/2023]
Abstract
Biomimetic scaffolds that replicate the native architecture and mechanical properties of target tissues have been recently shown to be a very promising strategy to guide cellular growth and facilitate tissue regeneration. In this study, porous, soft, and elastic crosslinked urethane-doped polyester (CUPE) tissue engineered nerve guides were fabricated with multiple longitudinally oriented channels and an external non-porous sheath to mimic the native endoneurial microtubular and epineurium structure, respectively. The fabrication technique described herein is highly adaptable and allows for fine control over the resulting nerve guide architecture in terms of channel number, channel diameter, porosity, and mechanical properties. Biomimetic multichanneled CUPE guides were fabricated with various channel numbers and displayed an ultimate peak stress of 1.38 ± 0.22 MPa with a corresponding elongation at break of 122.76 ± 42.17%, which were comparable to that of native nerve tissue. The CUPE nerve guides were also evaluated in vivo for the repair of a 1 cm rat sciatic nerve defect. Although histological evaluations revealed collapse of the inner structure from CUPE TENGs, the CUPE nerve guides displayed fiber populations and densities comparable with nerve autograft controls after 8 weeks of implantation. These studies are the first report of a CUPE-based biomimetic multichanneled nerve guide and warrant future studies towards optimization of the channel geometry for use in neural tissue engineering.
Collapse
Affiliation(s)
- Richard T Tran
- Department of Bioengineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Félix SP, Pereira Lopes FR, Marques SA, Martinez AM. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 2013; 33:468-77. [DOI: 10.1002/micr.22109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Severina P. Félix
- Laboratório de Neurodegeneração e Reparo; Programa de Pesquisa em Neurociência Básica e Clínica; Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
- Departamento de Patologia; Faculdade de Medicina; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Fátima R. Pereira Lopes
- Laboratório de Neurodegeneração e Reparo; Programa de Pesquisa em Neurociência Básica e Clínica; Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Suelen A. Marques
- Laboratórios de Regeneração Neural e Função; Departamento de Neurobiologia; Universidade Federal Fluminense; Niterói RJ Brazil
| | - Ana M.B. Martinez
- Laboratório de Neurodegeneração e Reparo; Programa de Pesquisa em Neurociência Básica e Clínica; Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
- Departamento de Patologia; Faculdade de Medicina; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| |
Collapse
|
38
|
Dienstknecht T, Klein S, Vykoukal J, Gehmert S, Koller M, Gosau M, Prantl L. Type I collagen nerve conduits for median nerve repairs in the forearm. J Hand Surg Am 2013; 38:1119-24. [PMID: 23707012 DOI: 10.1016/j.jhsa.2013.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate patients with median nerve damage in the distal forearm treated with type 1 collagen nerve conduits. METHODS Nine patients with damage to the median nerve in the distal forearm underwent treatment with a type 1 collagen nerve conduit. The nerve gaps ranged between 1 and 2 cm. An independent observer reexamined patients after treatment at a minimal follow-up of 14 months and a mean follow-up of 21 months. Residual pain was evaluated using a visual analog scale. Functional outcome was quantified by assessing static 2-point discrimination, nerve conduction velocity relative to the uninjured limb, and Disabilities of the Arm, Shoulder, and Hand outcome measure scoring. We also recorded quality of life measures including patients' perceived satisfaction with the results and return to work latency. RESULTS We observed no implant-related complications. Of 9 patients, 7 were free of pain, and the mean visual analog scale was 0.6. The mean Disabilities of the Arm, Shoulder, and Hand score was 6. The static 2-point discrimination was less than 6 mm in 3 patients, between 6 and 10 mm in 4 patients, and over 10 mm in 2 patients. Six patients reached a status of M4 or higher. Eight patients were satisfied with the procedure and would undergo surgery again. CONCLUSIONS This study indicates that purified type 1 bovine collagen conduits are a practical and efficacious method for the repair of median nerves in the distal forearm. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic IV.
Collapse
Affiliation(s)
- Thomas Dienstknecht
- Department of Orthopaedic Trauma Surgery, University Medical Center Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Gambarotta G, Fregnan F, Gnavi S, Perroteau I. Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:223-56. [PMID: 24083437 DOI: 10.1016/b978-0-12-410499-0.00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuregulin 1 (NRG1) is a multifunctional and versatile protein: its numerous isoforms can signal in a paracrine, autocrine, or juxtacrine manner, playing a fundamental role during the development of the peripheral nervous system and during the process of nerve repair, suggesting that the treatment with NRG1 could improve functional outcome following injury. Accordingly, the use of NRG1 in vivo has already yielded encouraging results. The aim of this review is to focus on the role played by the different NRG1 isoforms during peripheral nerve regeneration and remyelination and to identify good candidates to be used for the development of tissue engineered medical devices delivering NRG1, with the objective of promoting better nerve repair.
Collapse
Affiliation(s)
- Giovanna Gambarotta
- Nerve Regeneration Group, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
40
|
Penna V, Stark GB, Wewetzer K, Radtke C, Lang EM. Comparison of Schwann cells and olfactory ensheathing cells for peripheral nerve gap bridging. Cells Tissues Organs 2012; 196:534-42. [PMID: 22699447 DOI: 10.1159/000338059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Previously, we introduced the biogenic conduit (BC) as a novel autologous nerve conduit for bridging peripheral nerve defects and tested its regenerative capacity in a short- and long-term setting. The aim of the present study was to clarify whether intraluminal application of regeneration-promoting glial cells, including Schwann cells (SC) and olfactory ensheathing cells (OEC), displayed differential effects after sciatic nerve gap bridging. MATERIAL AND METHODS BCs were generated as previously described. The conduits filled with fibrin/SC (n = 8) and fibrin/OEC (n = 8) were compared to autologous nerve transplants (NT; n = 8) in the 15-mm sciatic nerve gap lesion model of the rat. The sciatic functional index was evaluated every 4 weeks. After 16 weeks, histological evaluation followed regarding nerve area, axon number, myelination index and N ratio. RESULTS Common to all groups was a continual improvement in motor function during the observation period. Recovery was significantly better after SC transplantation compared to OEC (p < 0.01). Both cell transplantation groups showed significantly worse function than the NT group (p < 0.01). Whereas nerve area and axon number were correlated to function, being significantly lowest in the OEC group (p < 0.001), both cell groups showed lowered myelination (p < 0.001) and lower N ratio compared to the NT group. DISCUSSION SC-filled BCs led to improved regeneration compared to OEC-filled BCs in a 15-mm-long nerve gap model of the rat.
Collapse
Affiliation(s)
- Vincenzo Penna
- Department of Plastic and Hand Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Sinis N, Manoli T, Schiefer JL, Werdin F, Jaminet P, Kraus A, Fornaro M, Raimondo S, Geuna S, Schaller HE. Application of two different hemostatic procedures during microsurgical median nerve reconstruction in the rat does not hinder axonal regeneration. Neurosurgery 2012; 68:1399-403; discussion 1403-4. [PMID: 21311369 DOI: 10.1227/neu.0b013e3182127bc4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hemostatic procedures by means of electrical coagulation or application of topical agents are widely used to avoid postoperative bleeding during microsurgical reconstruction of peripheral nerves. It is speculated, however, that extensive hemostasis could provoke significant nerve damage. OBJECTIVE To examine the effects of 2 intraoperative hemostatic procedures on peripheral nerve regeneration. METHODS In 36 adult rats divided into 3 groups, the median nerve was transected and repaired by end-to-end neurorrhaphy. During surgery, bleeding was treated in groups 2 and 3 by application of either the topical hemostatic agent Floseal or routine bipolar coagulation. The degree of nerve regeneration was assessed in terms of motor function recovery using weekly grasping test evaluation for 3 months, muscle mass recovery of flexor digitorum sublimis, and stereological assessment of myelinated axon regeneration. RESULTS Neither of the 2 applied hemostatic methods induced any negative effects on nerve regeneration as defined by grip strength, muscle mass recovery, and morphology of myelinated nerve fibers. In contrast, Floseal-treated animals showed a faster progression of motor function recovery, and animals subjected to bipolar coagulation revealed a higher muscle mass recovery compared with the control group. CONCLUSION Controlled application of bipolar coagulation or Floseal does not exert a negative effect on the nerve regeneration outcome in rats. We propose that these methods can be applied safely to patients.
Collapse
Affiliation(s)
- Nektarios Sinis
- Department of Plastic Surgery, Martin-Luther Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sedaghati T, Yang SY, Mosahebi A, Alavijeh MS, Seifalian AM. Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem 2012; 58:288-300. [PMID: 21995532 DOI: 10.1002/bab.51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.
Collapse
Affiliation(s)
- Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
43
|
Lynam D, Bednark B, Peterson C, Welker D, Gao M, Sakamoto JS. Precision microchannel scaffolds for central and peripheral nervous system repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2119-2130. [PMID: 21769629 DOI: 10.1007/s10856-011-4387-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
In previous studies, we demonstrated the ability to linearly guide axonal regeneration using scaffolds comprised of precision microchannels 2 mm in length. In this work, we report our efforts to augment the manufacturing process to achieve clinically relevant scaffold dimensions in the centimeter-scale range. By selective etching of multi-component fiber bundles, agarose hydrogel scaffolds with highly ordered, close-packed arrays of microchannels, ranging from 172 to 320 μm, were fabricated with overall dimensions approaching clinically relevant length scales. Cross-sectional analyses determined that the maximum microchannel volume per unit volume of scaffold approached 80%, which is nearly twice that compared to our previously reported study. Statistical analyses at various points along the length of the microchannels also show a significant degree of linearity along the entire length of the scaffold. Two types of multi-component fiber bundle templates were evaluated; polystyrene and poly(methyl methacrylate). The scaffolds consisting of 2 cm long microchannels were fabricated with the poly(methyl methacrylate) fiber-cores exhibited a higher degree of linearity compared to those fabricated using polystyrene fibers. It is believed that the materials process developed in this study is useful for fabricating high aspect ratio microchannels in biocompatible materials with a wide range of geometries for guiding nerve regeneration.
Collapse
Affiliation(s)
- Daniel Lynam
- Department of Chemical Engineering and Materials Science, Michigan State University, College of Engineering, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
44
|
Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 2011; 500:41-6. [DOI: 10.1016/j.neulet.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 02/07/2023]
|
45
|
Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability. ACTA ACUST UNITED AC 2011; 6:225-30. [DOI: 10.1017/s1740925x11000056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Purpose:To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC).Methods:The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined.Results:Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-l-ornithine coated plates was compromised by either method.Conclusion:Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.
Collapse
|
46
|
Adamowicz J, Drewa T, Tworkiewicz J, Kloskowski T, Nowacki M, Pokrywczyńska M. Schwann cells - a new hope in tissue engineered urinary bladder innervation. A method of cell isolation. Cent European J Urol 2011; 64:87-9. [PMID: 24578871 PMCID: PMC3921712 DOI: 10.5173/ceju.2011.02.art8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 02/01/2023] Open
Abstract
Introduction There are not any effective method to induce the innervation of urinary bladder wall graft after augmentation. Neurons from urinary bladder wall and omentium can not elongate and branch in graft because of lack of neurotrophic factors. The best source of these neurotrophic factors are Schwann cells which can be transplanted into urinary bladder wall graft. To transplant Schwann cells the proper amount of cells is needed which can be only obtain during in vitro Schwann cell cultivation. We introduce the results of Schwann cell isolation and in vitro cultivation. Materials and methods 33 Wistar rats, males (350 gr.) were used in this study. Animal were divited into two groups (n = 15). Cell cultures were established in both groups on 5, 6, 7, 8 nad 9 day after nerve injury. In first group the digestion time with colagenase and trypsyne was 2.5 h and in second one 3.5 h. Results A larger number of cells were isolated from the degenerated sciatic nerve. Colonies of cells that morphologically resembled Schwann cells were visible by light microscopy on the second day of in vitro cultivation. Homogeneity of the primary cultures increased in the last day of cultivation to 60%. Conclusions Schwann cells isolation from predegenerated peripheral nerve is effective and can delivered require amount of cells for transplantation to urinary bladder graft.
Collapse
Affiliation(s)
- Jan Adamowicz
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland
| | - Tomasz Drewa
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland ; Department of Urology, Oncology Centre, prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Jakub Tworkiewicz
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland ; Department of Urology, Oncology Centre, prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland
| | - Maciej Nowacki
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Tissue Engineering Department, University of Nicolaus Copernicus, Bydgoszcz, Poland
| |
Collapse
|
47
|
|
48
|
Rinker B, Liau JY. A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J Hand Surg Am 2011; 36:775-81. [PMID: 21489720 DOI: 10.1016/j.jhsa.2011.01.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 02/02/2023]
Abstract
PURPOSE The optimal management of a nerve gap within the fingers remains an unanswered question in hand surgery. The purpose of this study was to compare the sensory recovery, cost, and complication profile of digital nerve repair using autogenous vein and polyglycolic acid conduits. METHODS We enrolled patients undergoing repair of digital nerve injuries with gaps precluding primary repair. The minimum gap that was found to preclude primary repair was 4 mm. Each nerve repair was randomized to the type of nerve repair with either a woven polyglycolic acid conduit or autogenous vein. Time required for repair was recorded. We performed sensory testing, consisting of static and moving 2-point discrimination, at 6 and 12 months after repair. We compared patient factors between the 2 groups using chi-square and Student's t-test. We compared sensory recovery between the 2 groups at each time point using Student's t-test and compared time and cost of repair. RESULTS We enrolled 42 patients with 76 nerve repairs. Of these, 37 patients (representing 68 repairs) underwent sensory evaluation at the 6-month time point. The median age in this group was 35 years. We repaired 36 nerves with synthetic conduit and 32 with vein. Nerve gaps ranged from 4 to 25 mm (mean, 10 mm). Study groups were not significantly different regarding age, time to repair, gap length, medical history, smoking history, or worker's compensation status. Time to harvest the vein was longer but the average cost of materials and surgery in the vein group was $1,220, compared with $1,269 for synthetic conduit repairs. These differences were not statistically significant. Mean static and moving 2-point discrimination at 6 months for the synthetic conduit group were 8.3 ± 2.0 and 6.6 ± 2.3, respectively, compared with 8.5 ± 1.8 and 7.1 ± 2.2 for the vein group. Values at 12 months for the synthetic conduit group were 7.5 ± 1.9 and 5.6 ± 2.2, compared with 7.6 ± 2.6 and 6.6 ± 2.9 for the vein group. These differences were not statistically significant. Smokers and worker's compensation patients had a worse sensory recovery at 12 months postrepair. There were 2 extrusions in the synthetic conduit group requiring reoperation; however, the difference in extrusion rate was not found to be statistically significant. CONCLUSIONS Sensory recovery after digital nerve reconstruction with autogenous vein conduit was equivalent to that using polyglycolic acid conduit, with a similar cost profile and fewer postoperative complications.
Collapse
Affiliation(s)
- Brian Rinker
- Division of Plastic Surgery, University of Kentucky, Lexington, KY 40536-0284, USA.
| | | |
Collapse
|
49
|
Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats. Exp Brain Res 2011; 212:65-79. [PMID: 21526334 DOI: 10.1007/s00221-011-2697-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/12/2011] [Indexed: 01/30/2023]
Abstract
We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.
Collapse
|
50
|
Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.02.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|