1
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
2
|
Bustuchina Vlaicu M. New approaches for brain arteriovenous malformations-related epilepsy. Rev Neurol (Paris) 2023; 179:188-200. [PMID: 36180290 DOI: 10.1016/j.neurol.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The purpose of this review is to present the current literature and to highlight the most recent findings in brain arteriovenous malformations (bAVM)-related epilepsy research. METHODS We searched Medline, PubMed, Biblioinserm, Cochrane Central to study the latest research reports about the different factors that could be responsible for the genesis of bAVM-related epilepsy. We analyzed if epileptogenesis has any characteristics traits and its relation with the vascular malformation. The results of different treatments on epilepsy were considered. Typical errors that may lead towards incorrect or worse management of the seizures for these patients were also examined. RESULTS The development of bAVM results from multifactorial etiologies and bAVM-related epileptogenesis is likely specific for this pathology. Different types of evidence demonstrate a bidirectional relationship between bAVM and epilepsy. Currently, there is not enough published data to determine what may be the right management for these patients. CONCLUSIONS A better understanding of epileptogenesis in conjunction with knowledge of the complex alterations of structures and functions following bAVM-related seizures is necessary. Identification of biomarkers that can identify subgroups most likely to benefit from a specific intervention are needed to help guide clinical management. A new concept for the treatment of epilepsy related to an unruptured bAVM that cannot be treated invasively is proposed as well as new therapeutic perspectives. The next necessary step will be to propose additional algorithms to improve the development of future trials.
Collapse
Affiliation(s)
- M Bustuchina Vlaicu
- Pitié-Salpêtrière Hospital, Department of Neurosurgery, Paris, France; Inserm U0955, Translational Neuro-Psychiatry team, Créteil, France.
| |
Collapse
|
3
|
Associations of Reported Genetic Risk Loci with Sporadic Brain Arteriovenous Malformations: Meta-analysis. J Mol Neurosci 2022; 72:2207-2217. [PMID: 36209311 DOI: 10.1007/s12031-022-02073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
An arteriovenous malformation (AVM) is an abnormal nidus of blood vessels that is characterized by a direct connection between arteries and veins without intervening in the capillary network. The exact underlying cause of sporadic AVMs is unknown, but many studies have reported genetic associations between genes that contribute to angiogenesis, vasculogenesis, and inflammation. Eleven studies retrieved from Medline Complete, PubMed, and Google Scholar up to February 2022 were included. Heterogeneity was assessed using I2 and Q-tests. Publication bias was also assessed for the shortlisted CDKN2B-AS1 rs1333040 (T > C), ACVRL1 rs2071219 (A > G), and rs11169953 (C > T) polymorphisms. The rs1333040 polymorphism showed a lower association with sporadic brain AVM for T versus C in an allelic model (OR = 0.59, 95% confidence interval [CI] = 0.41-0.84). In the recessive model, rs2071219 for AA + AG vs. GG was OR = 0.62, 95% CI = 0.43-0.9. In the recessive model, rs11169953 CC + CT vs. TT was OR = 0.56, 95% CI = 0.33-0.95. In summary, the results of this study support the association between CDKN2B-AS1 and ACVRL1 polymorphisms and sporadic brain arteriovenous malformations. This study summarized the existing information and showed the need for more replication studies on the genetic basis of sporadic AVM. In the future, more genome-wide studies should be conducted to validate and fill existing gaps in knowledge about the mechanisms of sporadic AVM development.
Collapse
|
4
|
Vetiska S, Wälchli T, Radovanovic I, Berhouma M. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives. Neurosurg Rev 2022; 45:3573-3593. [PMID: 36219361 DOI: 10.1007/s10143-022-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are rare vascular lesions made of shunts between cerebral arteries and veins without the interposition of a capillary bed. The majority of bAVMs are asymptomatic, but some may be revealed by seizures and potentially life-threatening brain hemorrhage. The management of unruptured bAVMs remains a matter of debate. Significant progress in the understanding of their pathogenesis has been made during the last decade, particularly using genome sequencing and biomolecular analysis. Herein, we comprehensively review the recent molecular and genetic advances in the study of bAVMs that not only allow a better understanding of the genesis and growth of bAVMs, but also open new insights in medical treatment perspectives.
Collapse
Affiliation(s)
- Sandra Vetiska
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Thomas Wälchli
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France. .,CREATIS Lab, CNRS UMR 5220, INSERM U1294, Lyon 1, University, Lyon, France.
| |
Collapse
|
5
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
6
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Florian IA, Beni L, Moisoiu V, Timis TL, Florian IS, Balașa A, Berindan-Neagoe I. 'De Novo' Brain AVMs-Hypotheses for Development and a Systematic Review of Reported Cases. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:201. [PMID: 33652628 PMCID: PMC7996785 DOI: 10.3390/medicina57030201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Brain arteriovenous malformations AVMs have been consistently regarded as congenital malformations of the cerebral vasculature. However, recent case reports describing "de novo AVMs" have sparked a growing debate on the nature of these lesions. Materials and Methods: We have performed a systematic review of the literature concerning de novo AVMs utilizing the PubMed and Google Academic databases. Termes used in the search were "AVM," "arteriovenous," "de novo," and "acquired," in all possible combinations. Results: 53 articles including a total of 58 patients harboring allegedly acquired AVMs were identified by researching the literature. Of these, 32 were male (55.17%), and 25 were female (43.10%). Mean age at de novo AVM diagnosis was 27.833 years (standard deviation (SD) of 21.215 years and a 95% confidence interval (CI) of 22.3 to 33.3). Most de novo AVMs were managed via microsurgical resection (20 out of 58, 34.48%), followed by radiosurgery and conservative treatment for 11 patients (18.97%) each, endovascular embolization combined with resection for five patients (8.62%), and embolization alone for three (5.17%), the remaining eight cases (13.79%) having an unspecified therapy. Conclusions: Increasing evidence suggests that some of the AVMs discovered develop some time after birth. We are still a long way from finally elucidating their true nature, though there is reason to believe that they can also appear after birth. Thus, we reason that the de novo AVMs are the result of a 'second hit' of a variable type, such as a previous intracranial hemorrhage or vascular pathology. The congenital or acquired characteristic of AVMs may have a tremendous impact on prognosis, risk of hemorrhage, and short and long-term management.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital, 400012 Cluj-Napoca, Romania; (L.B.); (V.M.); (I.S.F.)
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lehel Beni
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital, 400012 Cluj-Napoca, Romania; (L.B.); (V.M.); (I.S.F.)
| | - Vlad Moisoiu
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital, 400012 Cluj-Napoca, Romania; (L.B.); (V.M.); (I.S.F.)
| | - Teodora Larisa Timis
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Ioan Stefan Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital, 400012 Cluj-Napoca, Romania; (L.B.); (V.M.); (I.S.F.)
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian Balașa
- Clinic of Neurosurgery, Tîrgu Mureș County Clinical Emergency Hospital, 540136 Tîrgu Mureș, Romania;
- Department of Neurosurgery, Tîrgu Mureș University of Medicine, Pharmacy, Science and Technology, 540139 Tîrgu Mureș, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
8
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
9
|
Florian IA, Timiș TL, Ungureanu G, Florian IS, Bălașa A, Berindan-Neagoe I. Deciphering the vascular labyrinth: role of microRNAs and candidate gene SNPs in brain AVM development - literature review. Neurol Res 2020; 42:1043-1054. [PMID: 32723034 DOI: 10.1080/01616412.2020.1796380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Brain arteriovenous malformations (AVMs) are a relatively infrequent vascular pathology of unknown etiology that, despite their rarity, cause the highest number of hemorrhagic strokes under the age of 30 years. They pose a challenge to all forms of treatment due to their variable morphology, location, size, and, last but not least, evolving nature. MicroRNAs (miRNAs) are non-coding RNA strands that may suppress the expression of target genes by binding completely or partially to their complementary sequences. Single nucleotide polymorphisms (SNPs), as the name implies, are variations in a single nucleotide in the DNA, usually found in the non-coding segments. Although the majority of SNPs are harmless, some located in the proximity of candidate genes may result in altered expression or function of these genes and cause diseases or affect how different pathologies react to treatment. The roles miRNAs and certain SNPs play in the development and growth of AVMs are currently uncertain, yet progress in deciphering the minutiae of this pathology is already visible. Methods and Results: We performed an electronic Medline (PubMed, PubMed Central) and Google Academic exploration using permutations of the terms: "arteriovenous malformations," "single nucleotide polymorphisms," "microRNA," "non-coding RNA," and "genetic mutations." The findings were then divided into two categories, namely the miRNAs and the candidate gene SNPs associated with AVMs respectively. 6 miRNAs and 12 candidate gene SNPs were identified and discussed. Conclusions: The following literature review focuses on the discoveries made in ascertaining the different implications of miRNAs and candidate gene SNPs in the formation and evolution of brain AVMs, as well as highlighting the possible directions of future research and biological treatment. Abbreviations: ACVRL1/ALK1: activin receptor-like kinase 1; Akt: protein kinase B; ANGPTL4: angiopoietin-like 4; ANRIL: antisense noncoding RNA in the INK4 locus; AVM: arteriovenous malformation; AVM-BEC: arteriovenous malformation brain endothelial cell; BRCA1: breast cancer type 1 susceptibility protein; CCS: case-control study; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B; CLTC: clathrin heavy chain; DNA: deoxyribonucleic acid; ERK: extracellular signal-regulated kinase; GPR124: probable G-protein coupled receptor 124; GWAS: genome-wide association study; HHT: hereditary hemorrhagic telangiectasia; HIF1A: hypoxia-inducible factor 1A; IA: intracranial aneurysm; ICH: intracranial hemorrhage; Id-1: inhibitor of DNA-binding protein A; IL-17: interleukin 17; MAP4K3: mitogen-activated protein kinase kinase kinase kinase 3; miRNA: microRNA; MMP: matrix metalloproteinase; NFkB: nuclear factor kappa-light-chain of activated B cells; NOTCH: neurogenic locus notch homolog; p38MAPK: p38 mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; RBBP8: retinoblastoma-binding protein 8; RNA: ribonucleic acid; SNAI1: Snail Family Transcriptional Repressor 1; SNP: single nucleotide polymorphism; SOX-17: SRY-related HMG-box; TGF-β: transformation growth factor β; TGFR: transformation growth factor receptor; TIMP-4, tissue inhibitor of metalloproteinase 4; TSP-1: thrombospondin-1; UTR: untranslated region; VEGF: Vascular Endothelial Growth Factor; VSMC: vascular smooth muscle cell; Wnt1: Wnt family member 1.
Collapse
Affiliation(s)
- Ioan Alexandru Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Teodora Larisa Timiș
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Gheorghe Ungureanu
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Ioan Stefan Florian
- Clinic of Neurosurgery, Cluj County Emergency Clinical Hospital , Cluj-Napoca, Romania.,Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Adrian Bălașa
- Clinic of Neurosurgery, Tîrgu Mureș County Clinical Emergency Hospital , Tîrgu Mureș, Romania.,Department of Neurosurgery, Tîrgu Mureș University of Medicine, Pharmacy, Science and Technology , Tîrgu Mureș, Romania
| | - Ioana Berindan-Neagoe
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy , Cluj-Napoca, Romania.,Functional Genomics and Experimental Pathology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta" , Cluj-Napoca, Romania
| |
Collapse
|
10
|
Ota T, Komiyama M. Pathogenesis of non-hereditary brain arteriovenous malformation and therapeutic implications. Interv Neuroradiol 2020; 26:244-253. [PMID: 32024399 DOI: 10.1177/1591019920901931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain arteriovenous malformations have a high risk of intracranial hemorrhage, which is a substantial cause of morbidity and mortality in patients with brain arteriovenous malformations. Although a variety of genetic factors leading to hereditary brain arteriovenous malformations have been extensively investigated, their pathogenesis is still not well elucidated, especially in sporadic brain arteriovenous malformations. The authors have reviewed the updated data of not only the genetic aspects of sporadic brain arteriovenous malformations, but also the architecture of microvasculature, the roles of the angiogenic factors, and the signaling pathways. This knowledge may allow us to infer the pathogenesis of sporadic brain arteriovenous malformations and develop pre-emptive treatments for them.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
11
|
Methylation of the CDKN2A Gene Increases the Risk of Brain Arteriovenous Malformations. J Mol Neurosci 2019; 69:316-323. [DOI: 10.1007/s12031-019-01360-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
|
12
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Walcott BP, Winkler EA, Rouleau GA, Lawton MT. Molecular, Cellular, and Genetic Determinants of Sporadic Brain Arteriovenous Malformations. Neurosurgery 2018; 63 Suppl 1:37-42. [PMID: 27399362 DOI: 10.1227/neu.0000000000001300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Brian P Walcott
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michael T Lawton
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Laakkonen JP, Lähteenvuo J, Jauhiainen S, Heikura T, Ylä-Herttuala S. Beyond endothelial cells: Vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul Pharmacol 2018; 112:91-101. [PMID: 30342234 DOI: 10.1016/j.vph.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factors regulate vascular and lymphatic growth. Dysregulation of VEGF signaling is connected to many pathological states, including hemangiomas, arteriovenous malformations and placental abnormalities. In heart, VEGF gene transfer induces myocardial angiogenesis. Besides vascular and lymphatic endothelial cells, VEGFs affect multiple other cell types. Understanding VEGF biology and its paracrine signaling properties will offer new targets for novel treatments of several diseases.
Collapse
Affiliation(s)
- Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Johanna Lähteenvuo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Science Service Center, Kuopio University Hospital, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
Pawlikowska L, Nelson J, Guo DE, McCulloch CE, Lawton MT, Kim H, Faughnan ME. Association of common candidate variants with vascular malformations and intracranial hemorrhage in hereditary hemorrhagic telangiectasia. Mol Genet Genomic Med 2018; 6:350-356. [PMID: 29932521 PMCID: PMC6014448 DOI: 10.1002/mgg3.377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is caused by mutations in TGFβ/BMP9 pathway genes and characterized by vascular malformations (VM) including arteriovenous malformations (AVM) in lung, liver, and brain, which lead to severe complications including intracranial hemorrhage (ICH) from brain VM. The clinical heterogeneity of HHT suggests a role for genetic modifier effects. Common variants in loci that modify phenotype severity in Tgfb knockout mice were previously reported as associated with lung AVM in HHT. Common variants in candidate genes were reported as associated with sporadic brain AVM and/or ICH. We investigated whether these variants are associated with HHT organ VM or with ICH from brain VM in 752 Caucasian HHT patients enrolled by the Brian Vascular Malformation Consortium. METHODS We genotyped 11 candidate variants: four variants reported as associated with lung AVM in HHT (PTPN14 rs2936018, USH2A rs700024, ADAM17 rs12474540, rs10495565), and seven variants reported as associated with sporadic BAVM or ICH (APOE ε2, ANGPTL4 rs11672433, EPHB4 rs314308, IL6 rs1800795, IL1B rs1143627, ITGB8 rs10486391, TNFA rs361525). Association of genotype with any VM, lung AVM, liver VM, brain VM or brain VM ICH was evaluated by multivariate logistic regression adjusted for age, gender, and family clustering. RESULTS None of the 11 variants was significantly associated with any phenotype. There was a trend toward association of USH2A rs700024 with ICH (OR = 2.77, 95% CI = 1.13-6.80, p = .026). CONCLUSION We did not replicate previously reported associations with HHT lung AVM and variants in Tgfb modifier loci. We also did not find significant associations between variants reported in sporadic brain AVM and VM or ICH in HHT.
Collapse
Affiliation(s)
- Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Jeffrey Nelson
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Diana E Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Marie E Faughnan
- Division of Respirology, Department of Medicine and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
16
|
Association of ACVRL1 Genetic Polymorphisms with Arteriovenous Malformations: A Case-Control Study and Meta-Analysis. World Neurosurg 2017; 108:690-697. [DOI: 10.1016/j.wneu.2017.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/26/2022]
|
17
|
Delev D, Pavlova A, Grote A, Boström A, Höllig A, Schramm J, Fimmers R, Oldenburg J, Simon M. NOTCH4 gene polymorphisms as potential risk factors for brain arteriovenous malformation development and hemorrhagic presentation. J Neurosurg 2017; 126:1552-1559. [DOI: 10.3171/2016.3.jns151731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVEArteriovenous malformations (AVMs) of the brain are a frequent and important cause of intracranial hemorrhage in young adults. Little is known about the molecular-genetic pathomechanisms underlying AVM development. Genes of the NOTCH family control the normal development of vessels and proper arteriovenous specification. Transgenic mice with constitutive expression of active NOTCH4 frequently develop AVMs. Here, the authors report a genetic association study investigating possible associations between NOTCH4 gene polymorphisms and formation and clinical presentation of AVMs.METHODSAfter PCR amplification and direct DNA sequencing or restriction digests, 10 single-nucleotide polymorphisms (SNPs) of the NOTCH4 gene were used for genotyping 153 AVM patients and 192 healthy controls (i.e., blood donors). Pertinent clinical data were available for 129 patients. Uni- and multivariate single-marker and explorative haplotype analyses were performed to identify potential genetic risk factors for AVM development and for hemorrhagic or epileptic presentation.RESULTSEleven calculated haplotypes consisting of 3–4 SNPs (most of which were located in the epidermal growth factor–like domain of the NOTCH4 gene) were observed significantly more often among AVM patients than among controls. Univariate analysis indicated that rs443198_TT and rs915895_AA genotypes both were significantly associated with hemorrhage and that an rs1109771_GG genotype was associated with epilepsy. The association between rs443198_TT and AVM bleeding remained significant in the multivariate regression analysis.CONCLUSIONSThe authors' results suggest NOTCH4 SNPs as possible genetic risk factors for the development and clinical presentation of AVMs and a role of NOTCH4 in the pathogenesis of this disease.
Collapse
Affiliation(s)
| | - Anna Pavlova
- 2Institute for Experimental Haematology and Transfusion Medicine, and
| | | | | | - Anke Höllig
- 3Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | - Rolf Fimmers
- 4Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, University Medical Center, Bonn; and
| | | | | |
Collapse
|
18
|
Weinsheimer S, Bendjilali N, Nelson J, Guo DE, Zaroff JG, Sidney S, McCulloch CE, Al-Shahi Salman R, Berg JN, Koeleman BPC, Simon M, Bostroem A, Fontanella M, Sturiale CL, Pola R, Puca A, Lawton MT, Young WL, Pawlikowska L, Klijn CJM, Kim H. Genome-wide association study of sporadic brain arteriovenous malformations. J Neurol Neurosurg Psychiatry 2016; 87:916-23. [PMID: 26818729 PMCID: PMC4963303 DOI: 10.1136/jnnp-2015-312272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/28/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The pathogenesis of sporadic brain arteriovenous malformations (BAVMs) remains unknown, but studies suggest a genetic component. We estimated the heritability of sporadic BAVM and performed a genome-wide association study (GWAS) to investigate association of common single nucleotide polymorphisms (SNPs) with risk of sporadic BAVM in the international, multicentre Genetics of Arteriovenous Malformation (GEN-AVM) consortium. METHODS The Caucasian discovery cohort included 515 BAVM cases and 1191 controls genotyped using Affymetrix genome-wide SNP arrays. Genotype data were imputed to 1000 Genomes Project data, and well-imputed SNPs (>0.01 minor allele frequency) were analysed for association with BAVM. 57 top BAVM-associated SNPs (51 SNPs with p<10(-05) or p<10(-04) in candidate pathway genes, and 6 candidate BAVM SNPs) were tested in a replication cohort including 608 BAVM cases and 744 controls. RESULTS The estimated heritability of BAVM was 17.6% (SE 8.9%, age and sex-adjusted p=0.015). None of the SNPs were significantly associated with BAVM in the replication cohort after correction for multiple testing. 6 SNPs had a nominal p<0.1 in the replication cohort and map to introns in EGFEM1P, SP4 and CDKAL1 or near JAG1 and BNC2. Of the 6 candidate SNPs, 2 in ACVRL1 and MMP3 had a nominal p<0.05 in the replication cohort. CONCLUSIONS We performed the first GWAS of sporadic BAVM in the largest BAVM cohort assembled to date. No GWAS SNPs were replicated, suggesting that common SNPs do not contribute strongly to BAVM susceptibility. However, heritability estimates suggest a modest but significant genetic contribution.
Collapse
Affiliation(s)
- Shantel Weinsheimer
- Mental Health Center, Sct. Hans MHS-Capital Region of Denmark, Institute of Biological Psychiatry, Roskilde, Denmark
| | | | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Diana E Guo
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Jonathan G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | | | - Jonathan N Berg
- Department of Clinical Genetics, University of Dundee, Dundee, UK
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Azize Bostroem
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Marco Fontanella
- Division of Neurosurgery, University of Torino, University of Brescia, Brescia, Italy
| | | | - Roberto Pola
- Institute of Medicine, Catholic University of Rome, Rome, Italy
| | - Alfredo Puca
- Institute of Neurosurgery, Catholic University of Rome, Rome, Italy
| | - Michael T Lawton
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - William L Young
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California, USA
| | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California, USA Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Catharina J M Klijn
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California, USA Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA Institute for Human Genetics, University of California, San Francisco, California, USA
| | | |
Collapse
|
19
|
Integrin β8 Deletion Enhances Vascular Dysplasia and Hemorrhage in the Brain of Adult Alk1 Heterozygous Mice. Transl Stroke Res 2016; 7:488-496. [PMID: 27352867 DOI: 10.1007/s12975-016-0478-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Brain arteriovenous malformation (bAVM), characterized by tangled dysplastic vessels, is an important cause of intracranial hemorrhage in young adults, and its pathogenesis and progression are not fully understood. Patients with haploinsufficiency of transforming growth factor-β (TGF-β) receptors, activin receptor-like kinase 1 (ALK1) or endoglin (ENG) have a higher incidence of bAVM than the general population. However, bAVM does not develop effectively in mice with the same haploinsufficiency. The expression of integrin β8 subunit (ITGB8), another member in the TGF-β superfamily, is reduced in sporadic human bAVM. Brain angiogenic stimulation results at the capillary level of vascular malformation in adult Alk1 haploinsufficient (Alk1 +/- ) mice. We hypothesized that deletion of Itgb8 enhances bAVM development in adult Alk1 +/- mice. An adenoviral vector expressing Cre recombinase (Ad-Cre) was co-injected with an adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF) into the brain of Alk1 +/-;Itgb8-floxed mice to induce focal Itgb8 gene deletion and angiogenesis. We showed that compared with Alk +/- mice (4.75 ± 1.38/mm2), the Alk1 +/-;Itgb8-deficient mice had more dysplastic vessels in the angiogenic foci (7.14 ± 0.68/mm2, P = 0.003). More severe hemorrhage was associated with dysplastic vessels in the brain of Itgb8-deleted Alk1 +/- , as evidenced by larger Prussian blue-positive areas (1278 ± 373 pixels/mm2 vs. Alk1 +/- : 320 ± 104 pixels/mm2; P = 0.028). These data indicate that both Itgb8 and Alk1 are important in maintaining normal cerebral angiogenesis in response to VEGF. Itgb8 deficiency enhances the formation of dysplastic vessels and hemorrhage in Alk1 +/- mice.
Collapse
|
20
|
Abstract
Brain arteriovenous malformations (bAVMs) represent a high risk of intracranial hemorrhages, which are substantial causes of morbidity and mortality of bAVMs, especially in children and young adults. Although a variety of factors leading to hemorrhages of bAVMs are investigated extensively, their pathogenesis is still not well elucidated. The author has reviewed the updated data of genetic aspects of bAVMs, especially focusing on clinical and experimental knowledge from hereditary hemorrhagic telangiectasia, which is the representative genetic disease presenting with bAVMs caused by loss-of-function in one of the two genes: endoglin and activin receptor-like kinase 1. This knowledge may allow us to infer the pathogensis of sporadic bAVMs and in the development of new medical therapies for them.
Collapse
Affiliation(s)
- Masaki Komiyama
- Department of Neuro-Intervention, Osaka City General Hospital
| |
Collapse
|
21
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Hu X, Fang Y, Li YK, Liu WK, Li H, Ma L, You C. Role of Endoglin Insertion and rs1800956 Polymorphisms in Intracranial Aneurysm Susceptibility: A Meta-Analysis. Medicine (Baltimore) 2015; 94:e1847. [PMID: 26559253 PMCID: PMC4912247 DOI: 10.1097/md.0000000000001847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endoglin is an essential molecule during angiogenesis, vascular development, and integrity. Till now, many studies have investigated the association between endoglin polymorphisms and intracranial aneurysm (IA) risk, with the results remained inconclusive. Therefore, we performed a meta-analysis to summarize the possible association.We searched PubMed and Embase until June 2015 to identify studies addressing the association between endoglin polymorphisms and IA risk. The summary odds ratios (ORs) and their corresponding 95% confidence interval (CI) were calculated to assess the strength of the association.Eleven studies with a total of 1501 cases and 2012 controls were finally included in this meta-analysis, with 10 studies investigating endoglin 6-bp insertion (6bINS) polymorphism and 4 studies investigating 1800956 polymorphism. No significant association between endoglin 6bINS polymorphism and IA risk was detected in overall estimation (I/I vs wt/I + wt/wt: OR = 1.21, 95% CI = 0.87-1.69) or in the subgroup analysis by ethnicity, control source, or ruptured status. However, we observed an association with borderline significance of 6bINS with IA occurrence (I/I vs wt/I + wt/wt: OR = 1.49, 95% CI = 0.99-2.25, P = 0.058) in studies applying matched controls. Furthermore, we detected a significant association for 6bINS polymorphism of endoglin with increased risk of familial IA (I vs wt, OR = 1.64, 95% CI = 1.10-2.42) but not sporadic IA (I vs wt, OR = 1.09, 95% CI = 0.68-1.45). With regard to rs1800956, our pooled results indicated a significantly decreased IA risk in individuals carrying C allele (C/C vs G/C + G/G: OR = 0.65; 95% CI = 0.45-0.94).This meta-analysis provided no evidence for the association between 6bINS polymorphism with overall IA risk. However, we detected a significant association of 6bINS allele with increased risk of familial IA. Also, we found that rs1800956 was significantly related to IA occurrence. Further, well-designed studies with large sample size are warranted and updated meta-analysis is needed to verify our findings.
Collapse
Affiliation(s)
- Xin Hu
- From the Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
An arteriovenous malformation is a tangle of dysplastic vessels (nidus) fed by arteries and drained by veins without intervening capillaries, forming a high-flow, low-resistance shunt between the arterial and venous systems. Arteriovenous malformations in the brain have a low estimated prevalence but are an important cause of intracerebral haemorrhage in young adults. For previously unruptured malformations, bleeding rates are approximately 1% per year. Once ruptured, the subsequent risk increases fivefold, depending on associated aneurysms, deep locations, deep drainage and increasing age. Recent findings from novel animal models and genetic studies suggest that arteriovenous malformations, which were long considered congenital, arise from aberrant vasculogenesis, genetic mutations and/or angiogenesis after injury. The phenotypical characteristics of arteriovenous malformations differ among age groups, with fistulous lesions in children and nidal lesions in adults. Diagnosis mainly involves imaging techniques, including CT, MRI and angiography. Management includes observation, microsurgical resection, endovascular embolization and stereotactic radiosurgery, alone or in any combination. There is little consensus on how to manage patients with unruptured malformations; recent studies have shown that patients managed medically fared better than those with intervention at short-term follow-up. By contrast, interventional treatment is preferred following a ruptured malformation to prevent rehaemorrhage. Management continues to evolve as new mechanistic discoveries and reliable animal models raise the possibility of developing drugs that might prevent the formation of arteriovenous malformations, induce obliteration and/or stabilize vessels to reduce rupture risk. For an illustrated summary of this Primer, visit: http://go.nature.com/TMoAdn.
Collapse
|
24
|
Kremer PHC, Koeleman BPC, Pawlikowska L, Weinsheimer S, Bendjilali N, Sidney S, Zaroff JG, Rinkel GJE, van den Berg LH, Ruigrok YM, de Kort GAP, Veldink JH, Kim H, Klijn CJM. Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry 2015; 86:524-9. [PMID: 25053769 PMCID: PMC4302044 DOI: 10.1136/jnnp-2013-307276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND In genome-wide association studies (GWAS) five putative risk loci are associated with intracranial aneurysm. As brain arteriovenous malformations (AVM) and intracranial aneurysms are both intracranial vascular diseases and AVMs often have associated aneurysms, we investigated whether these loci are also associated with sporadic brain AVM. METHODS We included 506 patients (168 Dutch, 338 American) and 1548 controls, all Caucasians. Controls had been recruited as part of previous GWAS. Dutch patients were genotyped by KASPar assay and US patients by Affymetrix SNP 6.0 array. Associations in each cohort were tested by univariable logistic regression modelling, with subgroup analysis in 205 American cases with aneurysm data. Meta-analysis was performed by a Mantel-Haenszel fixed-effect method. RESULTS In the Dutch cohort none of the single nucleotide polymorphisms (SNPs) were associated with AVMs. In the American cohort, genotyped SNPs near SOX-17 (OR 0.74; 95% CI 0.56-0.98), RBBP8 (OR 0.76; 95% CI 0.62-0.94) and an imputed SNP near CDKN2B-AS1 (OR 0.79; 95% CI 0.64-0.98) were significantly associated with AVM. The association with SNPs near SOX-17 and CDKN2B-AS1 but not RBBP8 were strongest in patients with AVM with associated aneurysms. In the meta-analysis we found no significant associations between allele frequencies and AVM occurrence, but rs9298506, near SOX-17 approached statistical significance (OR 0.77; 95% CI 0.57-1.03, p=0.08). CONCLUSIONS Our meta-analysis of two Caucasian cohorts did not show an association between five aneurysm-associated loci and sporadic brain AVM. Possible involvement of SOX-17 and RBBP8, genes involved in cell cycle progression, deserves further investigation.
Collapse
Affiliation(s)
- P H C Kremer
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B P C Koeleman
- Department of Biomedical Genetics and Complex Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Pawlikowska
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - S Weinsheimer
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA
| | - N Bendjilali
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA
| | - S Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - J G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - G J E Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Y M Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G A P de Kort
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Kim
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - C J M Klijn
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
25
|
Pawlikowska L, Nelson J, Guo DE, McCulloch CE, Lawton MT, Young WL, Kim H, Faughnan ME. The ACVRL1 c.314-35A>G polymorphism is associated with organ vascular malformations in hereditary hemorrhagic telangiectasia patients with ENG mutations, but not in patients with ACVRL1 mutations. Am J Med Genet A 2015; 167:1262-7. [PMID: 25847705 DOI: 10.1002/ajmg.a.36936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/14/2014] [Indexed: 02/03/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is characterized by vascular malformations (VMs) and caused by mutations in TGFβ/BMP9 pathway genes, most commonly ENG or ACVRL1. Patients with HHT have diverse manifestations related to skin and mucosal telangiectases and organ VMs, including arteriovenous malformations (AVM). The clinical heterogeneity of HHT suggests a role for genetic modifiers. We hypothesized that the ACVRL1 c.314-35A>G and ENG c.207G>A polymorphisms, previously associated with sporadic brain AVM, are associated with organ VM in HHT. We genotyped these variants in 716 patients with HHT and evaluated association of genotype with presence of any organ VM, and specifically with brain VM, liver VM and pulmonary AVM, by multivariate logistic regression analyses stratified by HHT mutation. Among all patients with HHT, neither polymorphism was significantly associated with presence of any organ VM; ACVRL1 c.314-35A>G showed a trend toward association with pulmonary AVM (OR = 1.48, P = 0.062). ACVRL1 c.314-35A>G was significantly associated with any VM among patients with HHT with ENG (OR = 2.66, P = 0.022), but not ACVRL1 (OR = 0.79, P = 0.52) mutations. ACVRL1 c.314-35A>G was also associated with pulmonary AVM and liver VM among ENG mutation heterozygotes. There were no significant associations between ENG c.207G>A and any VM phenotype. These results suggest that common polymorphisms in HHT genes other than the mutated gene modulate phenotype severity of HHT disease, specifically presence of organ VM.
Collapse
Affiliation(s)
- Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, California
| | - Jeffrey Nelson
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Diana E Guo
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California
| | - Charles E McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Michael T Lawton
- Department of Neurological Surgery, University of California, San Francisco, California
| | - William L Young
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California.,Department of Neurological Surgery, University of California, San Francisco, California.,Department of Neurology, University of California, San Francisco, California
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Marie E Faughnan
- Division of Respirology, Department of Medicine and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,Division of Respirology, Department of Medicine, University of Toronto, Toronto, Canada
| | | |
Collapse
|
26
|
Letteboer TGW, Benzinou M, Merrick CB, Quigley DA, Zhau K, Kim IJ, To MD, Jablons DM, van Amstel JKP, Westermann CJJ, Giraud S, Dupuis-Girod S, Lesca G, Berg JH, Balmain A, Akhurst RJ. Genetic variation in the functional ENG allele inherited from the non-affected parent associates with presence of pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia 1 (HHT1) and may influence expression of PTPN14. Front Genet 2015; 6:67. [PMID: 25815003 PMCID: PMC4357294 DOI: 10.3389/fgene.2015.00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023] Open
Abstract
HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.
Collapse
Affiliation(s)
- Tom G W Letteboer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Medical Genetics, University Medical Centre Utrecht Utrecht, Netherlands
| | - Michael Benzinou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Christopher B Merrick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Clinical Genetics, University of Dundee Dundee, UK
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Kechen Zhau
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Il-Jin Kim
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Minh D To
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - David M Jablons
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | | | | | - Sophie Giraud
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | | | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | - Jonathan H Berg
- Department of Clinical Genetics, University of Dundee Dundee, UK
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA ; Department of Anatomy, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
27
|
Ramey WL, Martirosyan NL, Zabramski JM, Spetzler RF, Kalani MYS. A hierarchical model for the development of cerebral arteriovenous malformations. Clin Neurol Neurosurg 2014; 126:126-9. [DOI: 10.1016/j.clineuro.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/24/2014] [Indexed: 11/26/2022]
|
28
|
BMP signaling modulation attenuates cerebral arteriovenous malformation formation in a vertebrate model. J Cereb Blood Flow Metab 2014; 34:1688-94. [PMID: 25052553 PMCID: PMC4269730 DOI: 10.1038/jcbfm.2014.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
Abstract
Cerebral arteriovenous malformations (AVMs) are vascular anomalies that carry a high risk of stroke and death. To test potential AVM therapies, a reverse genetics approach was used to model AVMs in zebrafish. Antisense morpholino oligonucleotides were used to knockdown activin receptor-like kinase I (alk1), which encodes a transforming growth factor (TGF)-beta family type I receptor implicated in a subset of human AVMs. Knockdown of alk1 caused a spectrum of morphologic, functional, and molecular defects that resemble those seen in humans with AVMs. It was found that losartan, an angiotensin II receptor antagonist, attenuated abnormal blood vessel morphology and systemic manifestations of high-output arteriovenous shunting in vivo. SMAD1 phosphorylation was significantly decreased in alk1 morphants compared with uninjected organisms (0.189±0.0201, 0.429±0.0164, P=0.0002). After treatment, morphant SMAD1 levels approached uninjected levels (0.326±0.0360, P=0.0355) and were significantly higher than those seen in the morphant-control group (P=0.0294). These data suggest that modulating the BMP signaling pathway with losartan, a drug in widespread clinical use in humans as an antihypertensive, may have the potential to be further evaluated as a therapeutic strategy for patients with AVMs.
Collapse
|
29
|
Walcott BP, Peterson RT. Zebrafish models of cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:571-7. [PMID: 24517974 PMCID: PMC3982096 DOI: 10.1038/jcbfm.2014.27] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/27/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.
Collapse
Affiliation(s)
- Brian P Walcott
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Saleh M, Carter MT, Latino GA, Dirks P, Ratjen F. Brain arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia: clinical presentation and anatomical distribution. Pediatr Neurol 2013; 49:445-50. [PMID: 24080277 DOI: 10.1016/j.pediatrneurol.2013.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/20/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia is an autosomal dominant genetic disease with a wide array of vascular malformations involving multiple organs. Brain arteriovenous malformations can lead to intracranial hemorrhage and are often diagnosed only after patients become symptomatic. Early diagnosis and interventional treatment may prevent neurologic sequelae or death. Because of the rarity of defined cases, the spectrum of presentations in children with brain arteriovenous malformations and hereditary hemorrhagic telangiectasia has not been explored in detail. Here, we report our experience in children with hereditary hemorrhagic telangiectasia and brain arteriovenous malformations regarding both disease manifestations at presentation and the spectrum of brain arteriovenous malformation manifestations. METHODS A retrospective review of demographics, clinical manifestations, and brain magnetic resonance imaging/computed tomography scan findings in 115 patients with confirmed hereditary hemorrhagic telangiectasia (HHT) was conducted using the Hospital for Sick Children's HHT Clinic database for the years 1997-2012. RESULTS Eleven patients (four girls and seven boys) were diagnosed with hereditary hemorrhagic telangiectasia and brain arteriovenous malformations during this period. Five patients initially presented with epistaxis, four presented with intracranial hemorrhage, and two were asymptomatic with a positive family history of confirmed hereditary hemorrhagic telangiectasia. Although all children had an index case with hereditary hemorrhagic telangiectasia in the family, in three patients, hereditary hemorrhagic telangiectasia was not diagnosed before the child's presentation with intracranial hemorrhage. Multiple brain arteriovenous malformations were found in five patients, with one patient having bithalamic arteriovenous malformations. CONCLUSIONS This study highlights the importance of both family history and early clinical signs to prompt further diagnostic testing to avoid intracranial hemorrhage from brain arteriovenous malformations in children with hereditary hemorrhagic telangiectasia.
Collapse
Affiliation(s)
- Maha Saleh
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Division of Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Boshuisen K, Brundel M, de Kovel CGF, Letteboer TG, Rinkel GJE, Westermann CJJ, Kim H, Pawlikowska L, Koeleman BPC, Klijn CJM. Polymorphisms in ACVRL1 and endoglin genes are not associated with sporadic and HHT-related brain AVMs in Dutch patients. Transl Stroke Res 2012; 4:375-378. [PMID: 24323303 DOI: 10.1007/s12975-012-0231-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/26/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022]
Abstract
We aimed to replicate the association of the IVS3-35A>G polymorphism in the activin receptor-like kinase (ACVRL) 1 gene and the 207G>A polymorphism in the endoglin (ENG) gene with sporadic brain arteriovenous malformations (BAVM) in Dutch BAVM patients. In addition, we assessed whether these polymorphisms contribute to the risk of BAVM in patients with hereditary haemorrhagic telangiectasia type 1 (HHT1). We genotyped 143 Dutch sporadic BAVM patients and 360 healthy volunteers for four variants in the ACVRL1 gene including IVS3-35A>G and two variants in the ENG gene including 207G>A. Differences in allele and genotype frequencies between sporadic BAVM patients and controls and their combined effect were analysed with a likelihood ratio test. Furthermore, we compared the allele and genotype frequencies between 24 HHT1 patients with a BAVM with those of a relative with HHT1 without a BAVM in a matched pair analysis using Wilcoxon signed rank test. No significant differences in allele frequency were found between sporadic BAVM cases and controls or between HHT1 patients with and without BAVM for any of the polymorphisms or the combination of ACVRL1 and ENG polymorphisms. Meta-analysis of the current and the two previous studies for the ACVRL1 IVS3-35A polymorphism showed a persisting association between the ACVRL1 IVS3-35A polymorphism and risk of sporadic BAVM (odds ratio, 1.86; 95% CI: 1.32-2.61, p<0.001). We did not replicate the previously found association between a polymorphism in ACVRL1 IVS3-35A>G and BAVM in Dutch patients. However, meta-analysis did not rule out a possible effect.
Collapse
Affiliation(s)
- Kim Boshuisen
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neurosciences, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Manon Brundel
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neurosciences, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Carolien G F de Kovel
- Department of Biomedical Genetics and Complex Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Tom G Letteboer
- Department of Biomedical Genetics and Complex Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neurosciences, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Cornelis J J Westermann
- Department of Pulmonology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Helen Kim
- Department of Anesthesia and Perioperative Care and Department of Epidemiology and Biostatistics, University of California, San Francisco, 500 Parnassus Avenue, San Francisco, CA 94143-0244, USA
| | - Ludmila Pawlikowska
- Department of Anesthesia and Perioperative Care and Department of Epidemiology and Biostatistics, University of California, San Francisco, 500 Parnassus Avenue, San Francisco, CA 94143-0244, USA
| | - Bobby P C Koeleman
- Department of Biomedical Genetics and Complex Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neurosciences, University Medical Center Utrecht, Heidelberglaan 100, 3484CX, The Netherlands
| |
Collapse
|
32
|
Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, Maira G, Pola R. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 2012; 136:665-81. [DOI: 10.1093/brain/aws180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Abstract
This article outlines the roles of the anesthesiologist in the management of patients undergoing invasive endovascular procedures to treat vascular diseases, primarily of the central nervous system. This practice is usually termed interventional neuroradiology or endovascular neurosurgery. The article emphasizes perioperative and anesthetic management strategies to prevent complications and minimize their effects if they occur. Planning the anesthetic and perioperative management is predicated on understanding the goals of the therapeutic intervention and anticipating potential problems.
Collapse
|
34
|
Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, Pawlikowska L, McCulloch CE, Lawton MT, Dowd CF, Young WL, Terbrugge KG. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke 2011; 43:72-8. [PMID: 22034007 DOI: 10.1161/strokeaha.111.629865] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to quantitatively estimate the relationship between multiplicity of brain arteriovenous malformations (bAVMs) and the diagnosis of hereditary hemorrhagic telangiectasia (HHT). METHODS We combined databases from 2 large North American bAVM referral centers, including demographics, clinical presentation, and angiographic characteristics, and compared patients with HHT with non-HHT patients. Logistic regression analysis was performed to quantify the association between bAVM multiplicity and odds of HHT diagnosis. Sensitivity, specificity, positive and negative predictive value, and positive and negative likelihood ratios were calculated to determine accuracy of bAVM multiplicity for screening HHT. RESULTS Prevalence of HHT was 2.8% in the combined group. bAVM multiplicity was present in 39% of patients with HHT and was highly associated with diagnosis of HHT in univariate (OR, 83; 95% CI, 40-173; P<0.0001) and multivariable (OR, 86; 95% CI, 38-195; P<0.001) models adjusting for age at presentation (P=0.013), symptomatic presentation (P=0.029), and cohort site (P=0.021). bAVM multiplicity alone was associated with high specificity (99.2%; 95% CI, 98.7%-99.6%) and negative predictive value (98.3%; 95% CI, 97.6%-98.8%) and low sensitivity (39.3%; 95% CI, 26.5%-53.2%) and positive predictive value (59.5%; 95% CI, 42.1%-75.2%). Positive and negative likelihood ratio was 51 and 0.61, respectively, for diagnosis of HHT. HHT bAVMs were also more often smaller in size (<3 cm), noneloquent in location, and associated with superficial venous drainage compared with non-HHT bAVMs. CONCLUSIONS Multiplicity of bAVMs is highly predictive of the diagnosis of HHT. The presence of multiple bAVMs should alert the clinician to the high probability of HHT and lead to comprehensive investigation for this diagnosis.
Collapse
Affiliation(s)
- Aditya Bharatha
- Division of Neuroradiology, Department of Medical Imaging, St Michael's Hospital, 30 Bond Street, Suite 6049, Toronto, Ontario, M4K-1W7, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mikhak B, Weinsheimer S, Pawlikowska L, Poon A, Kwok PY, Lawton MT, Chen Y, Zaroff JG, Sidney S, McCulloch CE, Young WL, Kim H. Angiopoietin-like 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformations. Cerebrovasc Dis 2011; 31:338-45. [PMID: 21212665 DOI: 10.1159/000322601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/02/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) are high-flow vascular lesions prone to intracranial hemorrhage (ICH). Abnormal angiogenesis is a key characteristic of BAVM tissue. Angiopoietin-like 4 (ANGPTL4), a secreted glycoprotein, is thought to be involved in angiogenesis and required for proper postnatal blood vessel partitioning. We investigated whether common single nucleotide polymorphisms (SNPs) in ANGPTL4 were associated with risk of BAVM or ICH. METHODS AND RESULTS We conducted a case-control study of 216 Caucasian BAVM cases and 246 healthy controls, and a secondary case-only analysis, comparing 83 ruptured (ICH) with 133 unruptured BAVM cases at presentation. Four tagSNPs in ANGPTL4 captured variation over a 10-kb region (rs2278236, rs1044250, rs11672433, and rs1808536) and were tested for association with BAVM or ICH. The minor allele (A) of rs11672433 (exon 6, Pro389Pro) was associated with an increased risk of BAVM (p = 0.006), which persisted after adjusting for multiple comparisons (p = 0.03). After adjustments for age and sex, carriers of the minor allele (A) remained at higher risk for BAVM compared to noncarriers (odds ratio, OR = 1.56; 95% confidence interval, CI = 1.01-2.41; p = 0.046) and risk of BAVM was increased with increasing copy of the minor A allele (OR = 1.49, 95% CI = 1.03-2.15; p(trend) = 0.03). Five common haplotypes (frequency >1%) were inferred; overall haplotype distribution differed between BAVM cases and controls (χ(2) = 12.2, d.f. = 4, p = 0.02). Neither SNPs (p > 0.05) nor haplotype distribution (χ(2) = 1.1, d.f. = 4, p = 0.89) were associated with risk of ICH among BAVM cases. CONCLUSION A synonymous SNP in ANGPTL4 and haplotypes carrying it are associated with risk of BAVM but not with ICH presentation in BAVM cases.
Collapse
Affiliation(s)
- Bahar Mikhak
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, 94110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ruigrok Y, Klijn CJ. Genetics of Aneurysms and Arteriovenous Malformations. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL. Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:83-92. [PMID: 21725736 PMCID: PMC3187860 DOI: 10.1007/978-3-7091-0693-8_14] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (AVMs) are a rare but important cause of intracranial hemorrhage (ICH) in young adults. In this paper, we review both human and animal studies of brain AVM, focusing on the: (1) natural history of AVM hemorrhage, (2) genetic and expression studies of AVM susceptibility and hemorrhage, and (3) strategies for development of a brain AVM model in adult mice. These data target various mechanisms that must act in concert to regulate normal angiogenic response to injury. Based on the various lines of evidence reviewed in this paper, we propose a "response-to-injury" model of brain AVM pathogenesis.
Collapse
Affiliation(s)
- Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
38
|
Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang GY, Young WL. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 105:199-206. [PMID: 19066109 DOI: 10.1007/978-3-211-09469-3_38] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Brain arteriovenous malformations (AVMs) cause intracranial hemorrhage (ICH), especially in young adults. Molecular characterization of lesional tissue provides evidence for involvement of both angiogenic and inflammatory pathways, but the pathogenesis remains obscure and medical therapy is lacking. Abnormal expression patterns have been observed for proteins related to angiogenesis (e.g., vascular endothelial growth factor, angiopoietin-2, matrix metalloproteinase-9), and inflammation (e.g., interleukin-6 [IL-6] and myeloperoxidase). Macrophage and neutrophil invasion have also been observed in the absence of prior ICH. Candidate gene association studies have identified a number of germline variants associated with clinical ICH course and AVM susceptibility. A single nucleotide polymorphism (SNP) in activin receptor-like kinase-1 (ALK-1) is associated with AVM susceptibility, and SNPs in IL-6, tumor necrosis factor-alpha (TNF-alpha), and apolipoprotein-E (APOE) are associated with AVM rupture. These observations suggest that even without a complete understanding of the determinants of AVM development, the recent discoveries of downstream derangements in vascular function and integrity may offer potential targets for therapy development. Further, biomarkers can now be established for assessing ICH risk. These data will generate hypotheses that can be tested mechanistically in model systems, including surrogate phenotypes, such as vascular dysplasia and/or models recapitulating the clinical syndrome of recurrent spontaneous ICH.
Collapse
Affiliation(s)
- H Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim H, Hysi PG, Pawlikowska L, Poon A, Burchard EG, Zaroff JG, Sidney S, Ko NU, Achrol AS, Lawton MT, McCulloch CE, Kwok PY, Young WL. Common variants in interleukin-1-Beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis 2008; 27:176-82. [PMID: 19092239 DOI: 10.1159/000185609] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 09/11/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polymorphisms in the proinflammatory cytokine interleukin (IL)-1beta gene have been associated with systemic atherogenesis, thrombosis and rupture. The aim of this study was to investigate associations between single nucleotide polymorphisms (SNPs) in IL-1beta and intracranial hemorrhage (ICH) in the natural course of brain arteriovenous malformation (BAVM) patients. METHOD Two IL-1beta promoter SNPs (-511C-->T, -31T-->C) and 1 synonymous coding SNP in exon 5 at +3953C-->T (Phe) were genotyped in 410 BAVM patients. We performed a survival analysis of time to subsequent ICH, censoring cases at first treatment, death or last follow-up. A Cox regression analysis was performed to obtain hazard ratios (HRs) for genotypes adjusted for age, sex, Caucasian race/ethnicity and hemorrhagic presentation. RESULTS Subjects with the -31 CC genotype (HR = 2.7; 95% CI 1.1-6.6; p = 0.029) or the -511 TT genotype (HR = 2.6; 95% CI 1.1-6.5; p = 0.039) had a greater risk of subsequent ICH compared with reference genotypes, adjusting for covariates. The +3953C-->T SNP was not significantly associated with an increased ICH risk (p = 0.22). The IL-1beta promoter polymorphisms were also associated with BAVM susceptibility among a subset of 235 BAVM cases and 255 healthy controls of Caucasian race/ethnicity (p < 0.001). CONCLUSION IL-1beta promoter polymorphisms were associated with an increased risk of ICH in BAVM clinical course and with BAVM susceptibility. These results suggest that inflammatory pathways, including the IL-1beta cytokine, may play an important role in ICH.
Collapse
Affiliation(s)
- Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California-San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This review outlines the roles of anesthesiologists in the management of patients undergoing invasive endovascular procedures to treat vascular diseases, primarily of the central nervous system. This practice usually is termed interventional neuroradiology or endovascular neurosurgery. The discussion emphasizes perioperative and anesthetic management strategies to prevent complications and minimize their effects if they occur. Planning anesthetic and perioperative management is predicated on understanding the goals of the therapeutic intervention and anticipating potential problems.
Collapse
Affiliation(s)
- William L Young
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue, Room 3C-38, San Francisco, CA 94110, USA.
| |
Collapse
|
41
|
Krischek B, Tatagiba M. The influence of genetics on intracranial aneurysm formation and rupture: current knowledge and its possible impact on future treatment. Adv Tech Stand Neurosurg 2008; 33:131-147. [PMID: 18383813 DOI: 10.1007/978-3-211-72283-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The etiology of intracranial aneurysm formation and rupture remains mostly unknown, but lately several studies have increasingly supported the role of genetic factors. In reports so far, genome-wide linkage studies suggest several susceptibility loci that may contain one or more predisposing genes. Depending on the examined ethnic population, several different non-matching chromosomal regions have been found. Studies of several candidate genes report association with intracranial aneurysms. To date, no single gene has been identified as responsible for intracranial aneurysm formation or rupture. In addition to the well-published environmental factors, such as alcohol intake, hypertension and smoking, only the recent progress in molecular genetics enables us to investigate the possible genetic determinants of this disease. Although a familial predisposition is the strongest risk factor for the development of intracranial aneurysms, the mode of Mendelian inheritance is uncertain in most families. Therefore, multiple genetic susceptibilities in conjunction with the environmental factors are considered to act together in the disease's etiology. Accordingly, researchers performed linkage studies and case-control association studies for the genetic analysis and have identified several genes to be susceptible to intracranial aneurysms. The identification of susceptible genes may lead to the understanding of the mechanism of formation and rupture and possibly lead to the development of a pharmacological therapy. Furthermore, should it be possible to identify a genetic marker associated with an increased risk of formation and rupture of an intracranial aneurysm, the necessity for screening and urgency of treatment could be determined more easily. In this review we summarize the current knowledge of intracranial aneurysm genetics and also discuss the method to detect the causalities. In view of the recent advances made in this field, we also give an outlook on possible future genetically engineered therapies, whose development are well underway.
Collapse
Affiliation(s)
- B Krischek
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
42
|
Young WL, Kwok PY, Pawlikowska L, Lawton MT, Kim H, Hysi PG, Marchuk DA. Arteriovenous Malformation. J Neurosurg 2007; 106:731-2; author reply 732-3. [PMID: 17432733 DOI: 10.3171/jns.2007.106.4.731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object.
Important central nervous system (CNS) manifestations in patients with hereditary hemorrhagic telangiectasia (HHT) include arteriovenous malformations (AVMs) and dural arteriovenous fistulas (DAVFs). Hereditary hemorrhagic telangiectasia is caused by germline mutations of two genes: ENG (HHT Type 1) and ACVRL1 (HHT Type 2). The ENG gene variations have been associated with the formation of intracranial aneurysms. The authors studied whether sequence variations in ACVRL1 or ENG are associated with the development of clinically sporadic arteriovenous dysplasias and aneurysms of the CNS.
Methods.
The coding sequence (in 44 patients with AVMs and 27 with aneurysms) and the 5′ end and the polyA site (in 53 patients with AVMs) of the ACVRL1 gene were analyzed for sequence variations using direct sequencing and single-strand conformational polymorphism analysis. One ENG and three ACVRL1 gene polymorphisms were genotyped using restriction enzyme–based analysis in 101 patients with sporadic AVMs and DAVFs of the CNS, 79 patients treated for intracranial aneurysms, and 202 control volunteers.
The authors identified a statistically significant association between the IVS3 −35A/T polymorphism in intron 3 of the ACVRL1 gene and the development of AVMs and DAVFs (p = 0.004; odds ratio [OR] 1.73; 95% confidence interval [CI] 1.19–2.51; after adjustments for age and sex), but not aneurysms (crude OR 0.82; 95% CI 0.55–1.18).
Conclusions.
The results of this study link ACVRL1 (HHT Type 2 gene) to the formation of the clinically sporadic variants of vascular malformations of the CNS most commonly seen in patients with HHT, that is, AVMs and DAVFs.
Collapse
|