1
|
Fava A, Lisi SV, Mauro L, Morace R, Ciavarro M, Gorgoglione N, Petrella G, Quarato PP, Di Gennaro G, di Russo P, Esposito V. The anterior sylvian point as a reliable landmark for the anterior temporal lobectomy in mesial temporal lobe epilepsy: technical note, case series, and cadaveric dissection. Front Med (Lausanne) 2024; 11:1352321. [PMID: 39015783 PMCID: PMC11250084 DOI: 10.3389/fmed.2024.1352321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Mesial temporal lobe epilepsy (MTLE) is one of the most prevalent forms of focal epilepsy in surgical series, particularly among adults. Over the decades, different surgical strategies have been developed to address drug-resistant epilepsy while safeguarding neurological and cognitive functions. Among these strategies, anterior temporal lobectomy (ATL), involving the removal of the temporal pole and mesial temporal structures, has emerged as a widely employed technique. Numerous modifications have been proposed to mitigate the risks associated with aphasia, cognitive issues, and visual field defects. Methods Our approach is elucidated through intraoperative and cadaveric dissections, complemented by neuroradiological and cadaveric measurements of key anatomical landmarks. A retrospective analysis of patients with drug-resistant MTLE who were treated using our ATL technique at IRCCS Neuromed (Pozzilli) is presented. Results A total of 385 patients were treated with our ATL subpial technique anatomically focused on the anterior Sylvian point (ASyP). The mean FU was 9.9 ± 5.4 years (range 1-24). In total, 84%of patients were free of seizures during the last follow-up, with no permanent neurological deficits. Transient defects were as follows: aphasia in 3% of patients, visual field defects in 2% of patients, hemiparesis in 2% of patients, and cognitive/memory impairments in 0.8% of patients. In cadaveric dissections, the ASyP was found at a mean distance from the temporal pole of 3.4 ± 0.2 cm (range 3-3.8) at the right side and 3.5 ± 0.2 cm (3.2-3.9) at the left side. In neuroimaging, the ASyP resulted anterior to the temporal horn tip in all cases at a mean distance of 3.2 ± 0.3 mm (range 2.7-3.6) at the right side and 3.5 ± 0.4 mm (range 2.8-3.8) at the left side. Discussion To the best of our knowledge, this study first introduces the ASyP as a reliable and reproducible cortical landmark to perform the ATL to overcome the patients' variabilities, the risk of Meyer's loop injury, and the bias of intraoperative measurements. Our findings demonstrate that ASyP can be a safe cortical landmark that is useful in MTLE surgery because it is constantly present and is anterior to risky temporal regions such as temporal horn and language networks.
Collapse
Affiliation(s)
- Arianna Fava
- IRCCS Neuromed, Pozzilli, Italy
- Laboratory of Neuroanatomy “G. Cantore”, IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, University of Rome “La Sapienza”, Rome, Italy
| | | | - Luigi Mauro
- Laboratory of Neuroanatomy “G. Cantore”, IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Nicola Gorgoglione
- IRCCS Neuromed, Pozzilli, Italy
- Laboratory of Neuroanatomy “G. Cantore”, IRCCS Neuromed, Pozzilli, Italy
| | | | | | | | - Paolo di Russo
- IRCCS Neuromed, Pozzilli, Italy
- Laboratory of Neuroanatomy “G. Cantore”, IRCCS Neuromed, Pozzilli, Italy
| | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, Italy
- Laboratory of Neuroanatomy “G. Cantore”, IRCCS Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
2
|
Kruper J, Benson NC, Caffarra S, Owen J, Wu Y, Lee AY, Lee CS, Yeatman JD, Rokem A. Optic radiations representing different eccentricities age differently. Hum Brain Mapp 2023; 44:3123-3135. [PMID: 36896869 PMCID: PMC10171550 DOI: 10.1002/hbm.26267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
The neural pathways that carry information from the foveal, macular, and peripheral visual fields have distinct biological properties. The optic radiations (OR) carry foveal and peripheral information from the thalamus to the primary visual cortex (V1) through adjacent but separate pathways in the white matter. Here, we perform white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI) data from subjects with healthy vision in the U.K. Biobank dataset (UKBB; N = 5382; age 45-81). We use pyAFQ to characterize white matter tissue properties in parts of the OR that transmit information about the foveal, macular, and peripheral visual fields, and to characterize the changes in these tissue properties with age. We find that (1) independent of age there is higher fractional anisotropy, lower mean diffusivity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR, consistent with denser, more organized nerve fiber populations in foveal/parafoveal pathways, and (2) age is associated with increased diffusivity and decreased anisotropy and kurtosis, consistent with decreased density and tissue organization with aging. However, anisotropy in foveal OR decreases faster with age than in peripheral OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri-foveal OR and peripheral OR differ in how they age.
Collapse
Affiliation(s)
- John Kruper
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Noah C. Benson
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Sendy Caffarra
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Julia Owen
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Yue Wu
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Aaron Y. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia S. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Jason D. Yeatman
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Ariel Rokem
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | | |
Collapse
|
3
|
Herlin B, Uszynski I, Chauvel M, Poupon C, Dupont S. Cross-subject variability of the optic radiation anatomy in a cohort of 1065 healthy subjects. Surg Radiol Anat 2023:10.1007/s00276-023-03161-4. [PMID: 37195302 DOI: 10.1007/s00276-023-03161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Optic radiations are tracts of particular interest for neurosurgery, especially for temporal lobe resection, because their lesion is responsible for visual field defects. However, histological and MRI studies found a high inter-subject variability of the optic radiation anatomy, especially for their most rostral extent inside the Meyer's temporal loop. We aimed to better assess inter-subject anatomical variability of the optic radiations, in order to help to reduce the risk of postoperative visual field deficiencies. METHODS Using an advanced analysis pipeline relying on a whole-brain probabilistic tractography and fiber clustering, we processed the diffusion MRI data of the 1065 subjects of the HCP cohort. After registration in a common space, a cross-subject clustering on the whole cohort was performed to reconstruct the reference optic radiation bundle, from which all optic radiations were segmented on an individual scale. RESULTS We found a median distance between the rostral tip of the temporal pole and the rostral tip of the optic radiation of 29.2 mm (standard deviation: 2.1 mm) for the right side and 28.8 mm (standard deviation: 2.3 mm) for the left side. The difference between both hemispheres was statistically significant (p = 1.10-8). CONCLUSION We demonstrated inter-individual variability of the anatomy of the optic radiations on a large-scale study, especially their rostral extension. In order to better guide neurosurgical procedures, we built a MNI-based reference atlas of the optic radiations that can be used for fast optic radiation reconstruction from any individual diffusion MRI tractography.
Collapse
Affiliation(s)
- B Herlin
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France.
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France.
- Sorbonne Université, Paris, France.
| | - I Uszynski
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - M Chauvel
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - C Poupon
- BAOBAB, NeuroSpin, Université Paris-Saclay, CNRS, CEA, Gif-Sur-Yvette, France
| | - S Dupont
- AP-HP, Epilepsy Unit, GH Pitié-Salpêtrière-Charles Foix, 47-83 Boulevard de L'Hôpital, 75013, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Şahin MH, Akyüz ME, Karadağ MK, Yalçın A. Supramarginal Gyrus and Angular Gyrus Subcortical Connections: A Microanatomical and Tractographic Study for Neurosurgeons. Brain Sci 2023; 13:brainsci13030430. [PMID: 36979240 PMCID: PMC10046402 DOI: 10.3390/brainsci13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Objectives: This article aims to investigate the subcortical microanatomy of the supramarginal gyrus (SMG) and angular gyrus (AnG) using a microfiber dissection technique and diffusion tensor imaging (DTI)/fiber tractography (FT). The cortical and subcortical structures of this region are highly functional, and their lesions often present clinically. For this reason, the possibility of post-surgical deficits is high. We focused on the supramarginal gyrus and the angular gyrus and reviewed their anatomy from a topographic, functional and surgical point of view, and aimed to raise awareness especially for neurosurgeons. Methods: Four previously frozen, formalin-fixed human brains were examined under the operating microscope using the fiber dissection technique. Four hemispheres were dissected from medial to lateral under the surgical microscope. Brain magnetic resonance imaging (MRI) of 20 healthy adults was examined. Pre-central and post-central gyrus were preserved to achieve topographic dominance in dissections of brain specimens. Each stage was photographed. Tractographic brain magnetic resonance imaging of 10 healthy adults was examined radiologically. Focusing on the supramarginal and angular gyrus, the white matter fibers passing under this region and their intersection areas were examined. These two methods were compared anatomically from the lateral view and radiologically from the sagittal view. Results: SMG and AnG were determined in brain specimens. The pre-central and post-central gyrus were topographically preserved. The superior and medial temporal gyrus, and inferior and superior parietal areas were decorticated from lateral to medial. U fibers, superior longitudinal fasciculus II (SLF II), superior longitudinal fasciculus III (SLF III), arcuat fasciculus (AF) and middle longitudinal fasciculus (MdLF) fiber groups were shown and subcortical fiber structures belonging to these regions were visualized by the DTI/FT method. The subcortical fiber groups under the SMG and the AnG were observed anatomically and radiologically to have a dense and complex structure. Conclusions: Due to the importance of the subcortical connections of SMG and AnG on speech function, tumoral lesions and surgeries of this region are of particular importance. The anatomical architecture of the complex subcortical structure, which is located on the projection of the SMG and AnG areas, was shown with a DTI/FT examination under a topographic dominance, preserving the pre-central and post-central gyrus. In this study, the importance of the anatomical localization, connections and functions of the supramarginal and angular gyrus was examined. More anatomical and radiological studies are needed to better understand this region and its connections.
Collapse
|
5
|
Esen Aydin A, Aydin S, Bilgin B, Mirkhasilova M, Bayramli N, Tanriover N. Microsurgical anatomy of the auditory radiations: revealing the enigmatic acoustic pathway from a surgical viewpoint. J Neurosurg 2022; 138:1443-1456. [PMID: 36115054 DOI: 10.3171/2022.7.jns22247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The thalamocortical projections of the auditory system have not been detailed via microanatomical fiber dissections from a surgical viewpoint. The aim of this study was to delineate the course of the auditory radiations (ARs) from the medial geniculate body to their final destination in the auditory cortex. The authors' additional purpose was to display the relevant neural structures in relation to their course en route to Heschl's gyrus. METHODS White matter fibers were dissected layer by layer in a lateral-to-medial, inferolateral-to-superomedial, and inferior-to-superior fashion. RESULTS The origin of ARs just distal to the medial geniculate body was revealed following the removal of the parahippocampal gyrus, cingulum bundle, and mesial temporal structures, in addition to the lateral geniculate body. Removing the fimbria, stria terminalis, and the tail of the caudate nucleus along the roof of the temporal horn in an inferior-to-superior direction exposed the lateral compartment of the sublenticular segment of the internal capsule as the predominant obstacle that prevents access to the ARs. The ARs were initially obscured by the inferolaterally located temporopulvinar tract of Arnold, and their initial course passed posterolateral to the temporopontine fascicle of Türck. The ARs subsequently traversed above the temporopulvinar fibers in a perpendicular manner and coursed in between the optic radiations at the sensory intersection region deep to the inferior limiting sulcus of insula. The distal part of the ARs intermingled with the fibers of the anterior commissure and inferior fronto-occipital fasciculus during its ascent toward Heschl's gyrus. The ARs finally projected to a large area over the superior temporal gyrus, extending well beyond the anteroposterior boundaries of the transverse temporal gyri. CONCLUSIONS The ARs can be appreciated as a distinct fiber bundle ascending between the fibers of the sublenticular segment of the internal capsule and traversing superiorly along the roof of the temporal horn by spanning between the optic radiations. Our novel findings suggest potential disruption of the ARs' integrity during transsylvian and transtemporal approaches along the roof of the temporal horn toward the mesial temporal lobe. The detailed 3D understanding of the ARs' relations and awareness of their course may prove helpful to secure surgical interventions to the region.
Collapse
Affiliation(s)
- Aysegul Esen Aydin
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul.,2Department of Neurosurgery, Arnavutkoy State Hospital, Istanbul
| | - Seckin Aydin
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul.,3Department of Neurosurgery, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul
| | - Berra Bilgin
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul.,4Department of Neurosurgery, Tokat State Hospital, Tokat
| | - Muyassar Mirkhasilova
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul.,5Department of Neurosurgery, İstanbul Demiroglu Bilim University, Gayrettepe Florence Nightingale Hospital, Istanbul; and
| | - Nicat Bayramli
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul
| | - Necmettin Tanriover
- 1Department of Neurosurgery, Microsurgical Neuroanatomy Laboratory, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul.,6Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Rodrigues EM, Isolan GR, Becker LG, Dini LI, Vaz MAS, Frigeri TM. Anatomy of the optic radiations from the white matter fiber dissection perspective: A literature review applied to practical anatomical dissection. Surg Neurol Int 2022; 13:309. [PMID: 35928310 PMCID: PMC9345124 DOI: 10.25259/sni_1157_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Knowledge of the anatomical course of the optic radiations and its relationship to medial temporal lobe structures is of great relevance in preoperative planning for surgery involving the temporal lobe to prevent damage that may result in postsurgical visual field deficits. Methods: In this anatomical study, we reviewed the literature on this topic and applied the information to practical anatomical dissection. The three-dimensional relationship between the course of the optic radiations and structures accessed in the main microneurosurgical approaches to the medial temporal lobe was examined by applying Klingler’s white matter fiber dissection technique to five formalin-fixed human brains. The dissections were performed with an operating microscope at magnifications of ×3–×40. High-resolution images were acquired during dissection for identification of the anatomical structures, focusing on the characterization of the course of the optic radiations in relation to medial temporal lobe structures. Results: In all five dissected brains, we could expose and clearly define the relationship between the optic radiations and medial temporal lobe structures, improving our understanding of these complex structures. Conclusion: The knowledge gained by studying these relationships will help neurosurgeons to develop risk-adjusted approaches to prevent damage to the optic radiations in the medial temporal region, which may result in a disabling visual field deficit.
Collapse
Affiliation(s)
- Eduardo Mello Rodrigues
- Department of Neurosurgery, The Center For Advanced Neurology and Neurosurgery, Brazil (CEANNE),
| | - Gustavo Rassier Isolan
- Department of Neurosurgery, The Center For Advanced Neurology and Neurosurgery, Brazil (CEANNE),
| | - Lia Grub Becker
- Department of Neurosurgery, The Center For Advanced Neurology and Neurosurgery, Brazil (CEANNE),
| | - Leandro Infantini Dini
- Department of Neurosurgery, The Center For Advanced Neurology and Neurosurgery, Brazil (CEANNE),
| | | | - Thomas More Frigeri
- Department of Neurosurgery, Hospital São Lucas - PUCRS, Porto Alegre, Brazil
| |
Collapse
|
7
|
Park HH, Roh TH, Choi S, Yoo J, Kim WH, Jung IH, Yun IS, Hong CK. Endoscopic Transorbital Approach to Mesial Temporal Lobe for Intra-Axial Lesions: Cadaveric Study and Case Series (SevEN-008). Oper Neurosurg (Hagerstown) 2021; 21:E506-E515. [PMID: 34528091 DOI: 10.1093/ons/opab319] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Endoscopic transorbital approach (ETOA) has been proposed as a minimally invasive technique for the treatment of skull base lesions located around mesial temporal lobe (MTL), mostly extra-axial pathology. OBJECTIVE To explore the feasibility of ETOA in accessing intraparenchymal MTL with cadaveric specimens and describe our initial clinical experience of ETOA for intra-axial lesions in MTL. METHODS Anatomic dissections were performed in 4 adult cadaveric heads using a 0° endoscope. First, a stepwise anatomical investigation of ETOA to intraparenchymal MTL was explored. Then, ETOA was applied clinically for 7 patients with intra-axial lesions in MTL, predominantly high-grade gliomas (HGGs) and low-grade gliomas (LGGs). RESULTS The extradural stage of ETOA entailed a superior eyelid incision followed by orbital retraction, drilling of orbital roof, greater and lesser wing of sphenoid bone, and cutting of the meningo-orbital band. For the intradural stage, the brain tissue medial to the occipito-temporal gyrus was aspirated until the temporal horn was opened. The structures of MTL could be aspirated selectively in a subpial manner without injury to the neurovascular structures of the ambient and sylvian cisterns, and the lateral neocortex. After cadaveric validation, ETOA was successfully performed for 4 patients with HGGs and 3 patients with LGGs. Gross total resection was achieved in 6 patients (85.7%) without significant surgical morbidities including visual field deficits. CONCLUSION ETOA provides a logical line of access for intra-axial lesions in MTL. The safe and natural surgical trajectory of ETOA can spare brain retraction, neurovascular injury, and disruption of the lateral neocortex.
Collapse
Affiliation(s)
- Hun Ho Park
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seonah Choi
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Jihwan Yoo
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Woo Hyun Kim
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - In-Ho Jung
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - In-Sik Yun
- Department of Plastic surgery, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery , Gangnam Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Atar M, Kızmazoglu C, Kaya I, Cıngoz ID, Uzunoglu I, Kalemcı O, Eroglu A, Pusat S, Atabey C, Yuceer N. The importance of preoperative planning to perform safely temporal lobe surgery. J Clin Neurosci 2021; 93:61-69. [PMID: 34656263 DOI: 10.1016/j.jocn.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Neurosurgeons should know the anatomy required for safe temporal lobe surgery approaches. The present study aimed to determine the angles and distances necessary to reach the temporal stem and temporal horn in surgical approaches for safe temporal lobe surgery by using a 3.0 T magnetic resonance imaging technique in post-mortem human brain hemispheres fixed by the Klingler method. In our study, 10 post-mortem human brain hemisphere specimens were fixed according to the Klingler method. Magnetic resonance images were obtained using a 3.0 T magnetic resonance imaging scanner after fixation. Surgical measurements were conducted for the temporal stem and temporal horn by magnetic resonance imaging, and dissection was then performed under a surgical microscope for the temporal stem. Each stage of dissection was achieved in high-quality three-dimensional images. The angles and distances to reach the temporal stem and temporal horn were measured in transcortical T1, trans-sulcal T1-2, transcortical T2, trans-sulcal T2-3, transcortical T3, and subtemporal trans-collateral sulcus approaches. The safe maximum posterior entry point for anterior temporal lobectomy was measured as 47.16 ± 5.00 mm. Major white-matter fibers in this region and their relations with each other are shown. The distances to the temporal stem and temporal horn, which are important in temporal lobe surgical interventions, were measured radiologically, and safe borders were determined. Surgical strategy and preoperative planning should consider the relationship of the lesion and white-matter pathways.
Collapse
Affiliation(s)
- Murat Atar
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey.
| | - Ceren Kızmazoglu
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ismail Kaya
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Ilker Deniz Cıngoz
- Usak University School of Medicine, Department of Neurosurgery, Usak, Turkey
| | - Inan Uzunoglu
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| | - Orhan Kalemcı
- Dokuz Eylul University School of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ahmet Eroglu
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Serhat Pusat
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Cem Atabey
- Sultan Abdulhamid Han Training and Research Hospital, Department of Neurosurgery , Istanbul, Turkey
| | - Nurullah Yuceer
- Izmir Katip Celebi University Ataturk Training and Research Hospital, Department of Neurosurgery, Izmir, Turkey
| |
Collapse
|
9
|
Maldonado IL, Destrieux C, Ribas EC, Siqueira de Abreu Brito Guimarães B, Cruz PP, Duffau H. Composition and organization of the sagittal stratum in the human brain: a fiber dissection study. J Neurosurg 2021; 135:1214-1222. [PMID: 33418529 DOI: 10.3171/2020.7.jns192846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/17/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The sagittal stratum is divided into two layers. In classic descriptions, the stratum sagittale internum corresponds to optic radiations (RADs), whereas the stratum sagittale externum corresponds to fibers of the inferior longitudinal fasciculus. Although advanced for the time it was proposed, this schematic organization seems simplistic considering the recent progress on the understanding of cerebral connectivity and needs to be updated. Therefore, the authors sought to investigate the composition of the sagittal stratum and to detail the anatomical relationships among the macroscopic fasciculi. METHODS The authors performed a layer-by-layer fiber dissection from the superolateral aspect to the ventricular cavity in 20 cadaveric human hemispheres. RESULTS Diverse bundles of white matter were observed to contribute to the sagittal stratum and their spatial arrangement was highly consistent from one individual to another. This was the case of the middle longitudinal fasciculus, the inferior fronto-occipital fasciculus, the RADs, and other posterior thalamic radiations directed to nonvisual areas of the cerebral cortex. In addition, small contributions to the sagittal stratum came from the anterior commissure anteriorly and the inferior longitudinal fasciculus inferiorly. CONCLUSIONS A general model of sagittal stratum organization in layers is possible, but the composition of the external layer is much more complex than is mentioned in classic descriptions. A small contribution of the inferior longitudinal fasciculus is the main difference between the present results and the classic descriptions in which this bundle was considered to entirely correspond to the stratum sagittale externum. This subject has important implications both for fundamental research and neurosurgery, as well as for the development of surgical approaches for the cerebral parenchyma and ventricular system.
Collapse
Affiliation(s)
- Igor Lima Maldonado
- 1UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- 2CHRU de Tours, France
- 3Le Studium Loire Valley Institute for Advanced Studies, Orléans, France
| | - Christophe Destrieux
- 1UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- 2CHRU de Tours, France
| | - Eduardo Carvalhal Ribas
- 4Department of Neurology, Discipline of Neurosurgery, University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | | | - Patrícia Pontes Cruz
- 6Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, Brazil
| | - Hugues Duffau
- 7Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; and
- 8INSERM-1051, Team 4, Saint-Eloi Hospital, Institute for Neurosciences of Montpellier, France
| |
Collapse
|
10
|
Bernard F, Haemmerli J, Zegarek G, Kiss-Bodolay D, Schaller K, Bijlenga P. Augmented reality-assisted roadmaps during periventricular brain surgery. Neurosurg Focus 2021; 51:E4. [PMID: 34333465 DOI: 10.3171/2021.5.focus21220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
Visualizing major periventricular anatomical landmarks intraoperatively during brain tumor removal is a decisive measure toward preserving such structures and thus the patient's postoperative quality of life. The aim of this study was to describe potential standardized preoperative planning using standard landmarks and procedures and to demonstrate the feasibility of using augmented reality (AR) to assist in performing surgery according to these "roadmaps." The authors have depicted stepwise AR surgical roadmaps applied to periventricular brain surgery with the aim of preserving major cognitive function. In addition to the technological aspects, this study highlights the importance of using emerging technologies as potential tools to integrate information and to identify and visualize landmarks to be used during tumor removal.
Collapse
Affiliation(s)
- Florian Bernard
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,2Division of Neurosurgery, Angers University Hospitals.,3Laboratory of Anatomy, University of Angers; and.,4CRCINA, UMR 1232 INSERM/CNRS and EA7315 team, Angers, France
| | - Julien Haemmerli
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Gregory Zegarek
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Daniel Kiss-Bodolay
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Porto de Oliveira JVM, Raquelo-Menegassio AF, Maldonado IL. What's your name again? A review of the superior longitudinal and arcuate fasciculus evolving nomenclature. Clin Anat 2021; 34:1101-1110. [PMID: 34218465 DOI: 10.1002/ca.23764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/11/2022]
Abstract
Studies of the superior longitudinal fasciculus (SLF) have multiplied in recent decades owing to methodological advances, but the absence of a convention for nomenclature remains a source of confusion. Here, we have reviewed existing nomenclatures in the context of the research studies that generated them and we have identified their agreements and disagreements. A literature search was conducted using PubMed/MEDLINE, Web-of-Science, Embase, and a review of seminal publications, without restrictions regarding publication date. Our search revealed that diffusion imaging, autoradiography, and fiber dissection have been the main methods contributing to tract designation. The first two have been particularly influential in systematizing the horizontal elements distant from the lateral sulcus. Twelve approaches to naming were identified, eight of them differing considerably from each other. The terms SLF and arcuate fasciculus (AF) were often used as synonyms until the second half of the 20th century. During the last 15 years, this has ceased to be the case in a growing number of publications. The term AF has been used to refer to the assembly of three different segments, or exclusively to long frontotemporal fibers. Similarly, the term SLF has been employed to denote the whole superior longitudinal associative system, or only the horizontal frontoparietal parts. As only partial correspondence can be identified among the available nomenclatures, and in the absence of an official designation of all anatomical structures that can be encountered in clinical practice, a high level of vigilance regarding the effectiveness of every oral or written act of communication is mandatory.
Collapse
Affiliation(s)
| | | | - Igor Lima Maldonado
- UMR Inserm U1253, iBrain, Université de Tours, Tours, France.,CHRU de Tours, Tours, France.,Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
12
|
Wang P, Hameed NUF, Chong ST, Fan W, Zhu K, Li W, Lin CP, Feng R, Wu J. The basal turning point of optic radiation (bTPOR): The location of optic radiation in the cerebral basal surface. Clin Neurol Neurosurg 2021; 203:106562. [PMID: 33631507 DOI: 10.1016/j.clineuro.2021.106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUNDS Optic radiation protection is crucial in the basal temporal approach to the mesial temporal lobe. Clear description of the optic radiation in the basal brain surface is lacking. Our aim is to describe the anatomy of optic radiation in the basal cerebral surface and define safety zone of basal temporal approach avoiding of optic radiation injury. METHODS Five brain specimens (10 hemispheres) were dissected using Klingler method to observe the course of the optic radiation. Diffusion tensor imaging data of 25 volunteers were used to verify the fiber dissection results. The relationship of the optic radiation to nearby structures were illustrated and measured. RESULTS The optic radiation bends from the lateral wall of the lateral ventricle to its bottom at a basal turning point of optic radiation (bTPOR). The bTPOR is at the plane crossing the center point of the splenium of corpus callosum. MRI measurements showed no significant difference in the distance from the center of the splenium of corpus callosum and the bTPOR to the occipital pole (59.46 ± 4.338 mm vs 59.54 ± 3.805 mm, p = 0.95). Anterior to bTPOR, no optic radiation fibers were found at the basal brain surface. CONCLUSIONS The bTPOR was found as a landmark of the optic radiation in the cerebral basal surface. With neuronavigation, the splenium of corpus callosum can be a landmark of the bTPOR. By approaching mesial temporal lesions using the basal temporal approach anterior to bTPOR, optic radiation injury can be prevented.
Collapse
Affiliation(s)
- Peng Wang
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - N U Farrukh Hameed
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shin Tai Chong
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Wenke Fan
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Keming Zhu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wensheng Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Rui Feng
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Glioma Surgery Division, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Brain Function Laboratory, Department of Neurosurgery, Fudan University, Shanghai, China; Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China
| |
Collapse
|
13
|
Cheng P, Song S, Li Y, Zhang Y, Yi J, Xu X, Zhou H, Zuo Z. Aberrant Functional Connectivity of the Posterior Cingulate Cortex in Type 2 Diabetes Without Cognitive Impairment and Microvascular Complications. Front Endocrinol (Lausanne) 2021; 12:722861. [PMID: 34759889 PMCID: PMC8573207 DOI: 10.3389/fendo.2021.722861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We aimed to investigate the alterations of brain functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without clinical evidence of cognitive impairment and microvascular complications (woCIMC-T2DM) using resting-state functional MRI (rs-fMRI) and to determine whether its value was correlated with clinical indicators. METHODS A total of 27 T2DM and 26 healthy controls (HCs) were prospectively examined. Cognitive impairment was excluded using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) scales, and microvascular complications were excluded by fundus photography, microalbuminuria, and other indicators. The correlation maps, derived from rs-fMRI with posterior cingulate cortex (PCC) as the seed, were compared between T2DM patients and HCs. Pearson's correlation analysis was performed to determine the relationship between the FC of PCC and the clinical indicators. RESULTS Compared with HC, woCIMC-T2DM patients showed significantly decreased FCs with PCC (PCC-FCs) in the anterior cingulate cortex (ACC), right superior frontal gyrus, right medial frontal gyrus, and right angular gyrus. Meanwhile, increased PCC-FCs was observed in the right superior temporal gyrus and calcarine fissure (CAL). The FC of PCC-ACC was negatively correlated with glycosylated hemoglobin (HbA1c) and diabetes duration, and the FC of PCC-CAL was significantly positively correlated with HbA1c and diabetes duration. CONCLUSION The FC, especially of the PCC with cognitive and visual brain regions, was altered before clinically measurable cognitive impairment and microvascular complications occurred in T2DM patients. In addition, the FC of the PCC with cognitive and visual brain regions was correlated with HbA1c and diabetes duration. This indicates that clinicians should pay attention not only to blood glucose control but also to brain function changes before the occurrence of adverse complications, which is of great significance for the prevention of cognitive dysfunction and visual impairment.
Collapse
Affiliation(s)
- Panpan Cheng
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyan Song
- College of Electrics and Information Engineering, South-Central University for Nationalities, Wuhan, China
| | - Yumin Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yi
- Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Xu
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Zhou
- Department of Radiology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongmei Zhou, ; Zhentao Zuo,
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain and Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongmei Zhou, ; Zhentao Zuo,
| |
Collapse
|
14
|
Dziedzic TA, Balasa A, Jeżewski MP, Michałowski Ł, Marchel A. White matter dissection with the Klingler technique: a literature review. Brain Struct Funct 2020; 226:13-47. [PMID: 33165658 PMCID: PMC7817571 DOI: 10.1007/s00429-020-02157-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022]
Abstract
The aim of this literature review is to present a summary of the published literature relating the details of the different modifications of specimen preparation for white matter dissection with the Klingler technique. For this review, 3 independent investigators performed an electronic literature search that was carried out in the Pubmed, Scopus and Web of Science databses up to December 2019. Furthermore, we performed citation tracking for the articles missed in the initial search. Studies were eligible for inclusion when they reported details of at least the first 2 main steps of Klingler's technique: fixation and freezing. A total of 37 full-text articles were included in the analysis. We included original anatomical studies in which human white matter dissection was performed for study purposes. The main three steps of preparation are the same in each laboratory, but the details of each vary between studies. Ten percent formalin is the most commonly used (34 studies) solution for fixation. The freezing time varied between 8 h and a month, and the temperature varied from - 5 to - 80 °C. After thawing and during dissections, the specimens were most often kept in formalin solution (13), and the concentration varied from 4 to 10%. Klingler's preparation technique involves three main steps: fixation, freezing and thawing. Even though the details of the technique are different in most of the studies, all provide subjectively good quality specimens for anatomical dissections and studies.
Collapse
Affiliation(s)
- Tomasz A Dziedzic
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland.
| | - Artur Balasa
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz P Jeżewski
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Campos M, Drapkin AJ. The Retrochiasmal Optic Pathway: A Link in Jeopardy. Front Surg 2020; 7:35. [PMID: 32656224 PMCID: PMC7324778 DOI: 10.3389/fsurg.2020.00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
The case of an intraventricular meningioma is presented and the visual complication incurred by its surgical resection is discussed. The importance of selecting the most optimal surgical approach and the basis for that selection are highlighted.
Collapse
Affiliation(s)
- Manuel Campos
- Department of Neurosurgery, Clínica Las Condes, Santiago, Chile
| | - Allan J Drapkin
- Department of Surgery [Neurosurgery], Jersey Shore University Medical Center, Neptune, NJ, United States
| |
Collapse
|
16
|
Choi EB, Jang SH. Diffusion Tensor Imaging Studies on Recovery of Injured Optic Radiation: A Minireview. Neural Plast 2020; 2020:8881224. [PMID: 32587609 PMCID: PMC7301249 DOI: 10.1155/2020/8881224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/03/2022] Open
Abstract
The optic radiation (OR) is a visual neural fiber pathway for the transfer of visual information from the lateral geniculate body of the thalamus to the primary visual cortex. To demonstrate the recovery of an OR injury, quantification and visualization of changes to the injured OR are necessary. Diffusion tensor imaging (DTI) allows determination of the state of an OR by assessing the obtained DTI parameters. In particular, diffusion tensor tractography (DTT), which is derived from DTI data, allows three-dimensional visualization of the OR. Thus, recovery of an injured OR can be demonstrated by examining changes in DTI parameters and/or configuration on follow-up DTI scans or via DTT of the injured OR. Herein, we review nine DTI-based studies that demonstrated recovery of OR injuries. The results reported in these studies suggest that an OR injury has a potential for recovery. Moreover, the results of these studies can form a basis for elucidating the recovery mechanisms of injured OR. These studies have suggested two recovery mechanisms for OR injury: recovery via the original OR pathway or via the transcallosal fibers of the corpus callosum. However, only nine studies on this topic have been conducted to date and six of those nine studies were case reports. Therefore, further studies involving larger numbers of subjects and reporting precise evaluations of changes in OR injury during recovery are warranted.
Collapse
Affiliation(s)
- Eun Bi Choi
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu 705-717, Republic of Korea
| |
Collapse
|
17
|
Shi Z, Cao X, Hu J, Jiang L, Mei X, Zheng H, Chen Y, Wang M, Cao J, Li W, Li T, Li C, Shen Y. Retinal nerve fiber layer thickness is associated with hippocampus and lingual gyrus volumes in nondemented older adults. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109824. [PMID: 31765713 DOI: 10.1016/j.pnpbp.2019.109824] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Abnormal retina structures, such as thinner retinal nerve fiber layer (RNFL), have been frequently reported in patients with Alzheimer's disease (AD). However, the association between RNFL and brain structures in cognitively normal adults remains unknown. We therefore set out to conduct a cross-sectional investigation to determine whether RNFL thickness is associated with brain structure volumes in nondemented older adults. METHODS We measured RNFL thickness by optical coherence tomography and brain structure volumes by 3 T magnetic resonance imaging. Cognitive function was assessed using the Chinese version of Repeatable Battery for the Assessment of Neurological Status. Pearson correlation was initially employed to screen for the potential associations among RNFL thickness, brain structure volumes and cognitive function. And then, multivariable linear regression models were conducted to further examine such associations adjusting for possible confounding factors, including age, sex, years of education and the estimated total intracranial volume (eTIV). RESULTS 113 participants (≥ 65 years old) were screened and 80 of them (mean age: 68 ± 5.3 years; 48% male) were included in the final analysis. RNFL thickness in temporal quadrant was associated with medial temporal lobes volumes [unadjusted: r = 0.155, P = 0.175; adjusted: β = 0.205 (0.014, 0.383), P = 0.035], and especially associated with the hippocampus volume [unadjusted: r = 0.213, P = 0.062; adjusted: β = 0.251 (0.060, 0.435), P = 0.011] after adjusted for age, sex, years of education and eTIV. Moreover, it showed that RNFL thickness in inferior quadrant [unadjusted: r = 0.221, P = 0.052; adjusted: β = 0.226 (0.010. 0.446), P = 0.041] was significantly associated with occipital lobes volumes after the adjustment of age, sex, years of education and eTIV, and selectively associated with the substructure of lingual gyrus volume [unadjusted: r = 0.223, P = 0.050; adjusted: β = 0.278 (0.058, 0.487), P = 0.014]. In addition, average RNFL thickness was associated with the cognitive domain of visuospatial/constructional [unadjusted: r = 0.114, P = 0.322; adjusted: β = 0.216 (0.006, 0.426), P = 0.044] after the adjustment in these nondemented older adults. CONCLUSIONS Quadrant-specific associations exist between RNFL thickness and brain regions vulnerable to aging or neurodegeneration in older adults with normal cognition. These findings would promote further investigations into using RNFL as a noninvasive and less expensive biomarker of neurocognitive aging and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Zhongyong Shi
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Jingxiao Hu
- Soochow University School of Medicine, Suzhou 215006, PR China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Xinchun Mei
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Hailin Zheng
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Yupeng Chen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Meijuan Wang
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Jing Cao
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Wei Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Ting Li
- Department of Geriatric Psychiatry, Shanghai, Changning Mental Health Center, Shanghai 200335, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China; Anesthesia and Brain Research Institute, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
18
|
Davion JB, Kuchcinski G, Viard R, Dumont J, Pruvo JP, Leclerc X, Outteryck O, Lopes R. A Fully Automatic Method for Optic Radiation Tractography Applicable to Multiple Sclerosis Patients. Brain Topogr 2020; 33:533-544. [PMID: 32303949 DOI: 10.1007/s10548-020-00771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
The optic radiations (OR) are white matter tracts forming the posterior part of the visual ways. As an important inter-individual variability exists, atlases may be inefficient to locate the OR in a given subject. We designed a fully automatic method to delimitate the OR on a magnetic resonance imaging using tractography. On 15 healthy subjects, we evaluated the validity of our method by comparing the outputs to the Jülich post-mortem histological atlas, and its reproducibility. We also evaluated its feasibility on 98 multiple sclerosis (MS) patients. We correlated different visual outcomes with the inflammatory lesions volume within the OR reconstructed with different methods (our method, atlas, TractSeg). Our method reconstructed the OR bundle in all healthy subjects (< 2 h for most of them), and was reproducible. It demonstrated good classification indexes: sensitivity up to 0.996, specificity up to 0.993, Dice coefficient up to 0.842, and an area under the receiver operating characteristic (ROC) curve of 0.981. Our method reconstructed the OR in 91 of the 98 MS patients (92.9%, < 6 h for most of patients). Compared to an atlas-based approach and the TractSeg method, the inflammatory lesions volume in the OR measured with our method better correlated with the visual cortex volume, visual acuity and mean peripapillar retinal nerve fiber layer thickness. Our method seems to be efficient to reconstruct the OR in healthy subjects, and seems applicable to MS patients. It may be more relevant than an atlas based approach.
Collapse
Affiliation(s)
- Jean-Baptiste Davion
- Centre de référence des Maladies Neuromusculaires, CHU Lille, 59000, Lille, France.
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France.
| | - Gregory Kuchcinski
- Department of Neuroradiology, CHU Lille, Univ. Lille, Inserm U1171, 59000, Lille, France
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Romain Viard
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Julien Dumont
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Jean-Pierre Pruvo
- Department of Neuroradiology, CHU Lille, Univ. Lille, Inserm U1171, 59000, Lille, France
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Xavier Leclerc
- Department of Neuroradiology, CHU Lille, Univ. Lille, Inserm U1171, 59000, Lille, France
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Olivier Outteryck
- Department of Neuroradiology, CHU Lille, Univ. Lille, Inserm U1171, 59000, Lille, France
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| | - Renaud Lopes
- Department of Neuroradiology, CHU Lille, Univ. Lille, Inserm U1171, 59000, Lille, France
- Clinical Imaging Core Facility, CI2C Lille, 59000, Lille, France
| |
Collapse
|
19
|
Koutsarnakis C, Kalyvas AV, Komaitis S, Liakos F, Skandalakis GP, Anagnostopoulos C, Stranjalis G. Defining the relationship of the optic radiation to the roof and floor of the ventricular atrium: a focused microanatomical study. J Neurosurg 2019; 130:1728-1739. [PMID: 29726766 DOI: 10.3171/2017.10.jns171836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors investigated the specific topographic relationship of the optic radiation fibers to the roof and floor of the ventricular atrium because the current literature is ambiguous. METHODS Thirty-five normal, adult, formalin-fixed cerebral hemispheres and 30 focused MRI slices at the level of the atrium were included in the study. The correlative anatomy of the optic radiation with regard to the atrial roof and floor was investigated in 15 specimens, each through focused fiber microdissections. The remaining 5 hemispheres were explored with particular emphasis on the trajectory of the collateral sulcus in relation to the floor of the atrium. In addition, the trajectory of the collateral sulcus was evaluated in 30 MRI scans. RESULTS The atrial roof was observed to be devoid of optic radiations in all studied hemispheres, whereas the atrial floor was seen to harbor optic fibers on its lateral part. Moreover, the trajectory of the intraparietal sulcus, when followed, was always seen to correspond to the roof of the atrium, thus avoiding the optic pathway, whereas that of the collateral sulcus was found to lead to either the lateral atrial floor or outside the ventricle in 88% of the cases, therefore hitting the visual pathway. CONCLUSIONS Operative corridors accessing the ventricular atrium should be carefully tailored through detailed preoperative planning and effective use of intraoperative navigation to increase patient safety and enhance the surgeon's maneuverability. The authors strongly emphasize the significance of accurate anatomical knowledge.
Collapse
Affiliation(s)
- Christos Koutsarnakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 2Department of Neurosurgery, Evangelismos Hospital, and
| | - Aristotelis V Kalyvas
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 2Department of Neurosurgery, Evangelismos Hospital, and
| | - Spyridon Komaitis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 2Department of Neurosurgery, Evangelismos Hospital, and
| | - Faidon Liakos
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
| | - Georgios P Skandalakis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 3Department of Anatomy
- 5Hellenic Center for Neurosurgical Research "Petros Kokkalis," Athens, Greece
| | | | - George Stranjalis
- 1Athens Microneurosurgery Laboratory, Evangelismos Hospital
- 2Department of Neurosurgery, Evangelismos Hospital, and
- 3Department of Anatomy
- 4Medical School, National and Kapodistrian University of Athens; and
- 5Hellenic Center for Neurosurgical Research "Petros Kokkalis," Athens, Greece
| |
Collapse
|
20
|
Bopp MH, Pietruk PM, Nimsky C, Carl B. Fiber tractography of the optic radiations: impact of diffusion model, voxel shape and orientation. J Neurosurg Sci 2019; 65:494-502. [PMID: 30724054 DOI: 10.23736/s0390-5616.19.04622-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Reliable visualization of the optic radiations (OR) is of major importance in tumor surgery close to the OR to prevent permanent visual field deficits. Diffusion tensor imaging (DTI) based fiber tractography (FT) has become a standard tool to visualize major white matter tracts and to support the prevention of postoperative deficits. Nevertheless, FT of the OR is notoriously challenging due to its high neuroanatomical complexity. METHODS To improve FT of the OR we analyzed the effect of a more complex diffusion model and the effect of different voxel shapes and orientations. MRI data of 21 healthy subjects was acquired using isometric and anisometric voxel sizes and standard and adapted slice angulation. FT was performed using the DTI based approach and an orientation distribution function (ODF) based approach. Results were visually inspected, and fiber tract volumes were compared. RESULTS DTI based FT led to poor results, failing to reconstruct plausible tracts at all in up to 26.11 % of all cases. The ODF based approach resulted in more compound and solid tracts showing also significantly larger tract volumes. Voxel shape or orientation did not influence DTI but ODF based FT. Isometric or anisometric voxels with standard slice orientation revealed highest tract volumes. Adapted orientation in combination with anisometric voxels led to significantly smaller tract volumes. CONCLUSIONS Plausible tractography of the OR can be achieved using ODF based fiber tracking within a clinically feasible timeframe. Voxel shape and orientation seem to be of minor importance and might be kept to isometric voxel for flexible application of FT.
Collapse
Affiliation(s)
- Miriam H Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany - .,Marburg Center for Mind, Brain and Behavior, Marburg, Germany -
| | - Peter M Pietruk
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
21
|
You Y, Joseph C, Wang C, Gupta V, Liu S, Yiannikas C, Chua BE, Chitranshi N, Shen T, Dheer Y, Invernizzi A, Borotkanics R, Barnett M, Graham SL, Klistorner A. Demyelination precedes axonal loss in the transneuronal spread of human neurodegenerative disease. Brain 2019; 142:426-442. [DOI: 10.1093/brain/awy338] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuyi You
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Chitra Joseph
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Chenyu Wang
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Sidong Liu
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Con Yiannikas
- Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Brian E Chua
- Glaucoma Unit, Sydney Eye Hospital, Sydney, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Ting Shen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Yogita Dheer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Alessandro Invernizzi
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Eye Clinic, Department of Biomedical and Clinical Science ‘L. Sacco’, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Robert Borotkanics
- Applied Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, USA
- Department of Biostatistics and Epidemiology, Faculty of Medicine and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Michael Barnett
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| | - Alexander Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Sydney, Australia
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
| |
Collapse
|
22
|
Stereoscopic visual area connectivity: a diffusion tensor imaging study. Surg Radiol Anat 2018; 40:1197-1208. [PMID: 30088052 DOI: 10.1007/s00276-018-2076-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To study the white matter tracts connecting the different stereoscopic visual areas of the brain by diffusion tensor imaging. METHODS In a previous study, we identified the cortical activations to a visual 3D stimulation in 12 subjects using functional MRI (fMRI). These areas of cortical activations [V5, V6, lateral occipital complex (LOC) and intra parietal sulcus areas (IPS)] in addition to the lateral geniculate nucleus (LGN) and the primary visual area V1 were chosen as regions of interest (ROIs). We studied by deterministic tractography the connections existing between these ROIs. RESULTS Found connections were divided into three groups. The first group entails the geniculo-extrastriate connections. LGN was connected to V5, V6, IPS and LOC. These fibers course in the inferior longitudinal fascicule. The second group comprises the associative fibers. V1 was connected to V5 and LOC through the transverse occipital fascicule on one hand, and, to V6 and IPS through the stratum proprium cuni on the other hand. Connections between V5 and LOC, and V6 and IPS course within the vertical occipital fascicule. The third group contains commissural fibers. Forceps major entailed the connections between both V1, both V6, both IPS and IPS and contralateral V6. LGN was connected to contralateral LGN, V1, V6, IPS and LOC. CONCLUSIONS We have elucidated numerous connections between the visual areas and the LGN. Generalization of these results to the remainder of the population must remain prudent due to the limited number of subjects in this study.
Collapse
|
23
|
De Benedictis A, Nocerino E, Menna F, Remondino F, Barbareschi M, Rozzanigo U, Corsini F, Olivetti E, Marras CE, Chioffi F, Avesani P, Sarubbo S. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences. World Neurosurg 2018; 115:e279-e291. [PMID: 29660551 DOI: 10.1016/j.wneu.2018.04.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. METHODS The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. RESULTS We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. CONCLUSIONS Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| | - Erica Nocerino
- Theoretical Physics ETH Zürich, Zurich, Switzerland; LSIS Laboratory-Laboratoire des Sciences de l'Information et des Systèmes, I&M Team, Images & Models AMU, Aix-Marseille Université POLYTECH, Marseille, France
| | - Fabio Menna
- 3D Optical Metrology (3DOM) Unit, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Fabio Remondino
- 3D Optical Metrology (3DOM) Unit, Bruno Kessler Foundation (FBK), Trento, Italy
| | | | - Umberto Rozzanigo
- Department of Radiology, Neuroradiology Unit, "S. Chiara" Hospital, Trento APSS, Italy
| | - Francesco Corsini
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| | - Emanuele Olivetti
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Mattarello (TN), Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Franco Chioffi
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| | - Paolo Avesani
- Neuroinformatics Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Mattarello (TN), Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity (SFC) Lab Project, "S. Chiara" Hospital, Trento APSS, Italy
| |
Collapse
|
24
|
Wang C, Klistorner A, Ly L, Barnett MH. White matter tract-specific quantitative analysis in multiple sclerosis: Comparison of optic radiation reconstruction techniques. PLoS One 2018; 13:e0191131. [PMID: 29342192 PMCID: PMC5771610 DOI: 10.1371/journal.pone.0191131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022] Open
Abstract
The posterior visual pathway is commonly affected by multiple sclerosis (MS) pathology that results in measurable clinical and electrophysiological impairment. Due to its highly structured retinotopic mapping, the visual pathway represents an ideal substrate for investigating patho-mechanisms in MS. Therefore, a reliable and robust imaging segmentation method for in-vivo delineation of the optic radiations (OR) is needed. However, diffusion-based tractography approaches, which are typically used for OR segmentation are confounded by the presence of focal white matter lesions. Current solutions require complex acquisition paradigms and demand expert image analysis, limiting application in both clinical trials and clinical practice. In the current study, using data acquired in a clinical setting on a 3T scanner, we optimised and compared two approaches for optic radiation (OR) reconstruction: individual probabilistic tractography-based and template-based methods. OR segmentation results were applied to subjects with MS and volumetric and diffusivity parameters were compared between OR segmentation techniques. Despite differences in reconstructed OR volumes, both OR lesion volume and OR diffusivity measurements in MS subjects were highly comparable using optimised probabilistic tractography-based, and template-based, methods. The choice of OR reconstruction technique should be determined primarily by the research question and the nature of the available dataset. Template-based approaches are particularly suited to the semi-automated analysis of large image datasets and have utility even in the absence of dMRI acquisitions. Individual tractography methods, while more complex than template based OR reconstruction, permit measurement of diffusivity changes along fibre bundles that are affected by specific MS lesions or other focal pathologies.
Collapse
Affiliation(s)
- Chenyu Wang
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Klistorner
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Linda Ly
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Michael H. Barnett
- Sydney Neuroimaging Analysis Centre, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
25
|
Agarwal V, Malcolm JG, Pradilla G, Barrow DL. Tractography for Optic Radiation Preservation in Transcortical Approaches to Intracerebral Lesions. Cureus 2017; 9:e1722. [PMID: 29188166 PMCID: PMC5705171 DOI: 10.7759/cureus.1722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We present a case of intraventricular meningioma resected via a transcortical approach using tractography for optic radiation and arcuate fasciculus preservation. We include a review of the literature. A 54-year-old woman with a history of breast cancer presented with gait imbalance. Workup revealed a mass in the atrium of the left lateral ventricle consistent with a meningioma. Whole brain automated diffusion tensor imaging (DTI) was used to plan a transcortical resection while sparing the optic radiations and arcuate fasciculus. A left posterior parietal craniotomy was performed using the Synaptive BrightMatter™ frameless navigation (Synaptive Medical, Toronto, Canada) to minimally disrupt the white matter pathways. A gross total resection was achieved. Postoperatively, the patient had temporary right upper extremity weakness, which improved, and her visual fields and speech remained intact. Pathology confirmed a World Health Organization (WHO) Grade I meningothelial meningioma. While a thorough understanding of cortical anatomy is essential for safe resection of eloquent or deep-seated lesions, significant variability in fiber bundles, such as optic radiations and the arcuate fasciculus, necessitates a more individualized understanding of a patient's potential surgical risk. The addition of enhanced DTI to the neurosurgeon's armamentarium may allow for more complete resections of difficult intracerebral lesions while minimizing complications, such as visual deficit.
Collapse
Affiliation(s)
- Vijay Agarwal
- Department of Neurosurgery, Emory University School of Medicine
| | - James G Malcolm
- Department of Neurosurgery, Emory University School of Medicine
| | | | - Daniel L Barrow
- Department of Neurological Surgery, Emory University School of Medicine
| |
Collapse
|
26
|
Meesters S, Ossenblok P, Wagner L, Schijns O, Boon P, Florack L, Vilanova A, Duits R. Stability metrics for optic radiation tractography: Towards damage prediction after resective surgery. J Neurosci Methods 2017; 288:34-44. [PMID: 28648721 PMCID: PMC5538260 DOI: 10.1016/j.jneumeth.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND An accurate delineation of the optic radiation (OR) using diffusion MR tractography may reduce the risk of a visual field deficit after temporal lobe resection. However, tractography is prone to generate spurious streamlines, which deviate strongly from neighboring streamlines and hinder a reliable distance measurement between the temporal pole and the Meyer's loop (ML-TP distance). NEW METHOD Stability metrics are introduced for the automated removal of spurious streamlines near the Meyer's loop. Firstly, fiber-to-bundle coherence (FBC) measures can identify spurious streamlines by estimating their alignment with the surrounding streamline bundle. Secondly, robust threshold selection removes spurious streamlines while preventing an underestimation of the extent of the Meyer's loop. Standardized parameter selection is realized through test-retest evaluation of the variability in ML-TP distance. RESULTS The variability in ML-TP distance after parameter selection was below 2mm for each of the healthy volunteers studied (N=8). The importance of the stability metrics is illustrated for epilepsy surgery candidates (N=3) for whom the damage to the Meyer's loop was evaluated by comparing the pre- and post-operative OR reconstruction. The difference between predicted and observed damage is in the order of a few millimeters, which is the error in measured ML-TP distance. COMPARISON WITH EXISTING METHOD(S) The stability metrics are a novel method for the robust estimate of the ML-TP distance. CONCLUSIONS The stability metrics are a promising tool for clinical trial studies, in which the damage to the OR can be related to the visual field deficit that may occur after epilepsy surgery.
Collapse
Affiliation(s)
- Stephan Meesters
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands.
| | - Pauly Ossenblok
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands
| | - Louis Wagner
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Olaf Schijns
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Netherlands
| | - Paul Boon
- Academic Center for Epileptology Kempenhaeghe & Maastricht University Medical Center, Netherlands
| | - Luc Florack
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Anna Vilanova
- Department of Mathematics and Computer Science, Delft University of Technology, Netherlands; Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| | - Remco Duits
- Department of Mathematics & Computer Science, Eindhoven University of Technology, Netherlands
| |
Collapse
|
27
|
Kalinin P, Sharipov O, Kutin M, Fomichev D, Gavrjushin A, Polev G, Shults Y, Avdeeva K. Amygdalohippocampectomy via the Lateral Extended Transsphenoidal Endoscopic Approach Through the Pterygopalatine Fossa: An Anatomic Study. World Neurosurg 2017; 103:457-464. [DOI: 10.1016/j.wneu.2017.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
28
|
Cortical and subcortical functional neuroanatomy for low-grade glioma surgery. Neurochirurgie 2017; 63:117-121. [PMID: 28506483 DOI: 10.1016/j.neuchi.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 10/23/2016] [Indexed: 11/22/2022]
Abstract
Knowledge of the encephalon anatomy is crucial for neurosurgical practice, especially the main cortical functional structures and their connections. General organisation of the encephalon is presented with frontal, parietal, occipital, temporal, limbic and insular lobes and their Brodmann correspondence. Secondly, subcortical anatomy will be presented with main white matter fasciculi in three separated categories: association, commissural and projection fibers. Main association fibers are inferior occipitofrontal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, uncinate fasciculus, and cingulum. Commissural fibers include anterior commissure, corpus callosum and fornix. Projection fibers are internal capsule and optic radiations.
Collapse
|
29
|
Risk factors for neurological deficits after surgical treatment of brain arteriovenous malformations supplied by deep perforating arteries. Neurosurg Rev 2017; 41:255-265. [PMID: 28378108 DOI: 10.1007/s10143-017-0848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
The treatment of brain arteriovenous malformations supplied by deep perforating arteries (PA) (P-BAVM) remains challenging. The aims of this study were to determine the outcomes after surgical treatment in patients with P-BAVMs and to identify the risk factors associated with postoperative neurological deficits. We retrospectively reviewed the medical charts and imaging records of 228 consecutive patients with BAVMs who underwent microsurgical resection of their BAVMs at Beijing Tiantan Hospital between September 2012 and March 2016. Patients were included if the BAVMs were totally or partially supplied by PA. All patients had undergone preoperative diffusion tensor imaging (DTI), MRI, 3D time-of-flight MRA (3D TOF-MRA) and digital subtraction angiography (DSA) followed by resection. Both functional and angioarchitectural factors were analysed with respect to the postoperative neurological deficits, including motor deficits, visual field deficits and aphasia. Statistical analysis was performed using the statistical package SPSS (version 20.0.0, IBM Corp.). Fifty-nine patients with P-BAVMs were enrolled. Radical obliteration was achieved in all P-BAVMs according to postoperative DSA. Forty-five (76.3%) patients obtained neurological deficits 1 week after surgery. At a mean follow-up of 14.7 ± 9.4 (3-30) months after surgery, 34 patients (57.6%) had long-term neurological deficits. Multivariable logistic regression analyses showed that a shorter lesion-to-eloquent fibre tracts distance (LFD) was an independent risk factor for short- (P = 0.014) and long-term (P = 0.013) neurological deficits. The cut-off point of LFD for long-term neurological deficits was 5.20 mm. The predominant supply of the PA (P = 0.008) was an independent risk factor for long-term neurological deficits. This study identified a high risk of surgical morbidity for P-BAVMs. The predominant supply of the PA and a shorter LFD are crucial risk factors for postoperative neurological deficits in patients with P-BAVMs.
Collapse
|
30
|
Koutsarnakis C, Liakos F, Kalyvas AV, Liouta E, Emelifeonwu J, Kalamatianos T, Sakas DE, Johnson E, Stranjalis G. Approaching the Atrium Through the Intraparietal Sulcus: Mapping the Sulcal Morphology and Correlating the Surgical Corridor to Underlying Fiber Tracts. Oper Neurosurg (Hagerstown) 2017; 13:503-516. [DOI: 10.1093/ons/opw037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKROUND: Although the operative corridor used during the intraparietal transsulcal approach to the atrium has been previously investigated, most anatomical studies focus on its relationship to the optic radiations.
OBJECTIVE: To study the intraparietal sulcus (IPS) morphology and to explore the subcortical anatomy with regard to the surgical trajectory used during the intraparietal transsulcal tranventricular approach.
METHODS: Twenty-five adult, formalin fixed, cerebral hemispheres were investigated. Fifteen underwent the Klingler procedure and were dissected in a lateromedial direction using the fiber microdissection technique. The trajectory of the dissection resembled that of real operative settings. The remaining 10 hemispheres were cut along the longitudinal axis of the sulcus in order to correlate its surface anatomy to corresponding parts of the ventricular system.
RESULTS: IPS demonstrated an interrupted course in 36% of the specimens while its branching pattern was variable. The sulcus anterior half was found to overly the atrium in all occasions. Four discrete, consecutive white matter layers were identified en route to the atrium, ie, the arcuate fibers, the arcuate segment of the superior longitudinal fasciculus, the corona radiata and tapetum, with the arcuate segment being near to the dissection trajectory.
CONCLUSION: Given the angle of brain transgression during the intraparietal approach, we found the optimal dissection area to be the very middle of the sulcus. The IPS–postcentral sulcus meeting point, in contrast to previous thought, proved to risk potential injury to the arcuate segment of the superior longitudinal fasciculus, thus affecting surgical outcome.
Collapse
Affiliation(s)
| | - Faidon Liakos
- Department of Neurosurgery, University of Athens, Evangelismos Hospital, Athens, Greece
| | | | - Evangelia Liouta
- Hellenic Center for Neurosur-gical Research “Petros Kokkalis,” Athens, Greece
| | - John Emelifeonwu
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
| | | | - Damianos E. Sakas
- Department of Neurosurgery, University of Athens, Evangelismos Hospital, Athens, Greece
| | - Elizabeth Johnson
- Laboratory of Education and Research in Neurosciences, Department of Anatomy, University of Athens, Athens, Greece
| | - George Stranjalis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
31
|
Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F. The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J Vis 2017; 17:4. [PMID: 28196374 PMCID: PMC5317208 DOI: 10.1167/17.2.4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data.
Collapse
Affiliation(s)
- Ariel Rokem
- The University of Washington eScience Institute, Seattle, WA, ://arokem.org
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, JapanGraduate School of Frontier Biosciences, Osaka University, Suita-shi,
| | | | | | | | | | - Ione Fine
- University of Washington, Seattle, WA,
| | | | | |
Collapse
|
32
|
Chamberland M, Scherrer B, Prabhu SP, Madsen J, Fortin D, Whittingstall K, Descoteaux M, Warfield SK. Active delineation of Meyer's loop using oriented priors through MAGNEtic tractography (MAGNET). Hum Brain Mapp 2017; 38:509-527. [PMID: 27647682 PMCID: PMC5333642 DOI: 10.1002/hbm.23399] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/04/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maxime Chamberland
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of ScienceUniversity of SherbrookeSherbrookeCanada
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Benoit Scherrer
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - Sanjay P. Prabhu
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - Joseph Madsen
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| | - David Fortin
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Division of Neurosurgery and Neuro‐Oncology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Kevin Whittingstall
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
- Department of Diagnostic Radiology, Faculty of Medicine and Health ScienceUniversity of SherbrookeSherbrookeCanada
| | - Maxime Descoteaux
- Centre de Recherche CHUSUniversity of SherbrookeSherbrookeCanada
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Faculty of ScienceUniversity of SherbrookeSherbrookeCanada
| | - Simon K. Warfield
- Department of RadiologyBoston Children's Hospital and Harvard Medical School300 Longwood AvenueBostonMassachusettsUSA
| |
Collapse
|
33
|
Hilmani S, Houass Y, El Azhari A. Paraventricular meningioma revealed by mental disorder. Surg Neurol Int 2016; 7:S1004-S1007. [PMID: 28144473 PMCID: PMC5234271 DOI: 10.4103/2152-7806.195580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Ventricular meningioma constitutes 2% of intracranial meningioma, representing a challenging disease for neurosurgeons. Although cognitive impairment is one of the major symptoms of ventricular tumors, few studies have reported the details of cognitive impairment before and after their surgical removal. The expected effects on cognitive function should also be considered when choosing a surgical approach. CASE DESCRIPTIONS We report the case of a large lateral ventricle meningioma revealed by cognitive dysfunction and moderate intellectual disability. The patient underwent subtotal resection of the tumor which had partial improvement in cognitive disorders. It is important to precisely assess neuropsychological function in patients with large brain tumors, and judicious preoperative plan, adequate knowledge of anatomy, and use of correct microsurgical techniques are fundamental in achieving complete resection of paraventricular meningioma with low morbidity. CONCLUSION Pre and postoperative precise neuropsychological examinations may identify the potential cognitive impairment and beneficial effects of surgery in patients with large lateral ventricle meningiomas.
Collapse
Affiliation(s)
- Said Hilmani
- Neurosurgical Department, UHC Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Yassine Houass
- Neurosurgical Department, UHC Ibn Rochd, Hassan II University, Casablanca, Morocco
| | - Abdessamad El Azhari
- Neurosurgical Department, UHC Ibn Rochd, Hassan II University, Casablanca, Morocco
| |
Collapse
|
34
|
Kadri PAS, de Oliveira JG, Krayenbühl N, Türe U, de Oliveira EPL, Al-Mefty O, Ribas GC. Surgical Approaches to the Temporal Horn: An Anatomic Analysis of White Matter Tract Interruption. Oper Neurosurg (Hagerstown) 2016; 13:258-270. [DOI: 10.1093/ons/opw011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/20/2016] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND: Surgical access to the temporal horn is necessary to treat tumors and vascular lesions, but is used mainly in patients with mediobasal temporal epilepsy. The surgical approaches to this cavity fall into 3 primary categories: lateral, inferior, and transsylvian. The current neurosurgical literature has underestimated the interruption of involved fiber bundles and the correlated clinical manifestations.
OBJECTIVE: To delineate the interruption of fiber bundles during the different approaches to the temporal horn.
METHODS: We simulated the lateral (trans-middle temporal gyrus), inferior (transparahippocampal gyrus), and transsylvian approaches in 20 previously frozen, formalin-fixed human brains (40 hemispheres). Fiber dissection was then done along the lateral and inferior aspects under the operating microscope. Each stage of dissection and its respective fiber tract interruption were defined.
RESULTS: The lateral (trans-middle temporal gyrus) approach interrupted “U” fibers, the superior longitudinal fasciculus (inferior arm), occipitofrontal fasciculus (ventral segment), uncinate fasciculus (dorsolateral segment), anterior commissure (posterior segment), temporopontine, inferior thalamic peduncle (posterior fibers), posterior thalamic peduncle (anterior portion), and tapetum fibers. The inferior (transparahippocampal gyrus) approach interrupted “U” fibers, the cingulum (inferior arm), and fimbria, and transected the hippocampal formation. The transsylvian approach interrupted “U” fibers (anterobasal region of the extreme capsule), the uncinate fasciculus (ventromedial segment), and anterior commissure (anterior segment), and transected the anterosuperior aspect of the amygdala.
CONCLUSION: White matter dissection improves our knowledge of the complex anatomy surrounding the temporal horn. Identifying the fiber bundles at risk during each surgical approach adds important information for choosing the appropriate surgical strategy.
Collapse
Affiliation(s)
- Paulo A. S. Kadri
- Division of Neurosurgery, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande-MS, Brazil
- Clinical Anatomy Discipline, Department of Surgery, University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Jean G. de Oliveira
- Division of Cerebrovas-cular and Skull Base Surgery, Center of Neurology and Neurosurgery Associates (CENNA), Hospital Beneficência Por-tuguesa de São Paulo-SP, Brazil
| | | | - Uğur Türe
- Department of Neurosurgery, Yeditepe University, Istanbul, Turkey
| | - Evandro P. L. de Oliveira
- Institute of Neuro-logical Sciences (ICNE), São Paulo-SP, Brazil
- Adjunct Professor of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, USA
| | - Ossama Al-Mefty
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Guilherme C. Ribas
- Clinical Anatomy Discipline, Department of Surgery, University of São Paulo Medical School (FMUSP), São Paulo, Brazil
- Neurosurgeon Albert Einstein Hospital, São Paulo - SP, Brazil
| |
Collapse
|
35
|
Neuroanatomy: The added value of the Klingler method. Ann Anat 2016; 208:187-193. [DOI: 10.1016/j.aanat.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
|
36
|
Lesion-to-Eloquent Fiber Distance Is a Crucial Risk Factor in Presurgical Evaluation of Arteriovenous Malformations in the Temporo-occipital Junction. World Neurosurg 2016; 93:355-64. [DOI: 10.1016/j.wneu.2016.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
|
37
|
Faust K, Vajkoczy P. Distinct displacements of the optic radiation based on tumor location revealed using preoperative diffusion tensor imaging. J Neurosurg 2016; 124:1343-52. [DOI: 10.3171/2015.3.jns141584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
Visual field defects (VFDs) due to optic radiation (OR) injury are a common complication of temporal lobe surgery. The authors analyzed whether preoperative visualization of the optic tract would reduce this complication by influencing the surgeon’s decisions about surgical approaches. The authors also determined whether white matter shifts caused by temporal lobe tumors would follow predetermined patterns based on the tumor’s topography.
METHODS
One hundred thirteen patients with intraaxial tumors of the temporal lobe underwent preoperative diffusion tensor imaging (DTI) fiber tracking. In 54 of those patients, both pre- and postoperative VFDs were documented using computerized perimetry. Brainlab’s iPlan 2.5 navigation software was used for tumor reconstruction and fiber visualization after the fusion of DTI studies with their respective magnetization-prepared rapid gradient-echo (MP-RAGE) images. The tracking algorithm was as follows: minimum fiber length 100 mm, fractional anisotropy threshold 0.1. The lateral geniculate body and the calcarine cortex were employed as tract seeding points. Shifts of the OR caused by tumor were visualized in comparison with the fiber tracking of the patient’s healthy hemisphere.
RESULTS
Temporal tumors produced a dislocation of the OR but no apparent fiber destruction. The shift of white matter tracts followed fixed patterns dependent on tumor location: Temporolateral tumors resulted in a medial fiber shift, and thus a lateral transcortical approach is recommended. Temporopolar tumors led to a posterior shift, always including Meyer’s loop; therefore, a pterional transcortical approach is recommended. Temporomesial tumors produced a lateral and superior shift; thus, a transsylvian-transcisternal approach will result in maximum sparing of the fibers. Temporocentric tumors also induced a lateral fiber shift. For those tumors, a transsylvian-transopercular approach is recommended. Tumors of the fusiform gyrus generated a superior (and lateral) shift; consequently, a subtemporal approach is recommended to avoid white matter injury. In applying the approaches recommended above, new or worsened VFDs occurred in 4% of the patient cohort. Total neurological and surgical morbidity were less than 10%. In 90% of patients, gross-total resection was accomplished.
CONCLUSIONS
Preoperative visualization of the OR may help in avoiding postoperative VFDs.
Collapse
|
38
|
Fox J, Kraemer M, Schormann T, Dabringhaus A, Hirsch J, Eisele P, Szabo K, Weiss C, Amann M, Weier K, Naegelin Y, Kappos L, Gass A. Individual Assessment of Brain Tissue Changes in MS and the Effect of Focal Lesions on Short-Term Focal Atrophy Development in MS: A Voxel-Guided Morphometry Study. Int J Mol Sci 2016; 17:489. [PMID: 27043553 PMCID: PMC4848945 DOI: 10.3390/ijms17040489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
We performed voxel-guided morphometry (VGM) investigating the mechanisms of brain atrophy in multiple sclerosis (MS) related to focal lesions. VGM maps detect regional brain changes when comparing 2 time points on high resolution T1-weighted (T1w) magnetic resonace imaging (MRI). Two T1w MR datasets from 92 relapsing-remitting MS patients obtained 12 months apart were analysed with VGM. New lesions and volume changes of focal MS lesions as well as in the surrounding tissue were identified by visual inspection on colour coded VGM maps. Lesions were dichotomized in active and inactive lesions. Active lesions, defined by either new lesions (NL) (volume increase > 5% in VGM), chronic enlarging lesions (CEL) (pre-existent T1w lesions with volume increase > 5%), or chronic shrinking lesions (CSL) (pre-existent T1w lesions with volume reduction > 5%) in VGM, were accompanied by tissue shrinkage in surrounding and/or functionally related regions. Volume loss within the corpus callosum was highly correlated with the number of lesions in its close proximity. Volume loss in the lateral geniculate nucleus was correlated with lesions along the optic radiation. VGM analysis provides strong evidence that all active lesion types (NL, CEL, and CSL) contribute to brain volume reduction in the vicinity of lesions and/or in anatomically and functionally related areas of the brain.
Collapse
Affiliation(s)
- Jan Fox
- Universitätsmedizin Mannheim, Department of Neurology, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Matthias Kraemer
- Hospital zum Heiligen Geist, Department for Early Rehabilitation, Kempen 47906, Germany.
| | - Thorsten Schormann
- Institute for Anatomy, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Düsseldorf 40001, Germany.
| | - Andreas Dabringhaus
- Deutsches Institut für Medizinische Dokumentation und Information, Waisenhausgasse 36-38a, Köln 50676, Germany.
| | - Jochen Hirsch
- Fraunhofer MEVIS, Institut für Bildgestützte Medizin, Universitätsallee 29, Bremen 28359, Germany.
| | - Philipp Eisele
- Universitätsmedizin Mannheim, Department of Neurology, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Kristina Szabo
- Universitätsmedizin Mannheim, Department of Neurology, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| | - Christel Weiss
- Department of Biometry and Statistics, Medical Faculty Mannheim, Ruprecht-Karls University Heidelberg, Mannheim 68167, Germany.
| | - Michael Amann
- MIAC, Basel, Universitätsspital Basel, Mittlere Strasse 83, Basel 4056, Switzerland.
| | - Katrin Weier
- Neurology, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, Petersgraben 4, Basel 4052, Switzerland.
| | - Yvonne Naegelin
- Neurology, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, Petersgraben 4, Basel 4052, Switzerland.
| | - Ludwig Kappos
- Neurology, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, Petersgraben 4, Basel 4052, Switzerland.
| | - Achim Gass
- Universitätsmedizin Mannheim, Department of Neurology, Theodor-Kutzer-Ufer 1-3, Mannheim 68167, Germany.
| |
Collapse
|
39
|
Mandel M, Figueiredo EG, Mandel SA, Tutihashi R, Teixeira MJ. Minimally Invasive Transpalpebral Endoscopic-Assisted Amygdalohippocampectomy. Oper Neurosurg (Hagerstown) 2015; 13:2-14. [DOI: 10.1227/neu.0000000000001179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND: Although anterior temporal lobectomy may be a definitive surgical treatment for epileptic patients with mesial temporal sclerosis, it often results in verbal, visual, and cognitive dysfunction. Studies have consistently reported the advantages of selective procedures compared with a standard anterior temporal lobectomy, mainly in terms of neuropsychological outcomes.
OBJECTIVE: To describe a new technique to perform a selective amygdalohippocampectomy (SAH) through a transpalpebral approach with endoscopic assistance.
METHODS: A mini fronto-orbitozygomatic craniotomy through an eyelid incision was performed in 8 patients. Both a microscope and neuroendoscope were used in the surgeries. An anterior SAH was performed in 5 patients who had the diagnosis of temporal lobe epilepsy with mesial temporal sclerosis. One patient had a mesial temporal lesion suggesting a ganglioglioma. Two patients presented mesial temporal cavernomas with seizures originating from the temporal lobe.
RESULTS: The anterior approach allowed removal of the amygdala and hippocampus. The image-guided system and postoperative evaluation confirmed that the amygdala may be accessed and completely removed through this route. The hippocampus was partially resected. All patients have discontinued medication with no more epileptic seizures. The patients with cavernomas and ganglioglioma also had their lesions completely removed. One-year follow-up has shown no visible scars.
CONCLUSION: The anterior route for SAH is a rational and direct approach to the mesial temporal lobe. Anterior SAH is a safe, less invasive procedure that provides early identification of critical vascular and neural structures in the basal cisterns. The transpalpebral approach provides a satisfactory cosmetic outcome.
Collapse
Affiliation(s)
- Mauricio Mandel
- Department of Neurosurgery, Hospital das Clínicas of University of São Paulo Medical School, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurosurgery, Hospital das Clínicas of University of São Paulo Medical School, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
| | - Suzana Abramovicz Mandel
- Department of Neurosurgery, Hospital das Clínicas of University of São Paulo Medical School, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rafael Tutihashi
- Hospital Sírio Libanês, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Plastic Surgery, Hospital das Clínicas of University of São Paulo Medical School, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurosurgery, Hospital das Clínicas of University of São Paulo Medical School, São Paulo, Brazil
- Hospital Sírio Libanês, São Paulo, Brazil
| |
Collapse
|
40
|
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. Neuroimage 2015; 125:767-779. [PMID: 26551261 DOI: 10.1016/j.neuroimage.2015.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 12/30/2022] Open
Abstract
Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis.
Collapse
|
41
|
Koutsarnakis C, Liakos F, Liouta E, Themistoklis K, Sakas D, Stranjalis G. The cerebral isthmus: fiber tract anatomy, functional significance, and surgical considerations. J Neurosurg 2015; 124:450-62. [PMID: 26361277 DOI: 10.3171/2015.3.jns142680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The cerebral isthmus is the white matter area located between the periinsular sulcus and the lateral ventricle. Studies demonstrating the fiber tract and topographic anatomy of this entity are lacking in current neurosurgical literature. Hence, the authors' primary aim was to describe the microsurgical white matter anatomy of the cerebral isthmus by using the fiber dissection technique, and they discuss its functional significance. In addition, they sought to investigate its possible surgical utility in approaching lesions located in or adjacent to the lateral ventricle. METHODS This study was divided into 2 parts and included 30 formalin-fixed cerebral hemispheres, 5 of which were injected with colored silicone. In the first part, 15 uncolored specimens underwent the Klinger's procedure and were dissected in a lateromedial direction at the level of the superior, inferior, and anterior isthmuses, and 10 were used for coronal and axial cuts. In the second part, the injected specimens were used to investigate the surgical significance of the superior isthmus in accessing the frontal horn of the lateral ventricle. RESULTS The microsurgical anatomy of the anterior, superior, and inferior cerebral isthmuses was carefully studied and recorded both in terms of topographic and fiber tract anatomy. In addition, the potential role of the proximal part of the superior isthmus as an alternative safe surgical corridor to the anterior part of the lateral ventricle was investigated. CONCLUSIONS Using the fiber dissection technique along with coronal and axial cuts in cadaveric brain specimens remains a cornerstone in the acquisition of thorough anatomical knowledge of narrow white matter areas such as the cerebral isthmus. The surgical significance of the superior isthmus in approaching the frontal horn of the lateral ventricle is stressed, but further studies must be carried out to elucidate its role in ventricular surgery.
Collapse
Affiliation(s)
- Christos Koutsarnakis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Faidon Liakos
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - Konstantinos Themistoklis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| | - Damianos Sakas
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and
| | - George Stranjalis
- Department of Neurosurgery, University of Athens, Evangelismos Hospital;,Hellenic Center for Neurosurgical Research "Petros Kokkalis;" and.,Microneurosurgery Laboratory, Evangelismos Hospital, Athens, Greece
| |
Collapse
|
42
|
Nooij RP, Hoving EW, van Hulzen ALJ, Cornelissen FW, Renken RJ. Preservation of the optic radiations based on comparative analysis of diffusion tensor imaging tractography and anatomical dissection. Front Neuroanat 2015; 9:96. [PMID: 26300739 PMCID: PMC4523829 DOI: 10.3389/fnana.2015.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/06/2015] [Indexed: 11/14/2022] Open
Abstract
Background: Visualization of the precise course of the visual pathways is relevant to prevent damage that may inflict visual field deficits during neurosurgical resections. In particular the optic radiations (OR) are susceptible to such damage during neurosurgery. Cortical pathways can be mapped in vivo, by using Diffusion Tensor Imaging (DTI). Visualization of these pathways would be potentially helpful to prevent neurosurgical visual morbidity. In this study an anatomical dissection of the visual pathways was compared to DTI fiber tractography (DTI-FT) data of four human brains. The feasibility of a definition of a Safety Zone is investigated. Methods: Four adult brains were dissected using Klingler's fiber dissection method, which allowed preparation of the OR. Measurements before and after dissection were used to establish distances from the cortex to the OR. DTI-scans were also obtained from these brains to determine the same distances. Results: Measurements from specific landmark points on the cortex to the lateral border of the OR were performed in four brains. Analysis through DTI tractography corresponded with the dissection results. Based on the combined results of both dissection and DTI-FT, we defined a quantitative surgical Safety Zone with respect to various anatomical landmarks (in particular the ventricle system). Conclusion: We conclude that there is a good correlation between the visualizations of the optic pathways based on dissection and DTI. Furthermore, we conclude that defining a neurosurgical Safety Zone which could preserve the integrity of the OR during surgery, based on the combination of DTI-FT images and dissection is feasible.
Collapse
Affiliation(s)
- Roland P Nooij
- Department of Neurosurgery, University Medical Center Groningen Groningen, Netherlands
| | - Eelco W Hoving
- Department of Neurosurgery, University Medical Center Groningen Groningen, Netherlands
| | - Arjen L J van Hulzen
- Department of Radiology, University Medical Center Groningen Groningen, Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, Neuroimaging Center Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Remco J Renken
- Laboratory of Experimental Ophthalmology, Neuroimaging Center Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
43
|
Koutsarnakis C, Liakos F, Kalyvas AV, Sakas DE, Stranjalis G. A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection. World Neurosurg 2015; 84:483-93. [DOI: 10.1016/j.wneu.2015.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
|
44
|
Goga C, Türe U. The anatomy of Meyer's loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection. J Neurosurg 2015; 122:1253-62. [DOI: 10.3171/2014.12.jns14281] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The goal in this study was to explore and further refine comprehension of the anatomical features of the temporal loop, known as Meyer's loop.
METHODS
The lateral and inferior aspects of 20 previously frozen, formalin-fixed human brains were dissected under the operating microscope by using fiber microdissection.
RESULTS
A loop of the fibers in the anterior temporal region was clearly demonstrated in all dissections. This temporal loop, or Meyer's loop, is commonly known as the anterior portion of the optic radiation. Fiber microdissection in this study, however, revealed that various projection fibers that emerge from the sublentiform portion of the internal capsule (IC-SL), which are the temporopontine fibers, occipitopontine fibers, and the posterior thalamic peduncle (which includes the optic radiation), participate in this temporal loop and become a part of the sagittal stratum. No individual optic radiation fibers could be differentiated in the temporal loop. The dissections also disclosed that the anterior extension and angulation of the temporal loop vary significantly.
CONCLUSIONS
The fiber microdissection technique provides clear evidence that a loop in the anterior temporal region exists, but that this temporal loop is not formed exclusively by the optic radiation. Various projection fibers of the IC-SL, of which the optic radiation is only one of the several components, display this common course. The inherent limitations of the fiber dissection technique preclude accurate differentiation among individual fibers of the temporal loop, such as the optic radiation fibers.
Collapse
Affiliation(s)
- Cristina Goga
- 1Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; and
- 2Department of Anatomy, University of Medicine and Pharmacy Targu Mures, Romania
| | - Uğur Türe
- 1Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; and
| |
Collapse
|
45
|
How Klingler's dissection permits exploration of brain structural connectivity? An electron microscopy study of human white matter. Brain Struct Funct 2015; 221:2477-86. [PMID: 25905864 DOI: 10.1007/s00429-015-1050-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
Abstract
The objective of this study is to explore histological and ultrastructural changes induced by Klingler's method. Five human brains were prepared. First, the effects of freezing-defrosting on white matter were explored with optical microscopy on corpus callosum samples of two brains; one prepared in accordance with the description of Klingler (1956) and the other without freezing-defrosting. Then, the combined effect of formalin fixation and freezing-defrosting was explored with transmission electron microscopy (EM) on samples of cingulum from one brain: samples from one hemisphere were fixed in paraformaldehyde-glutaraldehyde (para/gluta), other samples from the other hemisphere were fixed in formalin; once fixed, half of the samples were frozen-defrosted. Finally, the effect of dissection was explored from three formalin-fixed brains: one hemisphere of each brain was frozen-defrosted; samples of the corpus callosum were dissected before preparation for scanning EM. Optical microscopy showed enlarged extracellular space on frozen samples. Transmission EM showed no significant alteration of white matter ultrastructure after formalin or para/gluta fixation. Freezing-defrosting created extra-axonal lacunas, larger on formalin-fixed than on para/gluta-fixed samples. In all cases, myelin sheaths were preserved, allowing maintenance of axonal integrity. Scanning EM showed the destruction of most of the extra-axonal structures after freezing-defrosting and the preservation of most of the axons after dissection. Our results are the first to highlight the effects of Klingler's preparation and dissection on white matter ultrastructure. Preservation of myelinated axons is a strong argument to support the reliability of Klingler's dissection to explore the structure of human white matter.
Collapse
|
46
|
Lv X, Chen X, Xu B, Zhang J, Zheng G, Li J, Li F, Sun G. Magnetic resonance diffusion tensor imaging-based evaluation of optic-radiation shape and position in meningioma. Neural Regen Res 2015; 7:686-91. [PMID: 25745464 PMCID: PMC4347009 DOI: 10.3969/j.issn.1673-5374.2012.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/03/2012] [Indexed: 11/30/2022] Open
Abstract
Employing magnetic resonance diffusion tensor imaging, three-dimensional white-matter imaging and conventional magnetic resonance imaging can demonstrate the tumor parenchyma, peritumoral edema and compression on surrounding brain tissue. A color-coded tensor map and three-dimensional tracer diagram were applied to clearly display the optic-radiation location, course and damage. Results showed that the altered anisotropy values of meningioma patients corresponded with optic-radiation shape, size and position on both sides. Experimental findings indicate that the magnetic resonance diffusion tensor imaging technique is a means of tracing and clearly visualizing the optic radiation.
Collapse
Affiliation(s)
- Xueming Lv
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Xiaolei Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Bainan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Jiashu Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Gang Zheng
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Jinjiang Li
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Fangye Li
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| | - Guochen Sun
- Department of Neurosurgery, Chinese PLA General Hospital, Chinese PLA Postgraduate Medical School, Beijing 100853, China
| |
Collapse
|
47
|
Sarubbo S, De Benedictis A, Milani P, Paradiso B, Barbareschi M, Rozzanigo U, Colarusso E, Tugnoli V, Farneti M, Granieri E, Duffau H, Chioffi F. The course and the anatomo-functional relationships of the optic radiation: a combined study with 'post mortem' dissections and 'in vivo' direct electrical mapping. J Anat 2014; 226:47-59. [PMID: 25402811 DOI: 10.1111/joa.12254] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 11/28/2022] Open
Abstract
Even if different dissection, tractographic and connectivity studies provided pure anatomical evidences about the optic radiations (ORs), descriptions of both the anatomical structure and the anatomo-functional relationships of the ORs with the adjacent bundles were not reported. We propose a detailed anatomical and functional study with 'post mortem' dissections and 'in vivo' direct electrical stimulation (DES) of the OR, demonstrating also the relationships with the adjacent eloquent bundles in a neurosurgical 'connectomic' perspective. Six human hemispheres (three left, three right) were dissected after a modified Klingler's preparation. The anatomy of the white matter was analysed according to systematic and topographical surgical perspectives. The anatomical results were correlated to the functional responses collected during three resections of tumours guided by cortico-subcortical DES during awake procedures. We identified two groups of fibres forming the OR. The superior component runs along the lateral wall of the occipital horn, the trigone and the supero-medial wall of the temporal horn. The inferior component covers inferiorly the occipital horn and the trigone, the lateral wall of the temporal horn and arches antero-medially to form the Meyer's Loop. The inferior fronto-occipital fascicle (IFOF) covers completely the superior OR along its entire course, as confirmed by the subcortical DES. The inferior longitudinal fascicle runs in a postero-anterior and inferior direction, covering the superior OR posteriorly and the inferior OR anteriorly. The IFOF identification allows the preservation of the superior OR in the anterior temporal resection, avoiding post-operative complete hemianopia. The identification of the superior OR during the posterior temporal, inferior parietal and occipital resections leads to the preservation of the IFOF and of the eloquent functions it subserves. The accurate knowledge of the OR course and the relationships with the adjacent bundles is crucial to optimize quality of resection and functional outcome.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Department of Neurosciences, Division of Neurosurgery, 'S. Chiara' Hospital, Trento, Italy; Biomedical and Surgical Sciences, Section of Neurological Psychiatric and Psychological Sciences, 'S. Anna' University-Hospital, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zemmoura I, Serres B, Andersson F, Barantin L, Tauber C, Filipiak I, Cottier JP, Venturini G, Destrieux C. FIBRASCAN: a novel method for 3D white matter tract reconstruction in MR space from cadaveric dissection. Neuroimage 2014; 103:106-118. [PMID: 25234114 DOI: 10.1016/j.neuroimage.2014.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Diffusion tractography relies on complex mathematical models that provide anatomical information indirectly, and it needs to be validated. In humans, up to now, tractography has mainly been validated by qualitative comparison with data obtained from dissection. No quantitative comparison was possible because Magnetic Resonance Imaging (MRI) and dissection data are obtained in different reference spaces, and because fiber tracts are progressively destroyed by dissection. Here, we propose a novel method and software (FIBRASCAN) that allow accurate reconstruction of fiber tracts from dissection in MRI reference space. METHOD Five human hemispheres, obtained from four formalin-fixed brains were prepared for Klingler's dissection, placed on a holder with fiducial markers, MR scanned, and then dissected to expose the main association tracts. During dissection, we performed iterative acquisitions of the surface and texture of the specimens using a laser scanner and two digital cameras. Each texture was projected onto the corresponding surface and the resulting set of textured surfaces was coregistered thanks to the fiducial holders. The identified association tracts were then interactively segmented on each textured surface and reconstructed from the pile of surface segments. Finally, the reconstructed tracts were coregistered onto ex vivo MRI space thanks to the fiducials. Each critical step of the process was assessed to measure the precision of the method. RESULTS We reconstructed six fiber tracts (long, anterior and posterior segments of the superior longitudinal fasciculus; Inferior fronto-occipital, Inferior longitudinal and uncinate fasciculi) from cadaveric dissection and ported them into ex vivo MRI reference space. The overall accuracy of the method was of the order of 1mm: surface-to-surface registration=0.138mm (standard deviation (SD)=0.058mm), deformation of the specimen during dissection=0.356mm (SD=0.231mm), and coregistration surface-MRI=0.6mm (SD=0.274mm). The spatial resolution of the method (distance between two consecutive surface acquisitions) was 0.345mm (SD=0.115mm). CONCLUSION This paper presents the robustness of a novel method, FIBRASCAN, for accurate reconstruction of fiber tracts from dissection in the ex vivo MR reference space. This is a major step toward quantitative comparison of MR tractography with dissection results.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France; Université François-Rabelais de Tours, Laboratoire d'Anatomie, Tours, France; CHRU de Tours, Service de Neurochirurgie, Tours, France.
| | - Barthélémy Serres
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France; Université François-Rabelais de Tours, Laboratoire d'Informatique, EA6300 Tours, France
| | - Frédéric Andersson
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Laurent Barantin
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Clovis Tauber
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Isabelle Filipiak
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Jean-Philippe Cottier
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France; CHRU de Tours, Service de Neuroradiologie, Tours, France
| | - Gilles Venturini
- Université François-Rabelais de Tours, Laboratoire d'Informatique, EA6300 Tours, France
| | - Christophe Destrieux
- INSERM U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France; Université François-Rabelais de Tours, Laboratoire d'Anatomie, Tours, France; CHRU de Tours, Service de Neurochirurgie, Tours, France
| |
Collapse
|
49
|
De Benedictis A, Duffau H, Paradiso B, Grandi E, Balbi S, Granieri E, Colarusso E, Chioffi F, Marras CE, Sarubbo S. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 2014; 225:132-51. [PMID: 24975421 DOI: 10.1111/joa.12204] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 12/25/2022] Open
Abstract
The temporo-parieto-occipital (TPO) junction is a complex brain territory heavily involved in several high-level neurological functions, such as language, visuo-spatial recognition, writing, reading, symbol processing, calculation, self-processing, working memory, musical memory, and face and object recognition. Recent studies indicate that this area is covered by a thick network of white matter (WM) connections, which provide efficient and multimodal integration of information between both local and distant cortical nodes. It is important for neurosurgeons to have good knowledge of the three-dimensional subcortical organisation of this highly connected region to minimise post-operative permanent deficits. The aim of this dissection study was to highlight the subcortical functional anatomy from a topographical surgical perspective. Eight human hemispheres (four left, four right) obtained from four human cadavers were dissected according to Klingler's technique. Proceeding latero-medially, the authors describe the anatomical courses of and the relationships between the main pathways crossing the TPO. The results obtained from dissection were first integrated with diffusion tensor imaging reconstructions and subsequently with functional data obtained from three surgical cases, all resection of infiltrating glial tumours using direct electrical mapping in awake patients. The subcortical limits for performing safe lesionectomies within the TPO region are as follows: within the parietal region, the anterior horizontal part of the superior longitudinal fasciculus and, more deeply, the arcuate fasciculus; dorsally, the vertical projective thalamo-cortical fibres. For lesions located within the temporal and occipital lobes, the resection should be tailored according to the orientation of the horizontal associative pathways (the inferior fronto-occipital fascicle, inferior longitudinal fascicle and optic radiation). The relationships between the WM tracts and the ventricle system were also examined. These results indicate that a detailed anatomo-functional awareness of the WM architecture within the TPO area is mandatory when approaching intrinsic brain lesions to optimise surgical results and to minimise post-operative morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alvarez I, Schwarzkopf DS, Clark CA. Extrastriate projections in human optic radiation revealed by fMRI-informed tractography. Brain Struct Funct 2014; 220:2519-32. [PMID: 24903826 PMCID: PMC4549382 DOI: 10.1007/s00429-014-0799-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/14/2014] [Indexed: 11/30/2022]
Abstract
The human optic radiation (OR) is the main pathway for conveying visual input to occipital cortex, but it is unclear whether it projects beyond primary visual cortex (V1). In this study, we used functional MRI mapping to delineate early visual areas in 30 healthy volunteers and determined the termination area of the OR as reconstructed with diffusion tractography. Direct thalamo-cortical projections to areas V2 and V3 were found in all hemispheres tested, with a distinct anatomical arrangement of superior–inferior fiber placement for dorsal and ventral projections, respectively, and a medio-lateral nesting arrangement for projections to V1, V2 and V3. Finally, segment-specific microstructure was examined, revealing sub-fascicular information. This is to date the first in vivo demonstration of direct extrastriate projections of the OR in humans.
Collapse
Affiliation(s)
- Ivan Alvarez
- Institute of Child Health, University College London, London, WC1N 1EH, UK,
| | | | | |
Collapse
|