1
|
Barthold JE, Cai L, McCreery KP, Fischenich KM, Eckstein KN, Ferguson VL, Emery NC, Breur G, Neu CP. Integrative cartilage repair using acellular allografts for engineered structure and surface lubrication in vivo. NPJ Regen Med 2024; 9:25. [PMID: 39341829 PMCID: PMC11438864 DOI: 10.1038/s41536-024-00367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The repair of articular cartilage after damage is challenging, and decellularized tissue offers a possible treatment option to promote regeneration. Here, we show that acellular osteochondral allografts improve integrative cartilage repair compared to untreated defects after 6 months in an ovine model. Functional measures of intratissue strain/structure assessed by MRI demonstrate similar biomechanics of implants and native cartilage. Compared to native tissue and defects, the structure, composition, and tribology of acellular allografts preserve surface roughness and lubrication, material properties under compression and relaxation, compositional ratios of collagen:glycosaminoglycan and collagen:phosphate, and relative composition of types I/II collagen. While high cellularity was observed in bone regions and integration zones between cartilage-allografts, recellularization of chondral implants was inconsistent, with cell migration typically less than ~750 µm into the dense decellularized tissue, possibly limiting long-term cellular maintenance. Our results demonstrate the structural and biomechanical efficacy of acellular allografts for at least six months in vivo.
Collapse
Affiliation(s)
- Jeanne E Barthold
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Luyao Cai
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kaitlin P McCreery
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Kristine M Fischenich
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin N Eckstein
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Gert Breur
- Department of Veterinary Clinical Services, Purdue University, West Lafayette, IN, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Wang S, Ren S, Wang J, Chen M, Wang H, Chen C. Dural Reconstruction Materials for the Repairing of Spinal Neoplastic Cerebrospinal Fluid Leaks. ACS Biomater Sci Eng 2023; 9:6610-6622. [PMID: 37988580 DOI: 10.1021/acsbiomaterials.3c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Spinal tumors often lead to more complex complications than other bone tumors. Nerve injuries, dura mater defect, and subsequent cerebrospinal fluid (CSF) leakage generally appear in spinal tumor surgeries and are followed by serious adverse outcomes such as infections and even death. The use of suitable dura mater replacements to achieve multifunctionality in fluid leakage plugging, preventing adhesions, and dural reconstruction is a promising therapeutic approach. Although there have been innovative endeavors to manage dura mater defects, only a handful of materials have realized the targeted multifunctionality. Here, we review recent advances in dura repair materials and techniques and discuss the relative merits in both preclinical and clinical trials as well as future therapeutic options. With these advances, spinal tumor patients with dura mater defects may be able to benefit from novel treatments.
Collapse
Affiliation(s)
- Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
| | - Shangjun Ren
- Department of Neurosurgery, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Juan Wang
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing100035, People's Republic of China
| | - Mengyu Chen
- School of Medicine, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, People's Republic of China
| | - Hongru Wang
- Department of Neurology, Liaocheng People's Hospital, No. 67 Dongchang West Road, Liaocheng, 252000, People's Republic of China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, People's Republic of China
- Department of Orthopedics, Beijing Jishuitan Hospital, Capital Medical University, No. 31, Xinjiekou East Street, Xicheng District, Beijing 100035, People's Republic of China
| |
Collapse
|
3
|
Elhakim A, Kim S, Shin SJ. In vitro response of dental pulp stem cells to dural substitute grafts: Analysis of cytocompatibility and bioactivity. Int Endod J 2023; 56:1350-1359. [PMID: 37584590 DOI: 10.1111/iej.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
AIM The objective of this study was to assess and compare the cytocompatibility of decellularized porcine small intestine submucosal dural graft from Biodesign (BD) and polyester urethane-based Neuro-Patch (NP) dural substitute with the mineral trioxide aggregate (MTA) and the cyanoacrylate-based Histoacryl surgical adhesive. Furthermore, the study evaluated the inflammatory response and osteogenic differentiation of human dental pulp stem cells (hDPSCs) when cultured in direct contact with the dural substitutes in comparison with MTA. METHODOLOGY The viability of hDPSCs in direct contact with the tested materials was investigated in vitro by a CCK-8 assay. Additionally, the effects of dural substitutes and MTA on the expression of the inflammatory mediator interleukin-6 (IL-6) was investigated via enzyme-linked immunosorbent assay (ELISA), whilst effects on the differentiation were evaluated using alizarin red staining, alkaline phosphatase staining, ELISA and energy-dispersive X-ray elemental mapping. RESULTS The dural substitutes were cytocompatible and promoted cellular adhesion. The Histoacryl and MTA demonstrated cytotoxicity in fresh preparations but showed a more favourable cellular reaction when set. Investigations of biological activity indicated that dural substitute membranes did not induce an inflammatory response or osteogenic differentiation of hDPSCs. In contrast, MTA induced the expression of IL-6 and alkaline phosphatase activity contributing to enhanced differentiation and mineralization. CONCLUSIONS The dural substitute membranes showed cytocompatibility, did not provoke an inflammatory response and maintained the stemness of hDPSCs better than MTA. Additionally, the set Histoacryl surgical adhesive demonstrated good biocompatibility. Taken together, these results highlight the potential use of dural substitutes in regenerative endodontic procedures as coronal barriers alternative to MTA to reduce the incidence of intracanal calcifications.
Collapse
Affiliation(s)
- Ahmed Elhakim
- Department of Conservative Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Sunil Kim
- Department of Conservative Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Su-Jung Shin
- Department of Conservative Dentistry and Oral Science Research Center, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
4
|
Sharma A, Moore E, Williams LN. An in vitro study of micromechanics, cellular proliferation and viability on both decellularized porcine dura grafts and native porcine dura grafts. BIOMEDICAL ENGINEERING ADVANCES 2023; 6:100108. [PMID: 38259430 PMCID: PMC10803071 DOI: 10.1016/j.bea.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Damage to the dura mater may occur during intracranial or spinal surgeries, which can result in cerebrospinal fluid leakage and other potentially fatal physiological changes. As a result, biological and synthetic derived scaffolds are typically used to repair dura mater post intracranial or spinal surgeries. The extracellular matrix of xenogeneic dura scaffolds has been shown to exhibit increased cell infiltration and regeneration than synthetic dura materials. In this study, we investigated the biocompatibility of native and decellularized porcine dura by seeding rat fibroblast cells onto the constructs. Cell proliferation, cell viability, and the mechanical properties of these dural grafts were evaluated post-re-seeding on days 3,7 and 14. Live-dead staining and resazurin salts were used to quantify cell viability and cell proliferation, respectively. Micro indentation was conducted to quantify the mechanical integrity of the native and acellular dura graft. The findings indicate that the acellular porcine dura graft creates a beneficial setting for infiltrating rat fibroblast cells. Cell viability, proliferation, and micro indentation results on the acellular grafts are comparable with the native control porcine dura tissue. In conclusion, the porcine scaffold material showed increased cell viability at each time point evaluated. The sustained mechanical response and favorable viability of the cells on the decellularized grafts provide promising insight into the potential use of porcine dura in clinical cranial dura mater graft applications.
Collapse
Affiliation(s)
- Ashma Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lakiesha N. Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Wang J, Li P, Liang B, Ding X, Gao H, Feng E. The comparison of the watertight and non-watertight dural closure in supratentorial craniotomy: A single-institute 10-year experience with 698 patients. Medicine (Baltimore) 2023; 102:e35199. [PMID: 37713860 PMCID: PMC10508469 DOI: 10.1097/md.0000000000035199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Watertight dural closure (WTDC) is considered crucial by many neurosurgeons in cranial base surgery, infratentorial craniotomy, and spinal intradural procedure. Whether WTDC also reduce complications remains controversial in supratentorial craniotomy. The objective of this study is to investigate the relationship between WTDC and CSF-related complications in supratentorial craniotomy for the resection of space-occupying lesions. A retrospective analysis of patients who suffered from intracranial space-occupying lesions at Beijing Ditan Hospital between January 2011 and December 2021 was conducted. A total of 698 cases were reviewed with attention to the operative approach, subgaleal fluid collection, wound healing impairment, postoperative infection, and post-craniotomy headaches. The study included a total of 423 patients with WTDC and 275 patients without WTDC. Patients without WTDC had a significantly higher rate of infection (10.9% vs 4.5% with WTDC, P = .001). The rate of subgaleal fluid collection was 9.7% in the WTDC group and 11.3% in the non-WTDC group, but this difference was not statistically significant (P = .502). They suffered from a greater incidence of post-craniotomy headaches in the WTDC group (13.5% vs 9.5% in the non-WTDC group), but without statistical significance (P = .109). We also found no difference in wound healing impairment (P = .719). There is less postoperative infection associated with WTDC during intracranial space-occupying lesion removal than without WTDC in supratentorial craniotomy.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinghuan Ding
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Haili Gao
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Center for Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Waxman S, Strzalkowska A, Wang C, Loewen R, Dang Y, Loewen NA. Tissue-engineered anterior segment eye cultures demonstrate hallmarks of conventional organ culture. Graefes Arch Clin Exp Ophthalmol 2023; 261:1359-1368. [PMID: 36565327 PMCID: PMC10148776 DOI: 10.1007/s00417-022-05915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function. METHODS Porcine eyes were decellularized with freeze-thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology. RESULTS Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead. CONCLUSION Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Chao Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ralitsa Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany
| | - Yalong Dang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Sanmenxia Central Hospital, Sanmenxia, Henan, China
| | - Nils A Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Würzburg, Würzburg, Germany.
- Artemis Eye Centers of Frankfurt, Hanauer Landstr. 147-149, 60314, Frankfurt, Germany.
| |
Collapse
|
7
|
Williams LN, Sharma A, Liao J. Structure and Mechanics of Native and Decellularized Porcine Cranial Dura Mater. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
8
|
Achinger KG, Williams LN. Trends in CSF Leakage Associated with Duraplasty in Infratentorial Procedures over the Last 20 Years: A Systematic Review. Crit Rev Biomed Eng 2023; 51:33-44. [PMID: 37551907 DOI: 10.1615/critrevbiomedeng.v51.i2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Cerebrospinal fluid (CSF) leakage is a common postoperative complication of neurosurgical procedures, with iatrogenic causes accounting for 16% of CSF leakages. This complication increases healthcare costs and patient morbidity. The focus of this review is to analyze the rates of CSF leakage of some of the most commonly used xenogeneic and synthetic dural substitutes following surgeries in the infratentorial region of the brain where surgical repair can be most challenging. A systematic literature search was conducted using studies detailing duraplasty procedures performed with nonautologous grafts in the infratentorial region in PubMed. Studies were identified using the following search terms: "posterior fossa" or "infratentorial" were used in combination with "CSF leak," "CSF leakage," "cerebrospinal fluid leakage," "duraplasty" or "dura graft." The outcome of interest was a measure of the prevalence of CSF leakage rates following posterior fossa neurosurgery. Studies that contributed data to this review were published between 2006 and 2021. The dural graft materials utilized included: bovine collagen, acellular dermis, equine collagen, bovine pericardium, collagen matrix, and expanded polytetrafluoroethylene (ePTFE). The number of subjects in studies on each of these grafts ranged from 6 to 225. CSF leak rates ranged from 0% to 25% with the predominance of studies reporting between 3% and 15%. The studies that utilize bovine collagen, equine collagen, and acellular dermis reported higher CSF leakage rates; whereas studies that utilized ePTFE, bovine pericardium, and collagen matrix reported lower CSF leakage rates. Due to the heterogeneity of methodologies used across these studies, it is difficult to draw a direct correlation between the dural patch products used and CSF leaks. Larger prospective controlled studies that evaluate various products in a head-to-head fashion, using the same methods and animal models, are needed to conclude the relative efficacy of these dural patch products.
Collapse
Affiliation(s)
- Katherine G Achinger
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Lakiesha N Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Makoshi Z, Toop N, Smith LGF, Drapeau A, Pindrik J, Sribnick EA, Leonard J, Shaikhouni A. Association between synthetic sealants and increased complication rates in posterior fossa decompression with duraplasty for Chiari malformations regardless of graft type. J Neurosurg Pediatr 2022; 30:507-516. [PMID: 36087335 DOI: 10.3171/2022.7.peds22231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Dural sealants are commonly used in posterior fossa decompression with duraplasty (PFDD) for Chiari malformation type I (CMI). Prior evidence suggests that combining certain sealants with some graft material is associated with an increased rate of complications. In 2018, the authors noted an increased rate of symptomatic pseudomeningocele and aseptic meningitis after PFDD in CMI patients. The authors utilized retrospective and prospective analyses to test the hypothesis that complication rates increase with the use or combination of certain sealants and grafts. METHODS The analysis was split into 2 periods. The authors retrospectively reviewed patients who underwent PFDD for CMI at their center between August 12, 2011, and December 31, 2018. The authors then eliminated use of DuraSeal on the basis of the retrospective analysis and prospectively examined complication rates from January 1, 2019, to August 4, 2021. The authors defined a complication as symptomatic pseudomeningocele, bacterial or aseptic meningitis, cerebrospinal fluid leak, subdural hygroma, hydrocephalus, surgical site infection, or wound dehiscence. RESULTS From 2011 to 2018, complications occurred in 24.5% of 110 patients. Sealant choice was correlated with complication rates: no sealant (0%), Tisseel (6%), and DuraSeal (15.3%) (p < 0.001). No difference in complication rate was noted on the basis of choice of graft material (p = 0.844). After eliminating DuraSeal, the authors followed 40 patients who underwent PFDD after 2018. The complication rate decreased to 12.5%. All complications after 2018 were associated with Tisseel. CONCLUSIONS At the authors' single center, use of sealants in PFDD surgery for CMI, especially DuraSeal, was correlated with a higher complication rate. Eliminating DuraSeal led to a significant decrease in the rate of symptomatic pseudomeningocele and aseptic meningitis.
Collapse
Affiliation(s)
- Ziyad Makoshi
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
| | - Nathaniel Toop
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Luke G F Smith
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Annie Drapeau
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jonathan Pindrik
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Eric A Sribnick
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey Leonard
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ammar Shaikhouni
- 1Department of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus; and
- 2Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
10
|
Porcine Small Intestinal Submucosa Alters the Biochemical Properties of Wound Healing: A Narrative Review. Biomedicines 2022; 10:biomedicines10092213. [PMID: 36140314 PMCID: PMC9496019 DOI: 10.3390/biomedicines10092213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Among the many biological scaffold materials currently available for clinical use, the small intestinal submucosa (SIS) is an effective material for wound healing. SIS contains numerous active forms of extracellular matrix that support angiogenesis, cell migration, and proliferation, providing growth factors involved in signaling for tissue formation and assisting wound healing. SIS not only serves as a bioscaffold for cell migration and differentiation, but also restores the impaired dynamic reciprocity between cells and the extracellular matrix, ultimately driving wound healing. Here, we review the evidence on how SIS can shift the biochemical balance in a wound from chronic to an acute state.
Collapse
|
11
|
Totten DJ, Manzoor NF, Yancey KL, Yawn RJ, Haynes DS, Rivas A. Comparison of Small Intestinal Submucosal Graft and Autologous Tissue in Prevention of CSF leak after Posterior Fossa Craniotomy. J Neurol Surg B Skull Base 2021; 82:695-699. [PMID: 34745839 DOI: 10.1055/s-0040-1713772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 10/21/2022] Open
Abstract
Objective To compare the use of porcine small intestinal submucosal grafts (SISG) and standard autologous material (fascia) in prevention of cerebrospinal fluid (CSF) leak and pseudomeningocele formation after translabyrinthine resection. Setting Set at the tertiary skull base center. Methods This is a retrospective chart review. After Institutional Review Board approval, we performed a retrospective cohort study evaluating CSF leak in patients who underwent resection of lateral skull base defects with multilayered reconstruction using either fascia autograft or porcine SISGs. Demographics were summarized with descriptive statistics. Logistic regression was used to compare autograft and xenograft cohorts in terms of CSF complications. Results Seventy-seven patients underwent lateral skull base resection, followed by reconstruction of the posterior cranial fossa. Of these patients, 21 (27.3%) underwent multilayer repair using SISG xenograft. There were no significant differences in leak-associated complications between autograft and xenograft cohorts. Ventriculoperitoneal shunt was necessary in one (1.8%) autograft and one (4.8) xenograft cases ( p = 0.49). Operative repair to revise surgical defect was necessary in three (5.4%) autograft cases and none in xenograft cases. Conclusion The use of SISG as a component of complex skull base reconstruction after translabyrinthine tumor resection may help reduce CSF leak rates and need for further intervention.
Collapse
Affiliation(s)
- Douglas J Totten
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Nauman F Manzoor
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kristen L Yancey
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Robert J Yawn
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - David S Haynes
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alejandro Rivas
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
12
|
Membreno PV, Eid AA, Vanison CC, Gillespie MB, Gleysteen JP. Porcine small intestine graft for reconstruction of oral defects. Laryngoscope Investig Otolaryngol 2021; 6:940-947. [PMID: 34667835 PMCID: PMC8513448 DOI: 10.1002/lio2.626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/10/2021] [Accepted: 06/27/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility and outcomes of porcine submucosal allograft (Biodesign Sinonasal Repair Graft [Cook Medical, Bloomington, IN]) in oral cavity and oropharynx reconstruction after ablative surgery. METHODS We conducted a prospective and retrospective review of patients who underwent Biodesign Sinonasal Repair Graft reconstruction for oral and oropharyngeal surgical defects at a single institution between 2018 and 2020. A total of 11 patients were included in the study. Data points included their perioperative medical and demographic data, immediate postoperative course, and follow-up visits at 10 days and at 2 months. The clinicopathologic characteristics of their disease, postoperative esthetic, and functional outcomes were recorded and analyzed. RESULTS Eleven procedures have been performed, and all patients received Biodesign reconstruction either immediately after ablation or after they failed a previous reconstruction. None of the patients had bone exposure. The subsites included oral tongue (n = 6), floor of the mouth (n = 3), buccal mucosa (n = 1), and soft palate (n = 1). In all cases, the operations and the postoperative course were uneventful. The mean defect size was 22 cm2. The median start of oral intake was at 2 days postoperatively. The Biodesign graft healed well in all patients with no total graft loss. There was one complication that required revision surgery due to obstruction of Wharton's duct by the Biodesign material. CONCLUSIONS Biodesign can be a viable option for small and medium-sized oral and oropharyngeal defects in patients who are medically unfit or do not want to undergo a free flap surgery. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Petra V. Membreno
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Tennessee Health and Science CenterMemphisTennesseeUSA
| | - Anas A. Eid
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Tennessee Health and Science CenterMemphisTennesseeUSA
| | - Christopher C. Vanison
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Tennessee Health and Science CenterMemphisTennesseeUSA
| | - M. Boyd Gillespie
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Tennessee Health and Science CenterMemphisTennesseeUSA
| | - John P. Gleysteen
- Department of Otolaryngology—Head and Neck SurgeryUniversity of Tennessee Health and Science CenterMemphisTennesseeUSA
| |
Collapse
|
13
|
Wang J, Li K, Xu J, Liu M, Li P, Li X, Fan Y. A biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B 2021; 9:7821-7834. [PMID: 34586141 DOI: 10.1039/d1tb00948f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dura mater is an essential barrier to protect the brain tissue and the dural defects caused by accidents can lead to serious complications. Various materials have been applied to dural repair, but it remains a challenge to perfectly match the structure and properties of the natural dura mater. Small intestinal submucosa has been developed for dural repair because of its excellent biocompatibility and biological activity, but its application is tremendously limited by the rapid degradation rate. Chitosan has also been broadly investigated in tissue repair, but the traditional chitosan hydrogels exhibit poor mechanical properties. A nanofiber chitosan hydrogel can be constructed based on an alkaline solvent, which is equipped with surprisingly high strength. Therefore, based on the bilayer structure of the natural dura mater, a biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure was fabricated, which possessed a microporous structure in the upper sponge and a nanofiber structure in the lower hydrogel. The degradation rate was remarkably reduced compared with that of the small intestinal submucosa in the enzymatic degradation experiment in vitro. Meanwhile, the chitosan nanofibers brought high mechanical strength to the bilayer scaffold. Moreover, the hierarchical micro/nano structure and the active factors in the small intestinal submucosa have a fantastic effect on promoting the proliferation of fibroblasts and vascular endothelial cells. The bilayer scaffold showed good histocompatibility in the experiment of in vitro subcutaneous implantation in rats. Thus, the biomimetic hierarchical small intestinal submucosa-chitosan sponge/chitosan hydrogel scaffold with micro/nano structure simulates the structure of the natural dura mater and possesses properties with excellent performance, which has high practical value for dural repair.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Kun Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Xiaoming Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
14
|
Yahanda AT, Adelson PD, Akbari SHA, Albert GW, Aldana PR, Alden TD, Anderson RCE, Bauer DF, Bethel-Anderson T, Brockmeyer DL, Chern JJ, Couture DE, Daniels DJ, Dlouhy BJ, Durham SR, Ellenbogen RG, Eskandari R, George TM, Grant GA, Graupman PC, Greene S, Greenfield JP, Gross NL, Guillaume DJ, Hankinson TC, Heuer GG, Iantosca M, Iskandar BJ, Jackson EM, Johnston JM, Keating RF, Krieger MD, Leonard JR, Maher CO, Mangano FT, McComb JG, McEvoy SD, Meehan T, Menezes AH, O'Neill BR, Olavarria G, Ragheb J, Selden NR, Shah MN, Shannon CN, Shimony JS, Smyth MD, Stone SSD, Strahle JM, Torner JC, Tuite GF, Wait SD, Wellons JC, Whitehead WE, Park TS, Limbrick DD. Dural augmentation approaches and complication rates after posterior fossa decompression for Chiari I malformation and syringomyelia: a Park-Reeves Syringomyelia Research Consortium study. J Neurosurg Pediatr 2021; 27:459-468. [PMID: 33578390 DOI: 10.3171/2020.8.peds2087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Posterior fossa decompression with duraplasty (PFDD) is commonly performed for Chiari I malformation (CM-I) with syringomyelia (SM). However, complication rates associated with various dural graft types are not well established. The objective of this study was to elucidate complication rates within 6 months of surgery among autograft and commonly used nonautologous grafts for pediatric patients who underwent PFDD for CM-I/SM. METHODS The Park-Reeves Syringomyelia Research Consortium database was queried for pediatric patients who had undergone PFDD for CM-I with SM. All patients had tonsillar ectopia ≥ 5 mm, syrinx diameter ≥ 3 mm, and ≥ 6 months of postoperative follow-up after PFDD. Complications (e.g., pseudomeningocele, CSF leak, meningitis, and hydrocephalus) and postoperative changes in syrinx size, headaches, and neck pain were compared for autograft versus nonautologous graft. RESULTS A total of 781 PFDD cases were analyzed (359 autograft, 422 nonautologous graft). Nonautologous grafts included bovine pericardium (n = 63), bovine collagen (n = 225), synthetic (n = 99), and human cadaveric allograft (n = 35). Autograft (103/359, 28.7%) had a similar overall complication rate compared to nonautologous graft (143/422, 33.9%) (p = 0.12). However, nonautologous graft was associated with significantly higher rates of pseudomeningocele (p = 0.04) and meningitis (p < 0.001). The higher rate of meningitis was influenced particularly by the higher rate of chemical meningitis (p = 0.002) versus infectious meningitis (p = 0.132). Among 4 types of nonautologous grafts, there were differences in complication rates (p = 0.02), including chemical meningitis (p = 0.01) and postoperative nausea/vomiting (p = 0.03). Allograft demonstrated the lowest complication rates overall (14.3%) and yielded significantly fewer complications compared to bovine collagen (p = 0.02) and synthetic (p = 0.003) grafts. Synthetic graft yielded higher complication rates than autograft (p = 0.01). Autograft and nonautologous graft resulted in equal improvements in syrinx size (p < 0.0001). No differences were found for postoperative changes in headaches or neck pain. CONCLUSIONS In the largest multicenter cohort to date, complication rates for dural autograft and nonautologous graft are similar after PFDD for CM-I/SM, although nonautologous graft results in higher rates of pseudomeningocele and meningitis. Rates of meningitis differ among nonautologous graft types. Autograft and nonautologous graft are equivalent for reducing syrinx size, headaches, and neck pain.
Collapse
Affiliation(s)
- Alexander T Yahanda
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - P David Adelson
- 2Division of Pediatric Neurosurgery, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - S Hassan A Akbari
- 3Division of Pediatric Neurosurgery, University of Alabama at Birmingham, AL
| | - Gregory W Albert
- 4Division of Neurosurgery, Arkansas Children's Hospital, Little Rock, AR
| | - Philipp R Aldana
- 5Division of Pediatric Neurosurgery, University of Florida College of Medicine, Jacksonville, FL
| | - Tord D Alden
- 6Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, IL
| | - Richard C E Anderson
- 7Division of Pediatric Neurosurgery, Department of Neurological Surgery, Children's Hospital of New York, Columbia-Presbyterian, New York, NY
| | - David F Bauer
- 8Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Tammy Bethel-Anderson
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - Douglas L Brockmeyer
- 9Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, UT
| | - Joshua J Chern
- 10Division of Pediatric Neurosurgery, Children's Healthcare of Atlanta, GA
| | - Daniel E Couture
- 11Department of Neurological Surgery, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Brian J Dlouhy
- 13Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Susan R Durham
- 14Department of Neurosurgery, University of Vermont, Burlington, VT
| | | | - Ramin Eskandari
- 16Department of Neurosurgery, Medical University of South Carolina, Charleston, SC
| | - Timothy M George
- 17Division of Pediatric Neurosurgery, Dell Children's Medical Center, Austin, TX
| | - Gerald A Grant
- 18Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Palo Alto, CA
| | - Patrick C Graupman
- 19Division of Pediatric Neurosurgery, Gillette Children's Hospital, St. Paul, MN
| | - Stephanie Greene
- 20Division of Pediatric Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jeffrey P Greenfield
- 21Department of Neurological Surgery, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY
| | - Naina L Gross
- 22Department of Neurosurgery, University of Oklahoma, Oklahoma City, OK
| | - Daniel J Guillaume
- 23Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN
| | - Todd C Hankinson
- 24Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO
| | - Gregory G Heuer
- 25Division of Pediatric Neurosurgery, Children's Hospital of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mark Iantosca
- 26Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Bermans J Iskandar
- 27Department of Neurological Surgery, University of Wisconsin at Madison, WI
| | - Eric M Jackson
- 28Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James M Johnston
- 3Division of Pediatric Neurosurgery, University of Alabama at Birmingham, AL
| | - Robert F Keating
- 29Department of Neurosurgery, Children's National Medical Center, Washington, DC
| | - Mark D Krieger
- 30Division of Pediatric Neurosurgery, Children's Hospital of Los Angeles, CA
| | - Jeffrey R Leonard
- 31Division of Pediatric Neurosurgery, Nationwide Children's Hospital, Columbus, OH
| | - Cormac O Maher
- 32Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Francesco T Mangano
- 33Division of Pediatric Neurosurgery, Cincinnati Children's Medical Center, Cincinnati, OH
| | - J Gordon McComb
- 30Division of Pediatric Neurosurgery, Children's Hospital of Los Angeles, CA
| | - Sean D McEvoy
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - Thanda Meehan
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - Arnold H Menezes
- 13Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Brent R O'Neill
- 24Department of Neurosurgery, Children's Hospital Colorado, Aurora, CO
| | - Greg Olavarria
- 34Division of Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, FL
| | - John Ragheb
- 35Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL
| | - Nathan R Selden
- 36Department of Neurological Surgery and Doernbecher Children's Hospital, Oregon Health & Science University, Portland, OR
| | - Manish N Shah
- 37Division of Pediatric Neurosurgery, McGovern Medical School, Houston, TX
| | - Chevis N Shannon
- 38Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN
| | - Joshua S Shimony
- 39Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Matthew D Smyth
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - Scellig S D Stone
- 40Division of Pediatric Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Jennifer M Strahle
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - James C Torner
- 13Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Gerald F Tuite
- 41Department of Neurosurgery, Neuroscience Institute, All Children's Hospital, St. Petersburg, FL
| | - Scott D Wait
- 42Carolina Neurosurgery & Spine Associates, Charlotte, NC; and
| | - John C Wellons
- 38Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN
| | - William E Whitehead
- 43Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX
| | - Tae Sung Park
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| | - David D Limbrick
- 1Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
Cytotoxicity test for the use of freeze-dried amniotic membranes against viability, proliferation, and apoptosis on brain cell culture: An in vitro study. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Bi X, Liu B, Mao Z, Wang C, Dunne N, Fan Y, Li X. Applications of materials for dural reconstruction in pre-clinical and clinical studies: Advantages and drawbacks, efficacy, and selections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111326. [PMID: 32919680 DOI: 10.1016/j.msec.2020.111326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
The dura mater provides a barrier to protect the tissue underneath and cerebrospinal fluid. However, dural defects normally cause cerebrospinal fluid leakage and other complications, such as wound infections, meningitis, etc. Therefore, the reconstruction of dura mater has important clinical significance. Current dural reconstruction materials include: homologous, acellular, natural, synthetic, and composite materials. This review comprehensively summarizes the characteristics and efficacy of these dural substitutes, especially in clinical applications, including the advantages and drawbacks of those from different sources, the host tissue response in pre-clinical studies and clinical practice, and the comparison of these materials across different surgical procedures. Furthermore, the selections of materials for different surgical procedures are highlighted. Finally, the challenges and future perspectives in the development of ideal dural repair materials are discussed.
Collapse
Affiliation(s)
- Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Bo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
17
|
Zhao T, Xu K, Wu Q, Wang C, Xiao S, Li H, He T, Wang L, Li F, Chen Q. Duraplasty of PHBV/PLA/Col membranes promotes axonal regeneration by inhibiting NLRP3 complex and M1 macrophage polarization in rats with spinal cord injury. FASEB J 2020; 34:12147-12162. [PMID: 32686873 DOI: 10.1096/fj.202000190rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Duraplasty after decompression decreases the lesion size and scar formation, promoting better functional recovery, but the underlying mechanism has not been clarified. Here, we fabricated a series of poly(hydroxybutyrate-co-hydroxyvalerate)/polylactic acid/collagen (PHBV/PLA/Col) membranes and cultured them with VSC4.1 motor neurons. The material characteristics and in vitro biological characteristics were evaluated. In the subcutaneous implantation test, PHBV/PLA/COl scaffolds supported the cellular infiltration, microvasculature formation, and decreased CD86-positive macrophage aggregation. Following contusion spinal cord injury at T10 in Sprague-Dawley rats, durotomy was performed with allograft dura mater or PHBV/PLA or PHBV/PLA/Col membranes. At 3 days post-injury, Western blot assay showed decreased the expression of the NLRP3, ASC, cleaved-caspase-1, IL-1β, TNF-α, and CD86 expression but increased the expression of CD206. Immunofluorescence demonstrated that duraplasty with PHBV/PLA/Col membranes reduced the infiltration of CD86-positive macrophages in the lesion site, decreased the glial fibrillary acidic protein expression, and increased the expression of NF-200. Moreover, duraplasty with PHBV/PLA/Col membranes improved locomotor functional recovery at 8 weeks post-injury. Thus, duraplasty with PHBV/PLA/Col membranes decreased the glial scar formation and promoted axon growth by inhibiting inflammasome activation and modulating macrophage polarization in acute spinal cord injury.
Collapse
Affiliation(s)
- Tengfei Zhao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qionghua Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenggui Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shining Xiao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heyangzi Li
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Teng He
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangcai Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qixin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Repair of dural defects with electrospun bacterial cellulose membranes in a rabbit experimental model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111246. [PMID: 32919624 DOI: 10.1016/j.msec.2020.111246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
To evaluate the advantages and mechanisms involved in repairing rabbit dural defect with a novel electrospun bacterial cellulose (EBC) membrane, a series of experiments were carried out in vitro and in vivo. Compared with common bacterial cellulose (BC) membrane, a more dispersed and regular fiber structure and a better porosity and water holding capacity were found in the EBC membrane, which also had superior degradability. However, the biomechanical properties were slightly decreased. The results demonstrated that BC and EBC membranes had little effect on proliferation and apoptosis of mouse fibroblast cells. There were no complications such as infection, cerebrospinal fluid leakage, epilepsy and brain swelling after BC and EBC membrane repairs in rabbit models. Using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot, the early inflammatory reactions in the EBC group were shown to be lower than in the BC group, and were close to the autologous dura mater group. Histological observations and western blot revealed more collagen fibers evenly distributed on the outer side of EBC membranes than in the BC and unpatched groups, and fewer brain tissue adhesions and epidural scars were found in the EBC group. Compared with common BC membrane, the EBC membrane had better biophysical properties and biocompatibility. It is expected to be a suitable alternative material for the repair of damaged dura mater.
Collapse
|
19
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Massimi L, Frassanito P, Bianchi F, Tamburrini G, Caldarelli M. Bony decompression vs duraplasty for Chiari I malformation: does the eternal dilemma matter? Childs Nerv Syst 2019; 35:1827-1838. [PMID: 31209642 DOI: 10.1007/s00381-019-04218-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE The management of Chiari I malformation (CIM) still raises the problem of the optimal surgical treatment, with special regard to the "eternal dilemma" of the posterior fossa bony decompression alone (PFBD) or with duraplasty (PFBDD). The goal of the present review is to update the results (outcome and complications) of both techniques to better understand the correct indication for each of them. METHODS A review of the literature has been performed, focusing on the articles and the meta-analyses specifically addressing the problem of PFBD vs PFBDD. Also, the personal authors' experience is briefly discussed. RESULTS PFBD (usually with C1 laminectomy, often with delamination of the external dural layer) is the most commonly used technique in children, especially if syringomyelia is absent. It ensures a high success rate, with > 80% clinical improvement and about 75% reduction of the syringomyelia, and a very low risk of complications, hospital stay, and costs. A certain risk of recurrence is present (2-12%). PFBDD (with autologous tissues or dural substitutes), on the other hand, is mostly used not only in adults but also in children with large syringomyelia. It is burdened by a higher risk of complications (namely, the CSF-related ones), longer hospital stay, and higher costs; however, it warrants a better clinical improvement (> 85%) and a lower risk of reoperation (2-3.5%). Eight meta-analyses of the literature (three on pediatric series and five in adult series) and one prospective study in children, published in the last decade, largely confirm these findings. CONCLUSION PFBD and PFBDD are different techniques that are indicated for different types of patients. In children, PFBD has been demonstrated to represent the best choice, although some patients may require a more aggressive treatment. Therefore, the success in the management of CIM, with or without syringomyelia, depends on the correct indication to surgery and on a patient-tailored choice rather than on the surgical technique.
Collapse
Affiliation(s)
- Luca Massimi
- Neurochirurgia Infantile, Fondazione Policlinico Gemelli IRCCS, Rome, Italy. .,Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy.
| | - P Frassanito
- Neurochirurgia Infantile, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - F Bianchi
- Neurochirurgia Infantile, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - G Tamburrini
- Neurochirurgia Infantile, Fondazione Policlinico Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy
| | - M Caldarelli
- Neurochirurgia Infantile, Fondazione Policlinico Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Istituto Neurochirurgia, Rome, Italy
| |
Collapse
|
21
|
Kizmazoglu C, Ozyoruk S, Husemoglu RB, Kalemci O, Sozer G, Sade B. Comparison of dural closure alternatives: an experimental study. Br J Neurosurg 2019; 33:655-658. [PMID: 31544534 DOI: 10.1080/02688697.2019.1667481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Dural closure preference has been a topic of debate in contemporary neurosurgery. This study aims to compare different closure techniques using an in vitro model.Methods: Human cadaveric dura mater was attached to a cylindrical metal glass filled with blue dyed saline. A 1 cm dural incision was made. Dural closure was performed using three different techniques. Each group had six samples: Group I - interrupted simple 4-0 polyglactin suture (S) only, Group II - S plus on lay collagen graft, Group III - S plus fibrin sealant. In Group NS, a 1 cm × 1 cm dural window was made. An onlay collagen graft was used with no suturing for this group to serve as an overtly weak reconstruction reference. Primary and secondary leak pressures were recorded (PLP and SLP, respectively).Results: All groups (I-III) had significantly higher PLP and SLP than Group NS. PLP was significantly higher in Group III as compared to groups I and II. Groups I and II had similar PLP values. SLP was similar in all three groups.Conclusion: In this study, the use of fibrin sealant has proven to be the best option in preventing dural leak. However, no technique was superior in the case of SLP.
Collapse
Affiliation(s)
- Ceren Kizmazoglu
- Department of Neurosurgery, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Safak Ozyoruk
- Department of Neurosurgery, Ardahan State Hospital, Ardahan, Turkey
| | - Resit Bugra Husemoglu
- Department of Biomechanics, Dokuz Eylul University School of Medicine Health Science Institute, Izmir, Turkey
| | - Orhan Kalemci
- Department of Neurosurgery, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gulden Sozer
- Department of Pathology, Forensic Medicine Institution, Izmir, Turkey
| | - Burak Sade
- Department of Neurosurgery, Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
22
|
Barber SM, Fridley JS, Konakondla S, Nakhla J, Oyelese AA, Telfeian AE, Gokaslan ZL. Cerebrospinal fluid leaks after spine tumor resection: avoidance, recognition and management. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:217. [PMID: 31297382 DOI: 10.21037/atm.2019.01.04] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Post-operative CSF leaks are a known complication of spine surgery in general, and patients undergoing surgical intervention for spinal tumors may be particularly predisposed due to the presence of intradural tumor and a number of other factors. Post-operative CSF leaks increase morbidity, lengthen hospital stays, prolong immobilization and subject patients to a number of associated complications. Intraoperative identification of unintended durotomies and effective primary repair of dural defects is an important first step in the prevention of post-operative CSF leaks, but in patients who develop post-operative pseudomeningoceles, durocutaneous fistulae or other CSF-leak-related sequelae, early recognition and secondary intervention are paramount to preventing further CSF-leak-related complications and achieving the best patient outcomes possible. In this article, the incidence, risk factors and complications of CSF leaks after spine tumor surgery are reviewed, with an emphasis on avoidance of post-operative CSF leaks, early post-operative identification and effective secondary intervention.
Collapse
Affiliation(s)
- Sean M Barber
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Jared S Fridley
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Sanjay Konakondla
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Jonathan Nakhla
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Adetokunbo A Oyelese
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Albert E Telfeian
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
23
|
Sadtler K, Wolf MT, Ganguly S, Moad CA, Chung L, Majumdar S, Housseau F, Pardoll DM, Elisseeff JH. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 2019; 192:405-415. [DOI: 10.1016/j.biomaterials.2018.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
|
24
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small intestinal submucosa (SIS) has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha 410083
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University and Collaborative Innovation Center of Biotherapy
- Chengdu 610041
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
25
|
3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep 2018; 14:177-188. [PMID: 29181780 DOI: 10.1007/s12015-017-9783-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for physiologically relevant assay platforms to provide functionally relevant models of diabetes, to accelerate the discovery of new treatment options and boost developments in drug discovery. In this review, we compare several 3D-strategies that have been used to increase the functional relevance of ex vivo human primary pancreatic islets and developments into the generation of stem cell derived pancreatic beta-cells (β-cells). Special attention will be given to recent approaches combining the use of extracellular matrix (ECM) scaffolds with pancreatic molecular memory, which can be used to improve yield and functionality of in vitro stem cell-derived pancreatic models. The ultimate goal is to develop scalable cell-based platforms for diabetes research and drug screening. This article will critically assess key aspects related to in vitro pancreatic 3D-ECM models and highlight the most promising approaches for future research.
Collapse
|
26
|
Evaluation of the safety and effectiveness of an alternative dural substitute using porcine pericardium for duraplasty in a large animal model. J Clin Neurosci 2018; 58:187-191. [DOI: 10.1016/j.jocn.2018.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022]
|
27
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
28
|
Dlouhy BJ, Menezes AH. Autologous cervical fascia duraplasty in 123 children and adults with Chiari malformation type I: surgical technique and complications. J Neurosurg Pediatr 2018; 22:297-305. [PMID: 29932369 DOI: 10.3171/2018.3.peds17550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Techniques for combined extradural and intradural decompression with expansile duraplasty for Chiari malformation type I (CM-I) have been well described, with various allogenic and autologous materials used for duraplasty. However, the approach and surgical technique used for duraplasty in our treatment of CM-I and developed by the senior author in the 1990s has not been described. METHODS A prospective database was initiated in March 2003 to denote the use of cervical fascia for duraplasty and incorporate an ongoing detailed record of complications during the surgical treatment of children and adults with CM-I with and without syringomyelia. A total of 389 surgeries for CM-I were performed on 379 patients from March 2003 to June 2016. A total of 123 posterior procedures were performed on 123 patients in which both a posterior fossa extradural and intradural decompression with duraplasty (extra-intradural) was performed. In this paper the authors describe the surgical technique for harvesting and using cervical fascia for duraplasty in the surgical treatment of CM-I and analyze and discuss complications from a prospective database spanning 2003-2016. RESULTS The authors found that cervical fascia can be harvested in patients of all ages (2-61 years old) without difficulty, and it provides a good substitute for dura in creating an expansile duraplasty in patients with CM-I. Cervical fascia is an elastic-like material with a consistency that allows for a strong watertight closure. Harvesting the cervical fascia graft does not require any further extension of the incision superiorly or inferiorly to obtain the graft. Complications were uncommon in this study of 123 children and adults. The risk of any type of complication (aseptic meningitis, CSF leak, pseudomeningocele, infection, development of hydrocephalus, and need for ventriculoperitoneal shunt) for the 78 patients in the pediatric age group was 0%. The risk of complication in the adult group was 6.7% (1 patient with aseptic meningitis and 2 patients with CSF leak). CONCLUSIONS Autologous cervical fascia is easy to obtain in patients of all ages and provides an effective material for duraplasty in the treatment of CM-I. Complications from the combination of both an extradural and intradural decompression with autologous cervical fascia duraplasty are uncommon.
Collapse
Affiliation(s)
- Brian J Dlouhy
- 1Department of Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa Stead Family Children's Hospital; and.,3Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Arnold H Menezes
- 1Department of Neurosurgery, University of Iowa Hospitals and Clinics, University of Iowa Stead Family Children's Hospital; and
| |
Collapse
|
29
|
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73:326-338. [PMID: 29649641 DOI: 10.1016/j.actbio.2018.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Sheng Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuai Qiu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Jianghui Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Liwei Yan
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Haiquan Mao
- Institute for NanoBioTechnology, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA
| | - Qingtang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Xiaolin Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| |
Collapse
|
30
|
Sun H, Wang H, Diao Y, Tu Y, Li X, Zhao W, Ren J, Zhang S. Large retrospective study of artificial dura substitute in patients with traumatic brain injury undergo decompressive craniectomy. Brain Behav 2018; 8:e00907. [PMID: 29761002 PMCID: PMC5943738 DOI: 10.1002/brb3.907] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background Decompressive craniectomy is widely used for treating patients with traumatic brain injury (TBI). Usually patients have dura mater defect due to surgery or injury itself. The defective area may left open or repaired by artificial dura substitutes. A variety of artificial dura substitutes have been used for this purpose. Objective This study aimed to evaluate bovine-derived pericardium membrane as artificial dural material for patients with decompressive craniectomy. Methods Totally 387 patients with severe TBI in our hospital were included in this study. Among them, 192 patients were treated with standard decompressive craniectomy without dura repair (control group). One hundred and ninety-five TBI patients were treated with dura repair by artificial dura materials (ADM). Nonlyophilized bovine pericardium membranes were used as artificial dura material. The postoperative complications were compared in both groups, including infection, seizure, and cerebrospinal fluid (CSF) leakage. Results Patients in control group have higher complication rates than patients in ADM group, including subcutaneous hematoma (13.02% in control vs. 4.01% in ADM group, p = .004), infection (12.5% in control vs. 5.64% in ADM group, p = .021), CSF leakage (13.02% in control vs. 5.13% in ADM group, p = .012), and seizure (10.42% in control vs. 3.08% in ADM group, p = .007). Patients in ADM group are only associated with higher incidence of foreign body reaction (6 of 195 patients in ADM vs. none from control group). Conclusion Bovine-derived pericardium membranes are successfully used as artificial dural substitutes for decompressive craniectomy. Patients with ADM have better clinical outcome than control group.
Collapse
Affiliation(s)
- Hongtao Sun
- Sixth Department of Neurosurgery, Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Hongda Wang
- Division of Clinical MedicineChongqing Medical UniversityChongqingChina
| | - Yunfeng Diao
- Sixth Department of Neurosurgery, Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Yue Tu
- Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Xiaohong Li
- Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Wanyong Zhao
- Sixth Department of Neurosurgery, Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Jibin Ren
- Sixth Department of Neurosurgery, Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| | - Sai Zhang
- Brain CenterAffiliated Hospital of Logistics University of People's Armed Police ForceTianjinChina
| |
Collapse
|
31
|
Balakrishnan-nair DK, Nair ND, Venugopal SK, Das VN, George S, Abraham MJ, Eassow S, Alison MR, Sainulabdeen A, Anilkumar TV. An Immunopathological Evaluation of the Porcine Cholecyst Matrix as a Muscle Repair Graft in a Male Rat Abdominal Wall Defect Model. Toxicol Pathol 2018; 46:169-183. [DOI: 10.1177/0192623317752894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing use of animal-based biomaterials for regenerative medical applications, the need for their safety assessment is paramount. A porcine cholecyst-derived scaffold (CDS), intended as a muscle repair graft, prepared by a nondetergent/enzymatic method was engrafted in a rat abdominal wall defect model. Host tissue–scaffold interface samples were collected 2, 8, and 16 weeks postimplantation and evaluated by histopathology, immunohistochemistry, and electron microscopy. The nature of the tissue reaction was compared with those induced by a jejunum-derived scaffold (JDS) prepared by the same method and a commercial-grade small intestinal submucosa (CSIS) scaffold. A study of the immunopathological response in major lymphoid tissues and immunophenotyping for M1 and M2 macrophages was performed at the host tissue–scaffold interface. Further, “irritancy scores” for CDS and JDS were determined using CSIS as the reference material. Both CDS and JDS appeared to be potential biomaterials for muscle grafts, but the former stimulated a skeletal muscle tissue remodeling response predominated by M2 macrophages. The data support the notion that biomaterials with similar biocompatibility, based on local tissue response on implantation, may cause differential immunogenicity. Additionally, CDS compared to JDS and CSIS was found to be less immunotoxic.
Collapse
Affiliation(s)
- Dhanush Krishna Balakrishnan-nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Narayanan Divakaran Nair
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Syam Kunnekkattu Venugopal
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Vijayan Narayana Das
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Sisilamma George
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Mammen John Abraham
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Saji Eassow
- Meat Products of India Ltd., Koothattukulam, Ernakulam District, Edayar, India
| | - Malcolm Ronald Alison
- Barts Cancer Institute, University of London, Charterhouse Square, London, United Kingdom
| | - Anoop Sainulabdeen
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, Kerala, India
| | - Thapasimuthu Vijayamma Anilkumar
- Division of Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, India
| |
Collapse
|
32
|
Pathrose Kamalabai R, Nagar M, Chandran R, Mohammed Haneefa Suharanbeevi S, Bhanu Prabhakar R, Peethambaran A, Mallika Dhanapalan S, Jain S, Sharma S. Rationale Behind the Use of Double-Layer Polypropylene Patch (G-patch) Dural Substitute During Decompressive Craniectomy as an Adhesion Preventive Material for Subsequent Cranioplasty with Special Reference to Flap Elevation Time. World Neurosurg 2017; 111:e105-e112. [PMID: 29233748 DOI: 10.1016/j.wneu.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Dural substitutes are used in decompressive craniectomy (DC) to prevent adhesions during subsequent cranioplasty. Current literature attributes them to reduced blood loss and reduction in operative time of cranioplasty. The use of double-layer substitute has rarely been documented. We studied the use of double-layer G-patch as a dural substitute in DC and evaluated its outcome during subsequent cranioplasty with special focus on flap elevation time and blood loss during cranioplasty. METHODS We performed emergency frontotemporoparietal decompressive craniectomy using a double layer of G-patch as dural substitute. Subsequent cranioplasty was done in these 35 patients. The development of adhesion formation between the tissue layers, amount of blood loss, and flap elevation time were recorded. RESULTS During the cranioplasty, a clear and smooth plane of dissection was found between the 2 layers of G-patch in all cases. Average flap elevation time was 21.8 minutes, and average time taken for cranioplasty was 124.12 minutes. Average blood loss was 83 mL. None of the patients required re-exploration for infection of bone flap or postoperative bleed. CONCLUSIONS While evaluating the use of dural substitute during DC as an adhesion preventive material for subsequent cranioplasty, flap elevation time and blood loss should be taken into account rather than operative time. Double-layer G-patch during DC facilitates subsequent cranioplasty by preventing adhesions between the layers, resulting in easier dissection and reduced blood loss.
Collapse
Affiliation(s)
| | - Milesh Nagar
- Department of Neurosurgery, Government Medical College, Trivandrum, Kerala, India.
| | - Raj Chandran
- Department of Neurosurgery, Government Medical College, Trivandrum, Kerala, India
| | | | | | - Anil Peethambaran
- Department of Neurosurgery, Government Medical College, Trivandrum, Kerala, India
| | | | - Sourabh Jain
- Department of Neurosurgery, Government Medical College, Trivandrum, Kerala, India
| | - Saurabh Sharma
- Department of Neurosurgery, Government Medical College, Trivandrum, Kerala, India
| |
Collapse
|
33
|
Lee CK, Mokhtari T, Connolly ID, Li G, Shuer LM, Chang SD, Steinberg GK, Hayden Gephart M. Comparison of Porcine and Bovine Collagen Dural Substitutes in Posterior Fossa Decompression for Chiari I Malformation in Adults. World Neurosurg 2017; 108:33-40. [DOI: 10.1016/j.wneu.2017.08.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 11/26/2022]
|
34
|
Pitman MJ, Kurita T, Powell ME, Kimball EE, Mizuta M, Chang S, Garrett CG, Rousseau B. Vibratory function and healing outcomes after small intestinal submucosa biomaterial implantation for chronic vocal fold scar. Laryngoscope 2017; 128:901-908. [PMID: 29105772 DOI: 10.1002/lary.26883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS Vocal fold scar is a major cause of dysphonia, and optimal treatments do not currently exist. Small intestinal submucosa (SIS) is a biomaterial developed for the treatment of a variety of pathologies. The purpose of this study was to investigate the effects of SIS implantation on tissue remodeling in scarred vocal folds using routine staining, immunohistochemistry, and high-speed videoendoscopy (HSV). STUDY DESIGN Prospective, blinded group analysis. METHODS Thirteen New Zealand White rabbits underwent a vocal fold scarring procedure followed by microflap elevation with or without SIS implantation. Seven months later, they underwent a phonation procedure with HSV and laryngeal harvest. Alcian blue and elastica van Gieson staining and immunohistochemistry for collagen types I and III were used to evaluate histological healing outcomes. Dynamic functional remodeling of the scarred vocal fold in the presence of SIS implants was evaluated using HSV imaging to capture restoration of vibratory amplitude, amplitude ratio, and left-right phase symmetry. RESULTS Density of collagen I was significantly decreased in SIS versus microflap-treated vocal folds. No differences were found between groups for hyaluronic acid, elastin, or collagen type III. Organization of elastin in the subepithelial region appeared to affect amplitude of vibration and the shape of the vocal fold edge. CONCLUSIONS SIS implantation into chronic scar reduced the density of collagen I deposits. There was no evidence of a negative impact or complication from SIS implantation. Regardless of treatment type, organization of elastin in the subepithelial region may be important to vibratory outcomes. LEVEL OF EVIDENCE NA. Laryngoscope, 128:901-908, 2018.
Collapse
Affiliation(s)
- Michael J Pitman
- Department of Otolaryngology-Head and Neck Surgery, Voice and Swallowing Institute, Columbia University Medical Center/New York Presbyterian, New York, New York, U.S.A
| | - Takashi Kurita
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Maria E Powell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Emily E Kimball
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Masanobu Mizuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Siyuan Chang
- Corning Research and Development Corporation, Painted Post, New York, U.S.A
| | - C Gaelyn Garrett
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Bernard Rousseau
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
35
|
Kabagambe S, Keller B, Becker J, Goodman L, Pivetti C, Lankford L, Chung K, Lee C, Chen YJ, Kumar P, Vanover M, Wang A, Farmer D. Placental mesenchymal stromal cells seeded on clinical grade extracellular matrix improve ambulation in ovine myelomeningocele. J Pediatr Surg 2017; 53:S0022-3468(17)30654-1. [PMID: 29122293 DOI: 10.1016/j.jpedsurg.2017.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of placental mesenchymal stromal cells (PMSCs) seeded on a clinical grade porcine small intestinal submucosa (SIS)-derived extracellular matrix (ECM) on hindlimb motor function in an ovine fetal repair model of myelomeningocele (MMC). METHODS MMC defects were surgically created in 21 fetuses at median gestational age 78 (range 76-83) days. Fetuses were randomly assigned to repair 25days later with ECM only or PMSC-ECM. Surviving fetuses were delivered at term. Motor function was evaluated using the Sheep Locomotor Rating (SLR) scale (0-15). Histologic analysis of the spinal cord (SC) was completed. RESULTS Fetal viability was 71%. 5 of 8 (63%) lambs repaired with PMSC-ECM ambulated independently versus only 1 of 6 (17%) repaired with ECM only (p=0.04, χ2 test). SLR scores and large neuron densities were higher in the PMSC-ECM group. The cross-sectional areas of the SC and the gray matter were equally preserved. CONCLUSIONS Fetal repair of MMC with PMSCs seeded on SIS-ECM improves hindlimb motor function in lambs. Using ECM helps to preserve the architecture of the SC, but adding PMSCs improves the lamb's ability to walk and increases large neuron density. Clinical studies are needed to show benefits in humans. LEVELS OF EVIDENCE/TYPE OF STUDY Basic Science.
Collapse
Affiliation(s)
| | | | - James Becker
- University of California, Davis Health, Sacramento, CA
| | - Laura Goodman
- University of California, Davis Health, Sacramento, CA
| | | | - Lee Lankford
- University of California, Davis Health, Sacramento, CA
| | - Karen Chung
- University of California, Davis Health, Sacramento, CA
| | - Chelsey Lee
- University of California, Davis Health, Sacramento, CA
| | - Y Julia Chen
- University of California, Davis Health, Sacramento, CA
| | | | | | - Aijun Wang
- University of California, Davis Health, Sacramento, CA
| | - Diana Farmer
- University of California, Davis Health, Sacramento, CA
| |
Collapse
|
36
|
The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol 2017; 14:540-552. [PMID: 28698662 DOI: 10.1038/nrgastro.2017.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis and secretion of components that constitute the extracellular matrix (ECM) by resident cell types occur at the earliest stages of embryonic development, and continue throughout life in both healthy and diseased physiological states. The ECM consists of a complex mixture of insoluble and soluble functional components that are arranged in a tissue-specific 3D ultrastructure, and it regulates numerous biological processes, including angiogenesis, innervation and stem cell differentiation. Owing to its composition and influence on embryonic development, as well as cellular and organ homeostasis, the ECM is an ideal therapeutic substrate for the repair of damaged or diseased tissues. Biologic scaffold materials that are composed of ECM have been used in various surgical and tissue-engineering applications. The gastrointestinal (GI) tract presents distinct challenges, such as diverse pH conditions and the requirement for motility and nutrient absorption. Despite these challenges, the use of homologous and heterologous ECM bioscaffolds for the focal or segmental reconstruction and regeneration of GI tissue has shown promise in early preclinical and clinical studies. This Review discusses the importance of tissue-specific ECM bioscaffolds and highlights the major advances that have been made in regenerative medicine strategies for the reconstruction of functional GI tissues.
Collapse
|
37
|
Deng K, Yang Y, Ke Y, Luo C, Liu M, Deng Y, Tian Q, Yuan Y, Yuan T, Xu T. A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing. Neurol Res 2017; 39:819-829. [DOI: 10.1080/01616412.2017.1348680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kunxue Deng
- Department of Mechanical Engineering and Biomedical Engineering Program, University of Texas at El Paso, El Paso, TX, USA
- Department of Mechanical Engineering, Bio-manufacturing Center, Tsinghua University, Beijing, China
- Medprin Institute of Technology (MIT), Guangzhou, China
| | - Yaya Yang
- Department of Mechanical Engineering and Biomedical Engineering Program, University of Texas at El Paso, El Paso, TX, USA
- Department of Mechanical Engineering, Bio-manufacturing Center, Tsinghua University, Beijing, China
- Multidisciplinary Research Center, Shantou University, Shantou, China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital of South Medical University, Guangzhou, China
| | - Chengyi Luo
- Department of Neurosurgery, Zhujiang Hospital of South Medical University, Guangzhou, China
| | - Man Liu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Yuting Deng
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Tian
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Yuyu Yuan
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Tao Xu
- Department of Mechanical Engineering and Biomedical Engineering Program, University of Texas at El Paso, El Paso, TX, USA
- Department of Mechanical Engineering, Bio-manufacturing Center, Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Kočí Z, Výborný K, Dubišová J, Vacková I, Jäger A, Lunov O, Jiráková K, Kubinová Š. Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Eng Part C Methods 2017; 23:333-345. [PMID: 28471271 DOI: 10.1089/ten.tec.2017.0089] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix (ECM) hydrogels prepared by tissue decellularization have been reported as natural injectable materials suitable for neural tissue repair. In this study, we prepared ECM hydrogel derived from human umbilical cord (UC) and evaluated its composition and mechanical and biological properties in comparison with the previously described ECM hydrogels derived from porcine urinary bladder (UB), brain, and spinal cord. The ECM hydrogels did not differ from each other in the concentration of collagen, while the highest content of glycosaminoglycans as well as the shortest gelation time was found for UC-ECM. The elastic modulus was then found to be the highest for UB-ECM. In spite of a different origin, topography, and composition, all ECM hydrogels similarly promoted the migration of human mesenchymal stem cells (MSCs) and differentiation of neural stem cells, as well as axonal outgrowth in vitro. However, only UC-ECM significantly improved proliferation of tissue-specific UC-derived MSCs when compared with the other ECMs. Injection of UC-ECM hydrogels into a photothrombotic cortical ischemic lesion in rats proved its in vivo gelation and infiltration with host macrophages. In summary, this study proposes UC-ECM hydrogel as an easily accessible biomaterial of human origin, which has the potential for neural as well as other soft tissue reconstruction.
Collapse
Affiliation(s)
- Zuzana Kočí
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic .,2 Second Medical Faculty, Charles University , Prague, Czech Republic
| | - Karel Výborný
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic .,2 Second Medical Faculty, Charles University , Prague, Czech Republic
| | - Jana Dubišová
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic .,2 Second Medical Faculty, Charles University , Prague, Czech Republic
| | - Irena Vacková
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Aleš Jäger
- 3 Institute of Physics , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Oleg Lunov
- 3 Institute of Physics , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Klára Jiráková
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Šárka Kubinová
- 1 Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
He SK, Guo JH, Wang ZL, Zhang Y, Tu YH, Wu SZ, Huang FG, Xie HQ. Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:267-274. [DOI: 10.1016/j.msec.2016.12.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
40
|
Zhang L, Yi Z, Duan H, Li L. A novel autologous duraplasty in situ technique for the treatment of Chiari malformation Type I. J Neurosurg 2017; 126:91-97. [DOI: 10.3171/2016.1.jns152161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
The purpose of this study was to introduce a novel autologous duraplasty procedure for the treatment of Chiari malformation Type I (CM-I).
METHODS
The authors retrospectively reviewed data from patients who had been diagnosed with CM-I and had undergone suboccipital decompression and autologous duraplasty in situ or synthetic dural graft duraplasty; patients were treated in the authors' department between 2011 and 2014. All procedures were performed by the same surgeon. The 2 duraplasty methods were compared in terms of surgical factors and complications. The authors assessed the neurological outcome and MRI-documented syrinx size at the 6-month follow-up visit.
RESULTS
Twenty-seven patients were enrolled in this study, 13 in the duraplasty in situ group and 14 in the synthetic dural graft duraplasty group. The results showed no significant differences between the duraplasty in situ and synthetic dural graft duraplasty groups in overall operative time (4.9 hours vs 4.1 hours; p = 0.070), estimated blood loss (229 ml vs 254 ml; p = 0.159), and duration of hospital stay after the operation (13.5 days vs 12.8 days; p = 0.808). In the duraplasty in situ group, 1 case of meningitis occurred (7.7%). In the synthetic dural graft duraplasty group, the complications included 1 case of meningitis (7.1%) and 1 CSF leak (7.1%). The mean cost of hospitalization in the duraplasty in situ group (CNY 23,354) was significantly lower than that in the synthetic dural graft duraplasty group (CNY 29,385; p = 0.036).
CONCLUSIONS
Compared with synthetic dural graft duraplasty, autologous duraplasty in situ is a safe, effective, and cost-effective procedure for the treatment of CM-I. The long-term outcome of this procedure requires investigation.
Collapse
|
41
|
Deng K, Ye X, Yang Y, Liu M, Ayyad A, Zhao Y, Yuan Y, Zhao J, Xu T. Evaluation of efficacy and biocompatibility of a new absorbable synthetic substitute as a dural onlay graft in a large animal model. Neurol Res 2016; 38:799-808. [DOI: 10.1080/01616412.2016.1214418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kunxue Deng
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX, USA
| | - Xun Ye
- Beijing Translational Engineering Center for 3D printer in Clinical Neuroscience, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaya Yang
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX, USA
- Multidisciplinary Research Center, Shantou University, Shantou, China
| | - Man Liu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Ali Ayyad
- Department of Neurosurgery, University Medical Centre Mainz, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Yuanli Zhao
- Beijing Translational Engineering Center for 3D printer in Clinical Neuroscience, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuyu Yuan
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, China
| | - Jizong Zhao
- Beijing Translational Engineering Center for 3D printer in Clinical Neuroscience, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Xu
- Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX, USA
- Bio-manufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Centonze R, Agostini E, Massaccesi S, Toninelli S, Morabito L. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation. Asian J Neurosurg 2016; 11:201-5. [PMID: 27366245 PMCID: PMC4849287 DOI: 10.4103/1793-5482.179645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: A large variety of biological and artificial materials are employed in dural repair, each of them with major limitations. Autologous grafts have limited availability and require an additional incision and surgical time. Cadaveric preparations and heterologous materials entail the risk of iatrogenic transmission of prions, whereas synthetic substitutes have been reported to cause inflammatory reactions and graft rejection. An equine-derived pericardium membrane has been developed (Heart®, Bioteck, Vicenza, Italy) with mechanical and safety-related features that could make it suitable for neurosurgical application. Aims: This preliminary study aimed to evaluate the short-term safety and efficacy of the Heart® membrane in dural repair procedures following meningioma surgeries. Subjects and Methods: Medical records of patients who were surgically treated for an intracranial meningioma and underwent duraplasty with the Heart® membrane were reviewed retrospectively. The occurrence of any graft-related complications such as cerebrospinal fluid (CSF) leakage, postoperative hematoma, wound infection, meningitis, and neurological symptoms was analyzed. Results: Eight patients were identified as meeting the inclusion criteria. A watertight closure was achieved in all of them. Postoperatively, no patients exhibited CSF leak, cerebral contusion, hemorrhage, or wound infection. The 1-month radiological follow-up revealed no evidence of pseudomeningocele, wound breakdown, or meningitis. Neurologic complications were observed in three patients but not directly imputable to the dural substitute or its application. Conclusions: In all the patients, the pericardium membrane enabled achievement of a watertight dural closure without graft-related adverse events. Further investigations should be performed to assess medium- and long-term clinical outcomes in a larger set of patients.
Collapse
Affiliation(s)
- Roberto Centonze
- Division of Neurosurgery, Ospedali Riuniti Marche Nord Hospital, Pesaro, Italy
| | - Emiliano Agostini
- Division of Neurosurgery, Ospedali Riuniti Marche Nord Hospital, Pesaro, Italy
| | - Samantha Massaccesi
- Division of Neurosurgery, Ospedali Riuniti Marche Nord Hospital, Pesaro, Italy
| | - Stefano Toninelli
- Division of Neurosurgery, Ospedali Riuniti Marche Nord Hospital, Pesaro, Italy
| | - Letterio Morabito
- Division of Neurosurgery, Ospedali Riuniti Marche Nord Hospital, Pesaro, Italy
| |
Collapse
|
43
|
Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, Stolz DB, Badylak SF. Matrix-bound nanovesicles within ECM bioscaffolds. SCIENCE ADVANCES 2016; 2:e1600502. [PMID: 27386584 PMCID: PMC4928894 DOI: 10.1126/sciadv.1600502] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/19/2016] [Indexed: 05/13/2023]
Abstract
Biologic scaffold materials composed of extracellular matrix (ECM) have been used in a variety of surgical and tissue engineering/regenerative medicine applications and are associated with favorable constructive remodeling properties including angiogenesis, stem cell recruitment, and modulation of macrophage phenotype toward an anti-inflammatory effector cell type. However, the mechanisms by which these events are mediated are largely unknown. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting physiologic and pathologic processes. Formerly identified exclusively in biologic fluids, the presence of EVs within the ECM of connective tissue has not been reported. In both laboratory-produced and commercially available biologic scaffolds, MBVs can be separated from the matrix only after enzymatic digestion of the ECM scaffold material, a temporal sequence similar to the functional activity attributed to implanted bioscaffolds during and following their degradation when used in clinical applications. The present study shows that MBVs contain microRNA capable of exerting phenotypical and functional effects on macrophage activation and neuroblastoma cell differentiation. The identification of MBVs embedded within the ECM of biologic scaffolds provides mechanistic insights not only into the inductive properties of ECM bioscaffolds but also into the regulation of tissue homeostasis.
Collapse
Affiliation(s)
- Luai Huleihel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jenna L. Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center of Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Corresponding author.
| |
Collapse
|
44
|
Abstract
Templates inserted into surgical wounds strongly influence the healing responses in humans. The science of these templates, in the form of extracellular matrix biomaterials, is rapidly evolving and improving as the natural interactions with the body become better understood.
Collapse
Affiliation(s)
- Jason Hodde
- Director of Medical Sciences, Cook Biotech, Incorporated, West Lafayette, Indiana, USA
| | - Michael Hiles
- Vice President for Research and Development, Cook Biotech, Incorporated, 1425 Innovation Place, West Lafayette, Indiana 47906, USA and Adjunct Professor of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
45
|
Kshettry VR, Lobo B, Lim J, Sade B, Oya S, Lee JH. Evaluation of Non-Watertight Dural Reconstruction with Collagen Matrix Onlay Graft in Posterior Fossa Surgery. J Korean Neurosurg Soc 2016; 59:52-7. [PMID: 26885286 PMCID: PMC4754587 DOI: 10.3340/jkns.2016.59.1.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 01/25/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Many surgeons advocate for watertight dural reconstruction after posterior fossa surgery given the significant risk of cerebrospinal fluid (CSF) leak. Little evidence exists for posterior fossa dural reconstruction utilizing monolayer collagen matrix onlay graft in a non-watertight fashion. Our objective was to report the results of using collagen matrix in a non-watertight fashion for posterior fossa dural reconstruction. METHODS We conducted a retrospective review of operations performed by the senior author from 2004-2011 identified collagen matrix (DuraGen) use in 84 posterior fossa operations. Wound complications such as CSF leak, infection, pseudomeningocele, and aseptic meningitis were noted. Fisher's exact test was performed to assess risk factor association with specific complications. RESULTS Incisional CSF leak rate was 8.3% and non-incisional CSF leak rate was 3.6%. Incidence of aseptic meningitis was 7.1% and all cases resolved with steroids alone. Incidence of palpable and symptomatic pseudomeningocele in follow-up was 10.7% and 3.6% respectively. Postoperative infection rate was 4.8%. Previous surgery was associated with pseudomeningocele development (p<0.05). CONCLUSION When primary dural closure after posterior fossa surgery is undesirable or not feasible, non-watertight dural reconstruction with collagen matrix resulted in incisional CSF leak in 8.3%. Incidence of pseudomeningocele, aseptic meningitis, and wound infection were within acceptable range. Data from this study may be used to compare alternative methods of dural reconstruction in posterior fossa surgery.
Collapse
Affiliation(s)
- Varun R Kshettry
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bjorn Lobo
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua Lim
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Burak Sade
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soichi Oya
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joung H Lee
- Brain Tumor & Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
46
|
Muhamed J, Rajan A, Surendran A, Jaleel A, Anilkumar TV. Comparative profiling of extractable proteins in extracellular matrices of porcine cholecyst and jejunum intended for preparation of tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 2015; 105:489-496. [DOI: 10.1002/jbm.b.33567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Jaseer Muhamed
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Akhila Rajan
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - Arun Surendran
- Department of Cardiovascular & Diabetes Disease Biology; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - Abdul Jaleel
- Department of Cardiovascular & Diabetes Disease Biology; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram Kerala India
| | - Thapasimuthu V. Anilkumar
- Division of Experimental Pathology; Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| |
Collapse
|
47
|
Shi Z, Xu T, Yuan Y, Deng K, Liu M, Ke Y, Luo C, Yuan T, Ayyad A. A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair. Artif Organs 2015; 40:403-13. [PMID: 26526152 DOI: 10.1111/aor.12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhidong Shi
- Department of Neurosurgery; Third Affiliated Hospital; Sun Yat-sen University; Guangzhou China
| | - Tao Xu
- Bio-Manufacturing Center; Department of Mechanical Engineering; Tsinghua University; Beijing China
| | - Yuyu Yuan
- School of Bioscience & Bioengineering; South China University of Technology; Guangzhou China
| | - Kunxue Deng
- Bio-Manufacturing Center; Department of Mechanical Engineering; Tsinghua University; Beijing China
| | - Man Liu
- School of Bioscience & Bioengineering; South China University of Technology; Guangzhou China
| | - Yiquan Ke
- Department of Neurosurgery; Zhujiang Hospital; South Medical University; Guangzhou China
| | - Chengyi Luo
- Department of Neurosurgery; Zhujiang Hospital; South Medical University; Guangzhou China
| | - Tun Yuan
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu China
| | - Ali Ayyad
- Department of Neurosurgery; University Medical Centre Mainz; Johannes Gutenberg University of Mainz; Mainz Germany
| |
Collapse
|
48
|
D'Eredità R. Porcine small intestinal submucosa (SIS) myringoplasty in children: A randomized controlled study. Int J Pediatr Otorhinolaryngol 2015; 79:1085-9. [PMID: 25956867 DOI: 10.1016/j.ijporl.2015.04.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/19/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
INTRODUCTION A novel bioactive material for tissue graft, derived from porcine small intestinal mucosa (SIS) has been marketed. This material promotes early vessel growth, provides scaffolding for the remodeling tissues, and is inexpensive and ready-to-use. We evaluated efficacy, safety, and surgery time of SIS myringoplasty, in comparison with autologous temporalis fascia (PTF) repair in children in a prospective, two-group (SIS and PTF) randomized, blinded study at a tertiary-care pediatric institution. MATERIALS AND METHODS 404 children with tympanic membrane (TM) repair were randomly assigned to receive SIS or PTF myringoplasty. Primary outcome was the healing of the TM at 6 months. Secondary outcomes were surgical time, and adverse events. Long-term follow-up ranging from 11 to 2 years was obtained in all enrolled children. Audiometric tests as pure-tone thresholds were applied in all patients. The Fisher's exact test and the Kriskal-Wallis test were applied for statistical analysis. RESULTS AND DISCUSSIONS Four-hundred-thirty-two TM perforations were treated, 217 in the SIS and 215 in the PTF groups. There were 209 stable TM closures in the SIS (96.3%) and 204 (94.8%) in the PTF arm. This difference was not statistically significant (odds ratio=0.4, 95%; confidence interval=0.12-1.41). SIS myringoplasty yielded reduced surgical time. No adverse reaction to SIS was encountered. Audiometric tests revealed no statistically significant difference in the two groups. CONCLUSIONS SIS myringoplasty is a safe and effective method for TM closure in children with reduced surgical time, as compared to PTF.
Collapse
|
49
|
Yu F, Li Q, Yin S, Liao X, Huang F, Chen D, Cao Y, Cen L. Reconstructing spinal dura-like tissue using electrospun poly(lactide-co-glycolide) membranes and dermal fibroblasts to seamlessly repair spinal dural defects in goats. J Biomater Appl 2015; 30:311-26. [PMID: 26041755 DOI: 10.1177/0885328215589205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many neuro- and spinal surgeries involving access to the underlying nervous tissue will cause defect of spinal dural mater, further resulting in cerebrospinal fluid leakage. The current work was thus aimed to develop a package which included two layers of novel electrospun membranes, dermal fibroblasts and mussel adhesive protein for repairing spinal dural defect. The inner layer is electrospun fibrous poly(lactide-co-glycolide) membrane with oriented microstructure (O-poly(lactide-co-glycolide)), which was used as a substrate to anchor dermal fibroblasts as seed cells to reconstitute dura-like tissue via tissue engineering technique. The outer layer is chitosan-coated electrospun nonwoven poly(lactide-co-glycolide) membrane (poly(lactide-co-glycolide)-chitosan). During surgery, the inner reconstituted tissue layer was first used to directly cover dura defects, while the outer layer was placed onwards with its marginal area tightly immobilized to the surrounding normal spinal dura aided by mussel adhesive protein. Efficacy of the current design was verified in goats with spinal dural defects (0.6 cm × 0.5 cm) in lumbar. It was shown that seamless and quick sealing of the defect area with the implants was realized by mussel adhesive protein. Guided tissue growth and regeneration in the defects of goats were observed when they were repaired by the current package. Effective cerebrospinal fluid containment and anti-adhesion of the regenerated tissue to the surrounding tissue could be achieved in the current animal model. Hence, it could be ascertained that the current package could be a favorite choice for surgeries involving spinal dural defects.
Collapse
Affiliation(s)
- Fengbin Yu
- Department of Orthopaedic Surgery, Chezhan Road, Huzhou, China
| | - Qiang Li
- Department of Orthopaedic Surgery, Chezhan Road, Huzhou, China
| | - Shuo Yin
- National Tissue Engineering Center of China, East Jiang Chuan Road, Shanghai, China
| | - Xinyuan Liao
- Department of Orthopaedic Surgery, Changzheng Hospital, Feng Yang Road, Shanghai, China
| | - Fei Huang
- Department of Orthopaedic Surgery, Chezhan Road, Huzhou, China
| | - Deyu Chen
- Department of Orthopaedic Surgery, Changzheng Hospital, Feng Yang Road, Shanghai, China
| | - Yilin Cao
- National Tissue Engineering Center of China, East Jiang Chuan Road, Shanghai, China
| | - Lian Cen
- National Tissue Engineering Center of China, East Jiang Chuan Road, Shanghai, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Mei Long Road, Shanghai, China
| |
Collapse
|
50
|
Wang F, He H, Zhuang H, Xie X, Yang Z, Cai Z, Gu H, Zhou J. Controlled light field concentration through turbid biological membrane for phototherapy. BIOMEDICAL OPTICS EXPRESS 2015; 6:2237-2245. [PMID: 26114042 PMCID: PMC4473757 DOI: 10.1364/boe.6.002237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 05/29/2023]
Abstract
Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.
Collapse
Affiliation(s)
- Fujuan Wang
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hexiang He
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huichang Zhuang
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiangsheng Xie
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenchong Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, 510080, China
| | - Zhigang Cai
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, 510080, China
| | - Jianying Zhou
- State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|