1
|
Kurihara M, Arakawa A, Tokumaru AM, Matsubara T, Eguchi H, Shimo Y, Hasegawa M, Kanemaru K, Takeda K, Iwata A, Murayama S, Saito Y. Dynamic aphasia as an early sign of corticobasal degeneration: Clinico-radio-pathological correlation. eNeurologicalSci 2024; 37:100526. [PMID: 39309449 PMCID: PMC11414697 DOI: 10.1016/j.ensci.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
A 72-year-old man presented with a 6-month history of decreased voluntary speech. Sparse speech and decreased word fluency were observed. Articulation, naming, comprehension, and repetition were preserved. Agrammatism and paraphasia were not observed. These characteristics matched those reported as dynamic aphasia. Other findings were mild behavioral symptoms, recent memory impairment, and right hemiparkinsonism. The patient's voluntary speech continued to reduce and behavioral symptoms progressed. Brain MRI including voxel-based morphometric analysis showed left-dominant white matter volume reduction in the frontal lobe including those between the left supplementary motor area (SMA)/preSMA and the frontal operculum, likely involving the frontal aslant tract (FAT). The patient became completely mute after two years from disease onset and died of aspiration pneumonia. The neuropathological diagnosis was corticobasal degeneration (CBD). This case suggests that dynamic aphasia may be the initial sign of CBD and that early involvement of left FAT may be responsible for this feature.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akira Arakawa
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Hiroto Eguchi
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutomi Kanemaru
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Katsuhiko Takeda
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Bunkyo Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
2
|
Sakurai K, Tokumaru AM, Yoshida M, Saito Y, Wakabayashi K, Komori T, Hasegawa M, Ikeuchi T, Hayashi Y, Shimohata T, Murayama S, Iwasaki Y, Uchihara T, Sakai M, Yabe I, Tanikawa S, Takigawa H, Adachi T, Hanajima R, Fujimura H, Hayashi K, Sugaya K, Hasegawa K, Sano T, Takao M, Yokota O, Miki T, Kobayashi M, Arai N, Ohkubo T, Yokota T, Mori K, Ito M, Ishida C, Idezuka J, Toyoshima Y, Kanazawa M, Aoki M, Hasegawa T, Watanabe H, Hashizume A, Niwa H, Yasui K, Ito K, Washimi Y, Kubota A, Toda T, Nakashima K, Aiba I. Conventional magnetic resonance imaging key features for distinguishing pathologically confirmed corticobasal degeneration from its mimics: a retrospective analysis of the J-VAC study. Neuroradiology 2024; 66:1917-1929. [PMID: 39039147 PMCID: PMC11535003 DOI: 10.1007/s00234-024-03432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Masato Hasegawa
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Toshiki Uchihara
- Department of General Internal Medicine, Okinawa Chubu Hospital, Uruma, Okinawa, 904-2293, Japan
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Motoko Sakai
- Department of Neurology, NHO Suzuka National Hospital, Suzuka, Mie, 513-8501, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Tanikawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Tottori, 683-8504, Japan
| | - Harutoshi Fujimura
- Department of Neurology, NHO Osaka Toneyama Medical Center, Toyonaka, Osaka, 560-8552, Japan
| | - Kentaro Hayashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, 183-0042, Japan
| | - Kazuko Hasegawa
- Department of Neurology, NHO Sagamihara National Hospital, Sagamihara, Kanagawa, 252-0392, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Tokyo, 187-8551, Japan
| | - Osamu Yokota
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Tomoko Miki
- Department of Psychiatry, Kinoko Espoir Hospital, Kasaoka, Okayama, 714-0071, Japan
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita, Okayama, 700-8558, Japan
| | - Michio Kobayashi
- Department of Neurology, NHO Akita National Hospital, Yurihonjo, Akita, 018-1393, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Takuya Ohkubo
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Mie, 512-1111, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Kanazawa, Ishikawa, 920-0192, Japan
| | - Jiro Idezuka
- Department of Neurology, Ojiya Sakura Hospital, Ojiya, Niigata, 947-0041, Japan
| | - Yasuko Toyoshima
- Department of Neurology, Brain Disease Center Agano Hospital, Agano, Niigata, 959-2221, Japan
- Department of Pathology, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Chuo, Niigata, 951-8585, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Hisayoshi Niwa
- Department of Neurology, Kariya Toyota General Hospital, Kariya, Aichi, 448-8505, Japan
| | - Keizo Yasui
- Department of Neurology, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, 466-8650, Japan
| | - Keita Ito
- Department of Neurology, Hekinan Municipal Hospital, Hekinan, Aichi, 447-8502, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Kenji Nakashima
- Department of Neurology, NHO Matsue Medical Center, Matsue, Shimane, 690-8556, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO Higashinagoya National Hospital, Nagoya, Aichi, 465-8620, Japan
| |
Collapse
|
3
|
Nakamura K, Kuroha Y, Hatakeyama M, Kimura AM, Nakamura Y, Murakami Y, Watanabe M, Igarashi H, Takahashi T, Shimada H. Corticobasal syndrome mimicking Foix-Chavany-Marie syndrome with suggested 4-repeat tauopathy by tau PET. BMC Geriatr 2023; 23:838. [PMID: 38087192 PMCID: PMC10714444 DOI: 10.1186/s12877-023-04564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Corticobasal syndrome (CBS) is a neurodegenerative disease diagnosed based on clinical manifestations such as asymmetrical parkinsonism, limb apraxia, and speech and language impairment. The background pathology of CBS is commonly a variety of proteinopathies, but association with cerebrovascular disease has also been reported. Foix-Chavany-Marie syndrome (FCMS) is a rare neurological disorder characterized by facio-pharyngo-glossal diplegia with automatic-voluntary movement dissociation presenting with bilateral paresis of the facial, lingual, pharyngeal and masticatory muscles. FCMS is commonly attributable to stroke. Transactive response DNA binding protein of 43 kD (TDP-43) proteinopathy is also known as the pathological background of FCMS, while the pathological background of the majority of CBS cases consists of diverse tauopathies instead of TDP-43 proteinopathy. In this report, we describe a case mimicking FCMS that was finally diagnosed as CBS with suggested 4-repeat tauopathy. CASE PRESENTATION A 68-year-old female started experiencing difficulty speaking followed by difficulty writing, and especially texting, several years before her visit. Her impairment had been gradually worsening, and she came to our hospital. On neurological examination, she demonstrated the facial apraxia, frontal lobe dysfunction, and upper motor neuron signs. She presented some characteristics suggestive of FCMS. Her symptoms exhibited rapid progression and myoclonus, parkinsonism, and left-side dominant cortical sensory deficit occurred, resulting in the fulfillment of diagnostic criteria for CBS after 9 months. Tau PET imaging displayed notable ligand uptake in the brainstem, subthalamic nuclei, basal ganglia, and bilateral subcortical frontal lobe, suggesting that her pathological background was 4-repeat tauopathy. As a result of her progressive dysphagia, she became unable to eat and passed away after 12 months. CONCLUSION We hereby present an atypical case of CBS showing clinical features mimicking FCMS at first presentation. TDP-43 proteinopathy was suspected based on the clinical symptoms in the early stages of the disease; however, the clinical course and imaging findings including tau PET suggested that her pathological background was 4-repeat tauopathy.
Collapse
Affiliation(s)
- Kosei Nakamura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dohri, Niigata, 951-8585, Japan
| | - Yasuko Kuroha
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dohri, Niigata, 951-8585, Japan
| | - Atsushi Michael Kimura
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dohri, Niigata, 951-8585, Japan
| | - Yukimi Nakamura
- Department of Integrated Neuroscience, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshihiro Murakami
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dohri, Niigata, 951-8585, Japan
| | - Masaki Watanabe
- Department of Biological Magnetic Resonance, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Department of Biological Magnetic Resonance, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Takahashi
- Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Hitoshi Shimada
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dohri, Niigata, 951-8585, Japan.
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
4
|
Komatsu T, Takahashi M, Omoto S, Iguchi Y. Asymmetric focal cortical atrophy in CSF1R-related leukoencephalopathy; case report. Acta Neurol Belg 2023; 123:2001-2003. [PMID: 35980505 DOI: 10.1007/s13760-022-02065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Maki Takahashi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shusaku Omoto
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
5
|
Kurihara M, Ishibashi K, Matsubara T, Hatano K, Ihara R, Higashihara M, Kameyama M, Tokumaru AM, Takeda K, Nishina Y, Kanemaru K, Ishii K, Iwata A. High sensitivity of asymmetric 18F-THK5351 PET abnormality in patients with corticobasal syndrome. Sci Rep 2023; 13:12147. [PMID: 37500734 PMCID: PMC10374540 DOI: 10.1038/s41598-023-39227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Corticobasal syndrome (CBS) is characterized by symptoms related to the asymmetric involvement of the cerebral cortex and basal ganglia. However, early detection of asymmetric imaging abnormalities can be challenging. Previous studies reported asymmetric 18F-THK5351 PET abnormalities in CBS patients, but the sensitivity for detecting such abnormalities in larger patient samples, including early-stage cases, remains unclear. Patients clinically diagnosed with CBS were recruited. All patients displayed asymmetric symptoms in the cerebral cortex and basal ganglia. Asymmetric THK5351 PET abnormalities were determined through visual assessment. Brain MRI, perfusion SPECT, and dopamine transporter (DAT) SPECT results were retrospectively reviewed. The 15 patients had a median age of 72 years (59-86 years) and a disease duration of 2 years (0.5-7 years). Four patients met the probable and 11 met the possible CBS criteria according to Armstrong criteria at the time of PET examination. All patients, including early-stage cases, exhibited asymmetric tracer uptake contralateral to their symptom-dominant side in the cerebral cortex/subcortical white matter and striatum (100%). The sensitivity for detecting asymmetric imaging abnormalities contralateral to the symptom-dominant side was 86.7% for brain MRI, 81.8% for perfusion SPECT, and 90% for DAT SPECT. White matter volume reduction was observed in the subcortical region of the precentral gyrus with increased THK5351 uptake, occurring significantly more frequently than gray matter volume reduction. THK5351 PET may be a sensitive imaging technique for detecting asymmetric CBS pathologies, including those in early stages.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Keiko Hatano
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ryoko Ihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Kameyama
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Aya Midori Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Katsuhiko Takeda
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
- Bunkyo Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Yasushi Nishina
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kazutomi Kanemaru
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
- Integrated Research Initiative for Living Well With Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
6
|
Sakurai K, Kaneda D, Morimoto S, Uchida Y, Inui S, Kimura Y, Kato T, Ito K, Hashizume Y. Asymmetric Cerebral Peduncle Atrophy: A Simple Diagnostic Clue for Distinguishing Frontotemporal Lobar Degeneration from Alzheimer's Disease. J Alzheimers Dis 2023; 95:1657-1665. [PMID: 37718809 DOI: 10.3233/jad-230441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Due to confusing clinicoradiological features such as amnestic symptoms and hippocampal atrophy in frontotemporal lobar degeneration (FTLD), antemortem differentiation between FTLD and Alzheimer's disease (AD) can be challenging. Although asymmetric atrophy of the cerebral peduncle is regarded as a representative imaging finding in some disorders of the FTLD spectrum, the utility of this finding has not been sufficiently evaluated for differentiating between FTLD and AD. OBJECTIVE This study aimed to explore the diagnostic performance of asymmetric cerebral peduncle atrophy on axial magnetic resonance imaging as a simple radiological discriminator between FTLD and AD. METHODS Seventeen patients with pathologically confirmed FTLD, including six with progressive supranuclear palsy, three with corticobasal degeneration, eight with TAR DNA-binding protein 43 (FTLD-TDP), and 11 with pathologically confirmed AD, were investigated. Quantitative indices representing the difference between the volumes of the bilateral cerebral peduncles (i.e., cerebral peduncular asymmetry index [CPAI]), the voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) Z-score representing the degree of hippocampal atrophy, and semiquantitative visual analysis to evaluate the asymmetry of the cerebral peduncle (visual assessment of cerebral peduncular asymmetry: VACPA) were compared between the two groups. RESULTS Contrary to the VSRAD Z-score, the CPAI and VACPA scores demonstrated higher diagnostic performance in differentiating patients with FTLD from those with AD (areas under the receiver operating characteristic curve of 0.88, 082, and 0.60, respectively). CONCLUSIONS Quantitative and visual analytical techniques can differentiate between FTLD and AD. These simple methods may be useful in daily clinical practice.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Daita Kaneda
- Choju Medical Institute, Fukushimura Hospital, Aichi, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shohei Inui
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kengo Ito
- Department of Radiology, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | |
Collapse
|
7
|
Sartoretti T, Ganley RP, Ni R, Freund P, Zeilhofer HU, Klohs J. Structural MRI Reveals Cervical Spinal Cord Atrophy in the P301L Mouse Model of Tauopathy: Gender and Transgene-Dosing Effects. Front Aging Neurosci 2022; 14:825996. [PMID: 35585865 PMCID: PMC9108240 DOI: 10.3389/fnagi.2022.825996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
In primary tauopathies, the deposition of tau neurofibrillary tangles and threads as well as neurodegenerative changes have been found within the brain and spinal cord. While degenerative changes have been intensively studied in the brain using structural magnetic resonance imaging (MRI), MRI studies investigating the spinal cord are still scarce. In the present study, we acquired ex vivo high resolution structural MRI of the cervical spinal cord of 8.5–9 month old hemizygous and homozygous P301L mice and non-transgenic littermates of both genders. We assessed the total cross-sectional area, and the gray and white matter anterior-posterior width and left-right width that are established imaging marker of spinal cord degeneration. We observed significant tissue-specific reductions in these parameters in female P301L mice that were stronger in homozygous than in hemizygous P301L mice, indicating both an effect of gender and transgene expression on cervical spinal cord atrophy. Moreover, atrophy was stronger in the gray matter than in the white matter. Immunohistochemical analysis revealed neurodegenerative and neuroinflammatory changes in the cervical spinal cord in both the gray and white matter of P301L mice. Collectively, our results provide evidence for cervical spinal cord atrophy that may directly contribute to the motor signs associated with tauopathy.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Robert P. Ganley
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Patrick Freund
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- *Correspondence: Jan Klohs
| |
Collapse
|
8
|
Riley KJ, Graner BD, Veronesi MC. The tauopathies: Neuroimaging characteristics and emerging experimental therapies. J Neuroimaging 2022; 32:565-581. [PMID: 35470528 PMCID: PMC9545715 DOI: 10.1111/jon.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders in which the prevailing underlying disease process is intracellular deposition of abnormal misfolded tau protein. Diseases often categorized as tauopathies include progressive supranuclear palsy, chronic traumatic encephalopathy, corticobasal degeneration, and frontotemporal lobar degeneration. Tauopathies can be classified through clinical assessment, imaging findings, histologic validation, or molecular biomarkers tied to the underlying disease mechanism. Many tauopathies vary in their clinical presentation and overlap substantially in presentation, making clinical diagnosis of a specific primary tauopathy difficult. Anatomic imaging findings are also rarely specific to a single tauopathy, and when present may not manifest until well after the point at which therapy may be most impactful. Molecular biomarkers hold the most promise for patient care and form a platform upon which emerging diagnostic and therapeutic applications could be developed. One of the most exciting developments utilizing these molecular biomarkers for assessment of tau deposition within the brain is tau‐PET imaging utilizing novel ligands that specifically target tau protein. This review will discuss the background, significance, and clinical presentation of each tauopathy with additional attention to the pathologic mechanisms at the protein level. The imaging characteristics will be outlined with select examples of emerging imaging techniques. Finally, current treatment options and emerging therapies will be discussed. This is by no means a comprehensive review of the literature but is instead intended for the practicing radiologist as an overview of a rapidly evolving topic.
Collapse
Affiliation(s)
- Kalen J Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brian D Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael C Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Saito Y, Kamagata K, Wijeratne PA, Andica C, Uchida W, Takabayashi K, Fujita S, Akashi T, Wada A, Shimoji K, Hori M, Masutani Y, Alexander DC, Aoki S. Temporal Progression Patterns of Brain Atrophy in Corticobasal Syndrome and Progressive Supranuclear Palsy Revealed by Subtype and Stage Inference (SuStaIn). Front Neurol 2022; 13:814768. [PMID: 35280291 PMCID: PMC8914081 DOI: 10.3389/fneur.2022.814768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Differentiating corticobasal degeneration presenting with corticobasal syndrome (CBD-CBS) from progressive supranuclear palsy with Richardson's syndrome (PSP-RS), particularly in early stages, is often challenging because the neurodegenerative conditions closely overlap in terms of clinical presentation and pathology. Although volumetry using brain magnetic resonance imaging (MRI) has been studied in patients with CBS and PSP-RS, studies assessing the progression of brain atrophy are limited. Therefore, we aimed to reveal the difference in the temporal progression patterns of brain atrophy between patients with CBS and those with PSP-RS purely based on cross-sectional data using Subtype and Stage Inference (SuStaIn)—a novel, unsupervised machine learning technique that integrates clustering and disease progression modeling. We applied SuStaIn to the cross-sectional regional brain volumes of 25 patients with CBS, 39 patients with typical PSP-RS, and 50 healthy controls to estimate the two disease subtypes and trajectories of CBS and PSP-RS, which have distinct atrophy patterns. The progression model and classification accuracy of CBS and PSP-RS were compared with those of previous studies to evaluate the performance of SuStaIn. SuStaIn identified distinct temporal progression patterns of brain atrophy for CBS and PSP-RS, which were largely consistent with previous evidence, with high reproducibility (99.7%) under cross-validation. We classified these diseases with high accuracy (0.875) and sensitivity (0.680 and 1.000, respectively) based on cross-sectional structural brain MRI data; the accuracy was higher than that reported in previous studies. Moreover, SuStaIn stage correctly reflected disease severity without the label of disease stage, such as disease duration. Furthermore, SuStaIn also showed the genialized performance of differentiation and reflection for CBS and PSP-RS. Thus, SuStaIn has potential for improving our understanding of disease mechanisms, accurately stratifying patients, and providing prognoses for patients with CBS and PSP-RS.
Collapse
Affiliation(s)
- Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Koji Kamagata
| | - Peter A. Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keigo Shimoji
- Department of Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshitaka Masutani
- Department of Biomedical Information Sciences, Hiroshima City University Graduate School of Information Sciences, Hiroshima, Japan
| | - Daniel C. Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Carlos AF, Tosakulwong N, Weigand SD, Buciuc M, Ali F, Clark HM, Botha H, Utianski RL, Machulda MM, Schwarz CG, Reid RI, Senjem ML, Jack CR, Ahlskog JE, Dickson DW, Josephs KA, Whitwell JL. OUP accepted manuscript. Brain Commun 2022; 4:fcac108. [PMID: 35663380 PMCID: PMC9155234 DOI: 10.1093/braincomms/fcac108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Primary four-repeat tauopathies are characterized by depositions of the four-repeat isoform of the microtubule binding protein, tau. The two most common sporadic four-repeat tauopathies are progressive supranuclear palsy and corticobasal degeneration. Because tau PET tracers exhibit poor binding affinity to four-repeat pathology, determining how well in vivo MRI findings relate to underlying pathology is critical to evaluating their utility as surrogate markers to aid in diagnosis and as outcome measures for clinical trials. We studied the relationship of cross-sectional imaging findings, such as MRI volume loss and diffusion tensor imaging white matter tract abnormalities, to tau histopathology in four-repeat tauopathies. Forty-seven patients with antemortem 3 T MRI volumetric and diffusion tensor imaging scans plus post-mortem pathological diagnosis of a four-repeat tauopathy (28 progressive supranuclear palsy; 19 corticobasal degeneration) were included in the study. Tau lesion types (pretangles/neurofibrillary tangles, neuropil threads, coiled bodies, astrocytic lesions) were semiquantitatively graded in disease-specific cortical, subcortical and brainstem regions. Antemortem regional volumes, fractional anisotropy and mean diffusivity were modelled using linear regression with post-mortem tau lesion scores considered separately, based on cellular type (neuronal versus glial), or summed (total tau). Results showed that greater total tau burden was associated with volume loss in the subthalamic nucleus (P = 0.001), midbrain (P < 0.001), substantia nigra (P = 0.03) and red nucleus (P = 0.004), with glial lesions substantially driving the associations. Decreased fractional anisotropy and increased mean diffusivity in the superior cerebellar peduncle correlated with glial tau in the cerebellar dentate (P = 0.04 and P = 0.02, respectively) and red nucleus (P < 0.001 for both). Total tau and glial pathology also correlated with increased mean diffusivity in the midbrain (P = 0.02 and P < 0.001, respectively). Finally, increased subcortical white matter mean diffusivity was associated with total tau in superior frontal and precentral cortices (each, P = 0.02). Overall, results showed clear relationships between antemortem MRI changes and pathology in four-repeat tauopathies. Our findings show that brain volume could be a useful surrogate marker of tau pathology in subcortical and brainstem regions, whereas white matter integrity could be a useful marker of tau pathology in cortical regions. Our findings also suggested an important role of glial tau lesions in the pathogenesis of neurodegeneration in four-repeat tauopathies. Thus, development of tau PET tracers selectively binding to glial tau lesions could potentially uncover mechanisms of disease progression.
Collapse
Affiliation(s)
- Arenn F. Carlos
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen D. Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Mary M. Machulda
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Robert I. Reid
- Department of Psychology and Psychiatry, Mayo Clinic, Rochester, MN 55905, USA
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
- Correspondence to: Jennifer L. Whitwell, PhD Professor of Radiology, Department of Radiology Mayo Clinic, 200 1st St SW Rochester, MN 55905, USA E-mail:
| |
Collapse
|
11
|
Ishida C, Kato-Motozaki Y, Noto D, Komai K, Hasegawa M, Ikeuchi T, Yamada M. An autopsy case of corticobasal degeneration with inferior olivary hypertrophy. Neuropathology 2021; 41:226-235. [PMID: 33847035 DOI: 10.1111/neup.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
We report autopsy results of a female patient who was confirmed pathologically as having corticobasal degeneration (CBD). This patient presented with progressive gait disturbance at the age of 66 years, and subsequently showed parkinsonism with a right-sided predominance and dementia. She was clinically diagnosed as having possible corticobasal syndrome without palatal myoclonus throughout the disease course. An autopsy at 72 years of age revealed that neuronal loss with gliosis was severe in the substantia nigra and the portion from hippocampal cornu ammonis (CA1) region to the parahippocampal gyrus, and mild-to-moderate in the basal ganglia, thalamus, red nucleus, dentate nucleus, and cerebral cortices, predominantly in the frontal lobe. Myelin pallor was observed in the pyramidal tract of the brainstem and central tegmental tract. Neurodegenerative or axonal degenerative findings were observed predominantly on the left side, except for the dentate nucleus, which was more affected on the right side. The inferior olivary nucleus exhibited hypertrophic degeneration predominantly on the left side. The topography of neurodegeneration was likely to correspond to the dentate nucleus and inferior olivary nucleus. Phosphorylated tau-immunoreactive pretangles, neurofibrillary tangles, coiled bodies, and threads were diffusely observed in the whole brain. The distribution of tau deposits was prominent in the deeper affected lesions of the dentate nucleus and inferior olivary nucleus. Inferior olivary hypertrophy is unusual in patients with CBD. It is highly possible that the neurodegeneration of the inferior olivary nucleus followed that of the dentate nucleus in our patient. Moreover, these results indicate not only the severity of neurodegenerative changes, but also that of tau deposition that could be related to the topography of the projections of the dentato-olivary pathway. Tau propagation and subsequent neurodegeneration along the fiber connections may have occurred. Our results support the possibility that progression of CBD lesions can be mediated by tau propagation.
Collapse
Affiliation(s)
- Chiho Ishida
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Yuko Kato-Motozaki
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Daisuke Noto
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyonobu Komai
- Department of Neurology, National Hospital Organization Iou National Hospital, Hokuriku Brain and Neuromuscular Disease Center, Kanazawa, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
12
|
Miyata M, Kakeda S, Yoneda T, Ide S, Okada K, Adachi H, Korogi Y. Signal intensity of cerebral gyri in corticobasal syndrome on phase difference enhanced magnetic resonance images: Comparison of progressive supranuclear palsy and Parkinson's disease. J Neurol Sci 2020; 419:117210. [PMID: 33130433 DOI: 10.1016/j.jns.2020.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
We evaluated cerebral gyri (CG) on phase difference enhanced imaging (PADRE) of corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), and Parkinson's disease (PD) patients to determine whether it is possible to discriminate among them on an individual basis. Two radiologists reviewed appearance of the normal CG and that of CBS patients on PADRE, and deviations from the appearance of the normal CG were recorded. Next, based on the CG abnormalities, two other reviewers reviewed PADRE images from 12 CBS, 14 PSP, and 30 PD patients. In healthy subjects on the PADRE images, the signal intensity (SI) of the gray matter (GM) was homogeneously, slightly hyperintense to the subcortical white matter (SCWM), and the SI of the SCWM was homogeneously hypointense. In CBS patients, hypointense layer in superficial GM and disappearance of hypointense in SCWM. The frequency of the abnormal findings on PADRE in the blinded manner by two readers was 100% (12/12), 3% (1/30), and 29% (4/14 in Reader 1) or 36% (5/14 in Reader 2) in CBS PD, and PSP patients, respectively. Laterality of the PADRE findings was showed in 12 (100%) CBS patients and 3 (21%) PSP, but not in any PD patients. The previously reported typical findings in CBS on conventional magnetic resonance image (MRIs) were observed in only 42% (5/12) of CBS patients. In conclusion, the abnormal findings in CG on PADRE appears more useful than conventional MRI findings for discriminating CBS from PD on an individual basis.
Collapse
Affiliation(s)
- Mari Miyata
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University, Aomori, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Kazumasa Okada
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| |
Collapse
|
13
|
Harvey HB, Watson LC, Subramaniam RM, Burns J, Bykowski J, Chakraborty S, Ledbetter LN, Lee RK, Pannell JS, Pollock JM, Powers WJ, Rosenow JM, Shih RY, Slavin K, Utukuri PS, Corey AS. ACR Appropriateness Criteria® Movement Disorders and Neurodegenerative Diseases. J Am Coll Radiol 2020; 17:S175-S187. [PMID: 32370961 DOI: 10.1016/j.jacr.2020.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022]
Abstract
Movement disorders and neurodegenerative diseases are a variety of conditions that involve progressive neuronal degeneration, injury, or death. Establishing the correct diagnosis of a movement disorder or neurodegenerative process can be difficult due to the variable features of these conditions, unusual clinical presentations, and overlapping symptoms and characteristics. MRI has an important role in the initial assessment of these patients, although a combination of imaging and laboratory and genetic tests is often needed for complete evaluation and management. This document summarizes the imaging appropriateness data for rapidly progressive dementia, chorea, Parkinsonian syndromes, suspected neurodegeneration with brain iron accumulation, and suspected motor neuron disease. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Laura C Watson
- Research Author, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Judah Burns
- Panel Chair, Montefiore Medical Center, Bronx, New York
| | | | - Santanu Chakraborty
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada; Canadian Association of Radiologists
| | | | - Ryan K Lee
- Einstein Healthcare Network, Philadelphia, Pennsylvania
| | - Jeffrey S Pannell
- University of California San Diego Medical Center, San Diego, California
| | | | - William J Powers
- University of North Carolina School of Medicine, Chapel Hill, North Carolina; American Academy of Neurology
| | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; Neurosurgery expert
| | - Robert Y Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | | | | | - Amanda S Corey
- Specialty Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| |
Collapse
|
14
|
Arakawa A, Saito Y, Seki T, Mitsutake A, Sato T, Katsumata J, Maekawa R, Hideyama T, Tamura K, Hasegawa M, Shiio Y. Corticobasal degeneration with deep white matter lesion diagnosed by brain biopsy. Neuropathology 2020; 40:287-294. [PMID: 31925842 DOI: 10.1111/neup.12638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 11/29/2022]
Abstract
Corticobasal degeneration (CBD) is a rare progressive neurodegenerative disorder characterized by asymmetric presentation of cerebral cortex signs, cortical sensory disturbance and extrapyramidal signs. Herein, we report a case of a 66-year-old Japanese woman who presented with apraxia of the right hand. She subsequently developed postural instability and cognitive impairments that rapidly worsened. One and a half years later, the patient was wheelchair-bound and severely demented. Brain magnetic resonance imaging revealed left dominant atrophy of the frontoparietal lobe. There was a hyperintense lesion in the deep white matter expanding toward the subcortical area on fluid-attenuated inversion recovery (FLAIR) images. In order to rule out the possibility of an intracranial tumor such as an astrocytoma or malignant lymphoma, we performed a brain biopsy of the left frontal middle gyrus. The patient became bedridden and showed akinetic mutism 1 year after biopsy. Pathological examination revealed a large amount of 4-repeat tau-immunoreactive neuropil threads scattered predominantly in the corticomedullary junction and tau-immunoreactive structures, consistent with CBD. Immunostaining for p53 showed no positive cells, and there were very few Ki-67-positive cells. On immunoblots of sarkosyl-insoluble brain extracts, a major doublet of 64 and 68 kDa full-length tau with two closely related fragments of approximately 37 kDa were detected. Based on these results, the patient was pathologically diagnosed as having CBD, excluding the possibility of tumor. Taken together with previous similar case reports, our findings indicate that a deep white matter hyperintense lesion on FLAIR images may be a useful clue to CBD, predicting rapid clinical progression with severe dementia based on severe white matter degeneration with a large amount of tau accumulation on pathological examination.
Collapse
Affiliation(s)
- Akira Arakawa
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomonari Seki
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | | | - Tatsuya Sato
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Junko Katsumata
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Risa Maekawa
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Takuto Hideyama
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Koichi Tamura
- Department of Pathology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasushi Shiio
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Sakurai K, Morimoto S, Oguri T, Yuasa H, Uchida Y, Yamada K, Muto M, Saito Y, Aiba I, Takao M, Inui S, Toyoda K, Yamamoto A, Utsunomiya H, Oba H, Tokumaru AM, Nakagawa M, Hashizume Y, Yoshida M. Multifaceted structural magnetic resonance imaging findings in demented patients with pathologically confirmed TDP-43 proteinopathy. Neuroradiology 2019; 61:1333-1339. [PMID: 31520153 DOI: 10.1007/s00234-019-02289-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/29/2019] [Indexed: 11/28/2022]
Abstract
This short report clarifies the heterogeneity of structural magnetic resonance imaging (MRI) findings in seven demented patients due to pathologically accumulated TAR DNA-binding protein-43 (TDP-43) protein using visual analyses including visual rating scales (i.e., global cortical atrophy and medial temporal atrophy scales). In addition to the well-known frontotemporal lobar atrophy, structural MRI has revealed multifaceted imaging findings including asymmetric atrophy of the frontoparietal lobe and cerebral peduncle, midbrain atrophy, and localized or diffuse white matter T2 hyperintensity. Understanding of these multifaceted neuroimaging findings is important for the precise antemortem diagnosis of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Takuya Oguri
- Department of Neurology, Tosei General Hospital, Seto, Japan
| | - Hiroyuki Yuasa
- Department of Neurology, Tosei General Hospital, Seto, Japan
| | - Yuto Uchida
- Department of Neurology, Toyokawa City Hospital, Toyokawa, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Nagoya, Japan
| | - Masahiro Muto
- Department of Radiology, Nagoya City East Medical Center, Nagoya, Japan
| | - Yufuko Saito
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital, Nagoya, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital, Nagoya, Japan
| | - Masaki Takao
- Department of Neurology and Cerebrovascular Medicine, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Shohei Inui
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Toyoda
- Department of Radiology, The Jikei University Daisan Hospital, Komae, Japan
| | - Asako Yamamoto
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hidetsuna Utsunomiya
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroshi Oba
- Department of Radiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Medical Center of Gerontology, Tokyo, Japan
| | - Motoo Nakagawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
16
|
Sakurai K, Tokumaru AM, Shimoji K, Murayama S, Kanemaru K, Morimoto S, Aiba I, Nakagawa M, Ozawa Y, Shimohira M, Matsukawa N, Hashizume Y, Shibamoto Y. Beyond the midbrain atrophy: wide spectrum of structural MRI finding in cases of pathologically proven progressive supranuclear palsy. Neuroradiology 2017; 59:431-443. [DOI: 10.1007/s00234-017-1812-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/19/2017] [Indexed: 01/29/2023]
|
17
|
Nishida N, Yoshida K, Hata Y, Arai Y, Kinoshita K. Pathological features of preclinical or early clinical stages of corticobasal degeneration: a comparison with advanced cases. Neuropathol Appl Neurobiol 2015; 41:893-905. [DOI: 10.1111/nan.12229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/07/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Naoki Nishida
- Department of Legal Medicine; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Koji Yoshida
- Department of Neurology; Toyama University Hospital; Toyama Japan
| | - Yukiko Hata
- Department of Legal Medicine; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| | - Yuichi Arai
- Division of Neurology; Kurobe City Hospital; Toyama Japan
| | - Koshi Kinoshita
- Department of Legal Medicine; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| |
Collapse
|
18
|
Degnan AJ, Levy LM. Neuroimaging of rapidly progressive dementias, part 1: neurodegenerative etiologies. AJNR Am J Neuroradiol 2014; 35:418-23. [PMID: 23436051 PMCID: PMC7964711 DOI: 10.3174/ajnr.a3454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most dementias begin insidiously, developing slowly and generally occurring in the elderly age group. The so-called rapidly progressive dementias constitute a different, diverse collection of conditions, many of which are reversible or treatable. For this reason, prompt identification and assessment of acute and subacute forms of dementia are critical to effective treatment. Numerous other entities within this category of presenile rapid-onset dementias are untreatable such as the prion-related diseases. Neuroimaging aids in the diagnosis and evaluation of many of these rapidly progressive dementias, which include myriad conditions ranging from variations of more common neurodegenerative dementias, such as Alzheimer disease, dementia with Lewy bodies, and frontotemporal dementia; infectious-related dementias such as acquired immune deficiency syndrome dementia; autoimmune and malignancy-related conditions; to toxic and metabolic forms of encephalopathy. This first of a 2-part review will specifically address the ability of MR imaging and ancillary neuroimaging strategies to support the diagnostic evaluation of rapidly progressive dementias due to neurodegenerative causes.
Collapse
Affiliation(s)
- A J Degnan
- From the University of Pittsburgh Medical Center (A.J.D.), Pittsburgh, Pennsylvania
| | | |
Collapse
|
19
|
Sakurai K, Imabayashi E, Tokumaru AM, Hasebe S, Murayama S, Morimoto S, Kanemaru K, Takao M, Shibamoto Y, Matsukawa N. The feasibility of white matter volume reduction analysis using SPM8 plus DARTEL for the diagnosis of patients with clinically diagnosed corticobasal syndrome and Richardson's syndrome. NEUROIMAGE-CLINICAL 2014; 7:605-10. [PMID: 26082887 PMCID: PMC4459051 DOI: 10.1016/j.nicl.2014.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Abstract
Purpose Diagnosing corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) is often difficult due to the wide variety of symptoms and overlaps in the similar clinical courses and neurological findings. The purpose of this study was to evaluate the utility of white matter (WM) atrophy for the diagnosis of patients with clinically diagnosed CBD (corticobasal syndrome, CBS) and PSP (Richardson’s syndrome, RS). Methods We randomly divided the 3D T1-weighted MR images of 18 CBS patients, 33 RS patients, and 32 age-matched controls into two groups. We obtained segmented WM images in the first group using Voxel-based specific regional analysis system for Alzheimer’s disease (VSRAD) based on statistical parametric mapping (SPM) 8 plus diffeomorphic anatomical registration through exponentiated Lie algebra. A target volume of interest (VOI) for disease-specific atrophy was subsequently determined in this group using SPM8 group analyses of WM atrophy between patients groups and controls. We then evaluated the utility of these VOIs for diagnosing CBS and RS patients in the second group. Z score values in these VOIs were used as the determinant in receiver operating characteristic (ROC) analyses. Results Specific target VOIs were determined in the bilateral frontal subcortical WM for CBS and in the midbrain tegmentum for RS. In ROC analyses, the target VOIs of CBS and RS compared to those of controls exhibited an area under curve (AUC) of 0.99 and 0.84, respectively, which indicated an adequate diagnostic power. The VOI of CBS revealed a higher AUC than that of RS for differentiating between CBS and RS (AUC, 0.75 vs 0.53). Conclusions Bilateral frontal WM volume reduction demonstrated a higher power for differentiating CBS from RS. This VOI analysis is useful for clinically diagnosing CBS and RS. ・We evaluate the utility of white matter (WM) atrophy for the diagnosis of patients with corticobasal syndrome (CBS) and Richardson’s syndrome (RS). ・We obtained segmented WM images using Voxel-based specific regional analysis system for Alzheimer’ s disease based on statistical parametric mapping 8 plus diffeomorphic anatomical registration through exponentiated Lie algebra. ・The most significant areas of atrophy observed in CBS patients compared to the controls were in the bilateral frontal subcortical WM. ・The most significant areas of atrophy observed in RS patients compared to the controls were in the midbrain. ・The volume of interest analysis using bilateral frontal WM volume reduction demonstrated a higher power for differentiating CBS from RS.
Collapse
Affiliation(s)
- Keita Sakurai
- Department of Diagnostic Radiology, Tokyo Metropolitan Medical Center of Gerontology
| | - Etsuko Imabayashi
- Department of Diagnostic Radiology, Tokyo Metropolitan Medical Center of Gerontology
| | - Aya M Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Medical Center of Gerontology
| | - Shin Hasebe
- Department of Diagnostic Radiology, Tokyo Metropolitan Medical Center of Gerontology
| | - Shigeo Murayama
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital
| | - Satoru Morimoto
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital
| | | | - Masaki Takao
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
20
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Stamelou M, Alonso-Canovas A, Bhatia KP. Dystonia in corticobasal degeneration: A review of the literature on 404 pathologically proven cases. Mov Disord 2012; 27:696-702. [DOI: 10.1002/mds.24992] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 12/12/2022] Open
|
22
|
Whitwell JL, Josephs KA. Neuroimaging in frontotemporal lobar degeneration--predicting molecular pathology. Nat Rev Neurol 2012; 8:131-42. [PMID: 22290573 DOI: 10.1038/nrneurol.2012.7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) encompasses a group of diseases characterized by neuronal loss and gliosis of the frontal and temporal lobes. Almost all cases of FTLD can be classified into three categories on the basis of deposition of one of three abnormal proteins: the microtubule-associated protein tau, TAR DNA-binding protein 43, or fused in sarcoma. The specific diagnoses within each of these three categories are further differentiated by the distribution and morphological appearance of the protein-containing inclusions. Future treatments are likely to target these abnormal proteins; the clinical challenge, therefore, is to be able to predict molecular pathology during life. Clinical diagnosis alone has had variable success in helping to predict pathology, and is particularly poor in the diagnosis of behavioral variant frontotemporal dementia, which can be associated with all three abnormal proteins. Consequently, other biomarkers of disease are needed. This Review highlights how patterns of atrophy assessed on MRI demonstrate neuroanatomical signatures of the individual FTLD pathologies, independent of clinical phenotype. The roles of these patterns of atrophy as biomarkers of disease, and their potential to help predict pathology during life in patients with FTLD, are also discussed.
Collapse
Affiliation(s)
- Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
23
|
Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, Black SE. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp 2011; 34:973-84. [PMID: 22109837 DOI: 10.1002/hbm.21484] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 11/09/2022] Open
Abstract
Semantic (svPPA) and nonfluent (nfPPA) variants of primary progressive aphasia are associated with distinct patterns of cortical atrophy and underlying pathology. Little is known, however, about their contrasting spread of white matter disruption and how this relates to grey matter (GM) loss. We undertook a structural MRI study to investigate this relationship. We used diffusion tensor imaging, tract-based spatial statistics, and voxel-based morphometry to examine fractional anisotropy (FA) and directional diffusivities in nine patients with svPPA and nine patients with nfPPA, and compared them to 16 matched controls after accounting for global GM atrophy. Significant differences in topography of white matter changes were found, with more ventral involvement in svPPA patients and more widespread frontal involvement in nfPPA individuals. However, each group had both ventral and dorsal tract changes, and both showed spread of diffusion abnormalities beyond sites of local atrophy. There was a clear dissociation in sensitivity of diffusion tensor imaging measures between groups. SvPPA patients showed widespread changes in FA and radial diffusivity, whereas changes in axial diffusivity were more restricted and proximal to sites of GM atrophy. NfPPA patients showed isolated changes in FA, but widespread axial and radial diffusivity changes. These findings reveal the extent of white matter disruption in these variants of PPA after accounting for GM loss. Further, they suggest that differences in the relative sensitivity of diffusion metrics may reflect differences in the nature of underlying white matter pathology in these two subtypes.
Collapse
Affiliation(s)
- Graeme C Schwindt
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|