1
|
Kale SJ, Tanaka R, Okubo M, Sasaki K, Miyatani K, Yamada Y, Komatsu F, Kato Y. A Rare Case of Unruptured Small Aneurysm Arising from the Posterior Surface of Proximal A1 Segment, Projecting Posterior-Inferiorly and Entangled with Multiple Perforators from the A1 Segment. Asian J Neurosurg 2024; 19:536-539. [PMID: 39205894 PMCID: PMC11349390 DOI: 10.1055/s-0043-1776990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Aneurysm arising from the A1 segment of the anterior cerebral artery is rare. Aneurysm of the A1 segment even being small tend to rupture early. They tend to develop along the with various vascular anomalies of the vessels arising from the A1 segment. Use of computational fluid dynamics and hemodynamic consideration is of importance in this aneurysm. In this report we describe a 57-year-old woman with a small, unruptured A1 segment aneurysm arising from the proximal segment of the posterior surface of A1, and pointing posterior-inferiorly with multiple perforators entangling around for which microsurgical clipping was done. Intraoperative clipping of the aneurysm and salvaging the multiple perforators were challenging. We report a rare case of an A1 segment aneurysm arising from the posterior surface facing with multiple perforators. It is of significance to understand that a small, unruptured A1 aneurysm can arise from the posterior surface of the A1 segment with projection posterior-inferiorly making it deeper in location with multiple perforators entangling it; hence, it is challenging to treat without causing neurological deficits.
Collapse
Affiliation(s)
- Samir Jagannath Kale
- Department of Neurosurgery, Dr. D. Y. Patil Medical College and Hospital, Mumbai, Maharashtra, India
| | - Riki Tanaka
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Mai Okubo
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Kento Sasaki
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Kyosuke Miyatani
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Yasuhiro Yamada
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Fuminari Komatsu
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| | - Yoko Kato
- Department of Neurosurgery, Fujita Health University, Bantane Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Huang F, Janiga G, Berg P, Hosseini SA. On flow fluctuations in ruptured and unruptured intracranial aneurysms: resolved numerical study. Sci Rep 2024; 14:19658. [PMID: 39179594 PMCID: PMC11344026 DOI: 10.1038/s41598-024-70340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Flow fluctuations have emerged as a promising hemodynamic metric for understanding of hemodynamics in intracranial aneurysms. Several investigations have reported flow instabilities using numerical tools. In this study, the occurrence of flow fluctuations is investigated using either Newtonian or non-Newtonian fluid models in five patient-specific intracranial aneurysms using high-resolution lattice Boltzmann simulation methods. Flow instabilities are quantified by computing power spectral density, proper orthogonal decomposition, and fluctuating kinetic energy of velocity fluctuations. Our simulations reveal substantial flow instabilities in two of the ruptured aneurysms, where the pulsatile inflow through the neck leads to hydrodynamic instability, particularly around the rupture position, throughout the entire cardiac cycle. In other monitoring points, the flow instability is primarily observed during the deceleration phase; typically, the fluctuations begin just after peak systole, gradually decay, and the flow returns to its original, laminar pulsatile state during diastole. Additionally, we assess the rheological impact on flow dynamics. The disparity between Newtonian and non-Newtonian outcomes remains minimal in unruptured aneurysms, with less than a 5% difference in key metrics. However, in ruptured cases, adopting a non-Newtonian model yields a substantial increase in the fluctuations within the aneurysm sac, with up to a 30% higher fluctuating kinetic energy compared to the Newtonian model. The study highlights the importance of using appropriate high-resolution simulations and non-Newtonian models to capture flow fluctuation characteristics that may be critical for assessing aneurysm rupture risk.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
- Department of Medical Engineering, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Seyed Ali Hosseini
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
3
|
Coccarelli A, Van Loon R, Chien A. A Computational Pipeline to Investigate Longitudinal Blood Flow Changes in the Circle of Willis of Patients with Stable and Growing Aneurysms. Ann Biomed Eng 2024; 52:2000-2012. [PMID: 38616236 PMCID: PMC11247057 DOI: 10.1007/s10439-024-03493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Changes in cerebral blood flow are often associated with the initiation and development of different life-threatening medical conditions including aneurysm rupture and ischemic stroke. Nevertheless, it is not fully clear how haemodynamic changes in time across the Circle of Willis (CoW) are related with intracranial aneurysm (IA) growth. In this work, we introduced a novel reduced-order modelling strategy for the systematic quantification of longitudinal blood flow changes across the whole CoW in patients with stable and unstable/growing aneurysm. Magnetic Resonance Angiography (MRA) images were converted into one-dimensional (1-D) vessel networks through a semi-automated procedure, with a level of geometric reconstruction accuracy controlled by user-dependent parameters. The proposed pipeline was used to systematically analyse longitudinal haemodynamic changes in seven different clinical cases. Our preliminary simulation results indicate that growing aneurysms are not necessarily associated with significant changes in mean flow over time. A concise sensitivity analysis also shed light on which modelling aspects need to be further characterized to have reliable patient-specific predictions. This study poses the basis for investigating how time-dependent changes in the vasculature affect the haemodynamics across the whole CoW in patients with stable and growing aneurysms.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK.
- Department of Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Raoul Van Loon
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Biomedical Engineering Simulation and Testing Lab, Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Aichi Chien
- Radiological Sciences, School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
4
|
Schüngel MS, Wohlgemuth WA, Elolf E, Rensch L, Brill R, Schob S. Review: Flow Diversion for the Treatment of Middle Cerebral Artery Aneurysms. ROFO-FORTSCHR RONTG 2024. [PMID: 38977012 DOI: 10.1055/a-2343-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The invention of flow diverting stents (FDS) is a novel milestone in the field of endovascular aneurysm therapy, promoting physiological healing of the vessel segment contrary to prior deconstructive treatment strategies, such as coiling. The effects of FDS are based on changes in flow patterns, segmental wall stabilization, and the growth of a neointima. Although flow diversion is already well established for cerebral aneurysms in proximal segments, peripheral locations remain challenging. Especially the middle cerebral artery (MCA) with its predominance of non-collateralized perforators and functional end arteries that supply the eloquent areas of the brain is of major concern.The literature was reviewed for flow diversion of the MCA and antiplatelet therapy.Resulting from the special anatomical characteristics of the MCA, FDS implantation in this territory is completely different from the proximal vessel segments. Still, flow diversion represents an effective endovascular strategy, especially in otherwise non-accessible or sufficiently treatable lesions. However, the risk of ischemic adverse events might be increased. Special attention to the individual decision regarding device selection, antiplatelet regimen, and exact definition of the proximal and distal landing zone considering the jailed side branches is essential for a good angiographic and clinical outcome. · MCA aneurysms can be sufficiently treated by FDS.. · The anatomic and hemodynamic characteristics of the MCA result in an increased risk of thromboembolism.. · Individual device selection and antiplatelet regimen are essential for treatment success.. · Schüngel M, Wohlgemuth WA, Elolf E et al. Review: Flow Diversion for the Treatment of Middle Cerebral Artery Aneurysms. Fortschr Röntgenstr 2024; DOI 10.1055/a-2343-0046.
Collapse
Affiliation(s)
- Marie-Sophie Schüngel
- Policlinic of Radiology and Interventional Radiology, Department of Neuroradiology, University Hospital Halle, Halle (Saale), Germany
| | - Walter A Wohlgemuth
- Policlinic of Radiology and Interventional Radiology, Department of Neuroradiology, University Hospital Halle, Halle (Saale), Germany
| | - Erck Elolf
- Policlinic of Radiology and Interventional Radiology, Department of Neuroradiology, University Hospital Halle, Halle (Saale), Germany
| | - Leonhard Rensch
- Clinic for Neurosurgery, University Hospital Halle (Saale), Halle, Germany
| | - Richard Brill
- Policlinic of Radiology and Interventional Radiology, Department of Neuroradiology, University Hospital Halle, Halle (Saale), Germany
| | - Stefan Schob
- Policlinic of Radiology and Interventional Radiology, Department of Neuroradiology, University Hospital Halle, Halle (Saale), Germany
| |
Collapse
|
5
|
Tian Y, Li X, Zhang J, Zhao B, Liang F. Identifying hemodynamic factors associated with the rupture of anterior communicating artery aneurysms based on global modeling of blood flow in the cerebral artery network. Front Bioeng Biotechnol 2024; 12:1419519. [PMID: 38938980 PMCID: PMC11208462 DOI: 10.3389/fbioe.2024.1419519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Anterior communicating artery (ACoA) aneurysms are more prone to rupture compared to aneurysms present in other cerebral arteries. We hypothesize that systemic blood flow in the cerebral artery network plays an important role in shaping intra-aneurysmal hemodynamic environment thereby affecting the rupture risk of ACoA aneurysms. The majority of existing numerical studies in this field employed local modeling methods where the physical boundaries of a model are confined to the aneurysm region, which, though having the benefit of reducing computational cost, may compromise the physiological fidelity of numerical results due to insufficient account of systemic cerebral arterial hemodynamics. In the present study, we firstly carried out numerical experiments to address the difference between the outcomes of local and global modeling methods, demonstrating that local modeling confined to the aneurysm region results in inaccurate predictions of hemodynamic parameters compared with global modeling of the ACoA aneurysm as part of the cerebral artery network. Motivated by this finding, we built global hemodynamic models for 40 ACoA aneurysms (including 20 ruptured and 20 unruptured ones) based on medical image data. Statistical analysis of the computed hemodynamic data revealed that maximum wall shear stress (WSS), minimum WSS divergence, and maximum WSS gradient differed significantly between the ruptured and unruptured ACoA aneurysms. Optimal threshold values of high/low WSS metrics were determined through a series of statistical tests. In the meantime, some morphological parameters of aneurysms, such as large nonsphericity index, aspect ratio, and bottleneck factor, were found to be associated closely with aneurysm rupture. Furthermore, multivariate logistic regression analyses were performed to derive models combining hemodynamic and morphological parameters for discriminating the rupture status of aneurysms. The capability of the models in rupture status discrimination was high, with the area under the receiver operating characteristic curve reaching up to 0.9. The findings of the study suggest that global modeling of the cerebral artery network is essential for reliable quantification of hemodynamics in ACoA aneurysms, disturbed WSS and irregular aneurysm morphology are associated closely with aneurysm rupture, and multivariate models integrating hemodynamic and morphological parameters have high potential for assessing the rupture risk of ACoA aneurysms.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjian Zhang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyou Liang
- Department of Engineering Mechanics, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Hydrodynamics (MOE), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Veeturi SS, Hall S, Fujimura S, Mossa-Basha M, Sagues E, Samaniego EA, Tutino VM. Imaging of Intracranial Aneurysms: A Review of Standard and Advanced Imaging Techniques. Transl Stroke Res 2024:10.1007/s12975-024-01261-w. [PMID: 38856829 DOI: 10.1007/s12975-024-01261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
The treatment of intracranial aneurysms is dictated by its risk of rupture in the future. Several clinical and radiological risk factors for aneurysm rupture have been described and incorporated into prediction models. Despite the recent technological advancements in aneurysm imaging, linear length and visible irregularity with a bleb are the only radiological measure used in clinical prediction models. The purpose of this article is to summarize both the standard imaging techniques, including their limitations, and the advanced techniques being used experimentally to image aneurysms. It is expected that as our understanding of advanced techniques improves, and their ability to predict clinical events is demonstrated, they become an increasingly routine part of aneurysm assessment. It is important that neurovascular specialists understand the spectrum of imaging techniques available.
Collapse
Affiliation(s)
- Sricharan S Veeturi
- Canon Stroke and Vascular Research Center, Clinical and Translational Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14214, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Samuel Hall
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Soichiro Fujimura
- Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan
- Division of Innovation for Medical Information Technology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Elena Sagues
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, Clinical and Translational Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14214, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Li W, Wang C, Wang Y, Zhao Y, Yang X, Liu X, Liu J. A model with multiple intracranial aneurysms: possible hemodynamic mechanisms of aneurysmal initiation, rupture and recurrence. Chin Neurosurg J 2024; 10:13. [PMID: 38711139 PMCID: PMC11071235 DOI: 10.1186/s41016-024-00364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Hemodynamic factors play an important role in aneurysm initiation, growth, rupture, and recurrence, while the mechanism of the hemodynamic characteristics is still controversial. A unique model of multiple aneurysms (initiation, growth, rupture, and recurrence) is helpful to avoids the confounders and further explore the possible hemodynamic mechanisms of aneurysm in different states. METHODS We present a model with multiple aneurysms, and including the states of initiation, growth, rupture, and recurrence, discuss the proposed mechanisms, and describe computational fluid dynamic model that was used to evaluate the likely hemodynamic effect of different states of the aneurysms. RESULTS The hemodynamic analysis suggests that high flow impingement and high WSS distribution at normal parent artery was found before aneurysmal initiation. The WSS distribution and flow velocity were decreased in the new sac after aneurysmal growth. Low WSS was the risk hemodynamic factor for aneurysmal rupture. High flow concentration region on the neck plane after coil embolization still marked in recanalized aneurysm. CONCLUSIONS Associations have been identified between high flow impingement and aneurysm recanalization, while low WSS is linked to the rupture of aneurysms. High flow concentration and high WSS distribution at normal artery associated with aneurysm initiation and growth, while after growth, the high-risk hemodynamics of aneurysm rupture was occurred, which is low WSS at aneurysm dome.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Interventional Neuroradiology and Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Beijing, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Wang
- Department of Interventional Neuroradiology and Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Beijing, China
| | - Yanmin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yapeng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology and Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Beijing, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jian Liu
- Department of Interventional Neuroradiology and Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Beijing, China.
| |
Collapse
|
8
|
Segherlou ZH, Shakeri-Darzekonani M, Khavandegar A, Stephenson S, Ciccone K, Masheghati F, Hosseini Siyanaki MR, Lyerly M, Lucke-Wold B. Hormonal influences on cerebral aneurysms: unraveling the complex connections. Expert Rev Endocrinol Metab 2024; 19:207-215. [PMID: 38712738 DOI: 10.1080/17446651.2024.2347275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Intracranial aneurysms (IAs) occur in 3-5% of the general population and are characterized by localized structural deterioration of the arterial wall with loss of internal elastic lamina and disruption of the media. The risk of incidence and rupture of aneurysms depends on age, sex, ethnicity, and other different factors, indicating the influence of genetic and environmental factors. When an aneurysm ruptures, there is an estimated 20% mortality rate, along with an added 30-40% morbidity in survivors. The alterations in hormonal levels can influence IAs, while the rupture of an aneurysm can have various impacts on endocrine pathways and affect their outcome. AREA COVERED This review explores the reciprocal relationship between endocrinological changes (estrogen, growth hormone, and thyroid hormones) and IAs, as well as the effects of aneurysm ruptures on endocrine fluctuations. EXPERT OPINION Based on the data presented in this paper, we recommend further exploration into the influence of hormones on aneurysm formation and rupture. Additionally, we propose conducting endocrine assessments for patients who have experienced a rupture of IAs. Monitoring hormonal changes in patients with IAs could serve as a potential risk factor for rupture, leading to interventions in the approach to managing IAs.
Collapse
Affiliation(s)
| | | | - Armin Khavandegar
- College of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Stephenson
- Biotechnology Department, Krieger School of Arts and Sciences, John Hopkins University, Baltimore, MD, USA
| | - Kimberly Ciccone
- Department of Behavioral Neuroscience, College of Arts and Sciences, University of North Florida, Jacksonville, FL, USA
| | - Forough Masheghati
- College of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mac Lyerly
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Yan Y, An X, Ren H, Luo B, Jin S, Liu L, Di Y, Li T, Huang Y. Nomogram-based geometric and hemodynamic parameters for predicting the growth of small untreated intracranial aneurysms. Neurosurg Rev 2024; 47:169. [PMID: 38635054 DOI: 10.1007/s10143-024-02408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Previous studies have shown that the growth status of intracranial aneurysms (IAs) predisposes to rupture. This study aimed to construct a nomogram for predicting the growth of small IAs based on geometric and hemodynamic parameters. We retrospectively collected the baseline and follow-up angiographic images (CTA/ MRA) of 96 small untreated saccular IAs, created patient-specific vascular models and performed computational fluid dynamics (CFD) simulations. Geometric and hemodynamic parameters were calculated. A stepwise Cox proportional hazards regression analysis was employed to construct a nomogram. IAs were stratified into low-, intermediate-, and high-risk groups based on the total points from the nomogram. Receiver operating characteristic (ROC) analysis, calibration curves, decision curve analysis (DCA) and Kaplan-Meier curves were evaluated for internal validation. In total, 30 untreated saccular IAs were grown (31.3%; 95%CI 21.8%-40.7%). The PHASES, ELAPSS, and UIATS performed poorly in distinguishing growth status. Hypertension (hazard ratio [HR] 4.26, 95%CI 1.61-11.28; P = 0.004), nonsphericity index (95%CI 4.10-25.26; P = 0.003), max relative residence time (HR 1.01, 95%CI 1.00-1.01; P = 0.032) were independently related to the growth status. A nomogram was constructed with the above predictors and achieved a satisfactory prediction in the validation cohort. The log-rank test showed significant discrimination among the Kaplan-Meier curves of different risk groups in the training and validation cohorts. A nomogram consisting of geometric and hemodynamic parameters presented an accurate prediction for the growth status of small IAs and achieved risk stratification. It showed higher predictive efficacy than the assessment tools.
Collapse
Affiliation(s)
- Yujia Yan
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xingwei An
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Bin Luo
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Song Jin
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Li Liu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Di
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| | - Tingting Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| | - Ying Huang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
10
|
Dravid A, Sung WS, Song J, Dubey A, Eftekhar B. Subarachnoid Haemorrhage Incidence Pattern Analysis with Circular Statistics. Emerg Med Int 2024; 2024:6631990. [PMID: 38655008 PMCID: PMC11039014 DOI: 10.1155/2024/6631990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Knowledge about biological rhythms of diseases may not only help in understanding the pathophysiology of diseases but can also help health service policy makers and emergency department directors to allocate resources efficiently. Aneurysmal subarachnoid haemorrhage (SAH) has high rates of morbidity and mortality. The incidence of SAH has been attributed to patient-related factors such as characteristics of aneurysms, smoking, and hypertension. There are studies showing that the incidence of aneurysmal SAH appears to behave in periodic fashions over long time periods. However, there are inconsistencies in the literature regarding the impact of chronobiological factors such as circadian, seasonal, and lunar cycle factors on the occurrence of SAH. In this study, we focused on the analysis of a temporal pattern of SAH (infradian rhythms) with a novel approach using circular statistical methods. We aimed to see whether there is a circular pattern for the occurrence of SAH at all and if so, whether it can be related to known temporal patterns based on available literature. Our study did not support the notion that aneurysmal subarachnoid haemorrhages occur on any specific day in a cycle with specific lengths up to 365 days including specific weekdays, full moon, equinoxes, and solstices. Hence, we found no relationship between SAH incidence and timing. Study in larger populations using similar circular statistical methods is suggested.
Collapse
Affiliation(s)
- Ashish Dravid
- Department of Neurosurgery, Nepean Hospital, The University of Sydney, Sydney, Australia
| | - Wen-Shan Sung
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, Australia
| | - Jeeuk Song
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, Australia
| | - Arvind Dubey
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, Australia
| | - Behzad Eftekhar
- Department of Neurosurgery, Nepean Hospital, The University of Sydney, Sydney, Australia
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
Kim M, Kim JH, Park W, Park JC, Ahn JS, Kwun BD, Lee SG, Hwang S, Kim M, Lee S. Risk of Cerebral Aneurysm Rupture After Liver Transplantation: Development and Validation of a Hemorrhagic Stroke Scoring Model. J Korean Med Sci 2024; 39:e88. [PMID: 38469964 PMCID: PMC10927392 DOI: 10.3346/jkms.2024.39.e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Liver transplantation (LT) patients appear to be more prone to neurological events compared to individuals undergoing other types of solid-organ transplantation. The aims of the present study were to analyze the prevalence of unruptured intracranial aneurysms (UIAs) in patients undergoing liver transplantation (LT) and to examine the perioperative occurrence of subarachnoid hemorrhage (SAH). Also, it intended to systematically identify the risk factors of SAH and hemorrhagic stroke (HS) within a year after LT and to develop a scoring system which involves distinct clinical features of LT patients. METHODS Patients who underwent LT from January 2012 to March 2022 were analyzed. All included patients underwent neurovascular imaging within 6 months before LT. We conducted an analysis of prevalence and radiological features of UIA and SAH. The clinical factors that may have an impact on HS within one year of LT were also reviewed. RESULTS Total of 3,487 patients were enrolled in our study after applying inclusion and exclusion criteria. The prevalence of UIA was 5.4%. The incidence of SAH and HS within one year following LT was 0.5% and 1.6%, respectively. We developed a scoring system based on multivariable analysis to predict the HS within 1-year after LT. The variables were a poor admission mental status, the diagnosis of UIA, serum ammonia levels, and Model for End-stage Liver Disease (MELD) scores. Our model showed good discrimination among the development (C index, 0.727; 95% confidence interval [CI], 0.635-0.820) and validation (C index, 0.719; 95% CI, 0.598-0.801) cohorts. CONCLUSION The incidence of UIA and SAH was very low in LT patients. A poor admission mental status, diagnosis of UIA, serum ammonia levels, and MELD scores were significantly associated with the risk of HS within one year after LT. Our scoring system showed a good discrimination to predict the HS in LT patients.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Duk Kwun
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Gyu Lee
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | - Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Korte J, Marsh LMM, Saalfeld S, Behme D, Aliseda A, Berg P. Fusiform versus Saccular Intracranial Aneurysms-Hemodynamic Evaluation of the Pre-Aneurysmal, Pathological, and Post-Interventional State. J Clin Med 2024; 13:551. [PMID: 38256685 PMCID: PMC11154261 DOI: 10.3390/jcm13020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Minimally-invasive therapies are well-established treatment methods for saccular intracranial aneurysms (SIAs). Knowledge concerning fusiform IAs (FIAs) is low, due to their wide and alternating lumen and their infrequent occurrence. However, FIAs carry risks like ischemia and thus require further in-depth investigation. Six patient-specific IAs, comprising three position-identical FIAs and SIAs, with the FIAs showing a non-typical FIA shape, were compared, respectively. For each model, a healthy counterpart and a treated version with a flow diverting stent were created. Eighteen time-dependent simulations were performed to analyze morphological and hemodynamic parameters focusing on the treatment effect (TE). The stent expansion is higher for FIAs than SIAs. For FIAs, the reduction in vorticity is higher (Δ35-75% case 2/3) and the reduction in the oscillatory velocity index is lower (Δ15-68% case 2/3). Velocity is reduced equally for FIAs and SIAs with a TE of 37-60% in FIAs and of 41-72% in SIAs. Time-averaged wall shear stress (TAWSS) is less reduced within FIAs than SIAs (Δ30-105%). Within this study, the positive TE of FDS deployed in FIAs is shown and a similarity in parameters found due to the non-typical FIA shape. Despite the higher stent expansion, velocity and vorticity are equally reduced compared to identically located SIAs.
Collapse
Affiliation(s)
- Jana Korte
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
| | - Laurel M. M. Marsh
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Mechanical Engineering, George Mason University, Fairfax, VA 22030, USA
| | - Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Computer Science and Automation, Ilmenau University of Technology, 98693 Ilmenau, Germany
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- University Hospital Magdeburg, University of Magdeburg, 39106 Magdeburg, Germany
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA;
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany; (L.M.M.M.); (S.S.); (D.B.); (P.B.)
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Gaidzik F, Korte J, Saalfeld S, Janiga G, Berg P. Image-based hemodynamic simulations for intracranial aneurysms: the impact of complex vasculature. Int J Comput Assist Radiol Surg 2024:10.1007/s11548-023-03045-3. [PMID: 38206468 DOI: 10.1007/s11548-023-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE Hemodynamics play an important role in the assessment of intracranial aneurysm (IA) development and rupture risk. The purpose of this study was to examine the impact of complex vasculatures onto the intra-vessel and intra-aneurysmal blood flow. METHODS Complex segmentation of a subject-specific, 60-outlet and 3-inlet circle of Willis model captured with 7T magnetic resonance imaging was performed. This model was trimmed to a 10-outlet model version. Two patient-specific IAs were added onto both models yielding two pathological versions, and image-based blood flow simulations of the four resulting cases were carried out. To capture the differences between complex and trimmed model, time-averaged and centerline velocities were compared. The assessment of intra-saccular blood flow within the IAs involved the evaluation of wall shear stresses (WSS) at the IA wall and neck inflow rates (NIR). RESULTS Lower flow values are observed in the majority of the complex model. However, at specific locations (left middle cerebral artery 0.5 m/s, left posterior cerebral artery 0.25 m/s), higher flow rates were visible when compared to the trimmed counterpart. Furthermore, at the centerlines the total velocity values reveal differences up to 0.15 m/s. In the IAs, the reduction in the neck inflow rate and WSS in the complex model was observed for the first IA (IA-A δNIRmean = - 0.07ml/s, PCA.l δWSSmean = - 0.05 Pa). The second IA featured an increase in the neck inflow rate and WSS (IA-B δNIRmean = 0.04 ml/s, PCA.l δWSSmean = 0.07 Pa). CONCLUSION Both the magnitude and shape of the flow distribution vary depending on the model's complexity. The magnitude is primarily influenced by the global vessel model, while the shape is determined by the local structure. Furthermore, intra-aneurysmal flow strongly depends on the location in the vessel tree, emphasizing the need for complex model geometries for realistic hemodynamic assessment and rupture risk analysis.
Collapse
Affiliation(s)
- Franziska Gaidzik
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Jana Korte
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Sylvia Saalfeld
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Simulation and Graphics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Medical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Korte J, Klopp ES, Berg P. Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review. Bioengineering (Basel) 2024; 11:72. [PMID: 38247949 PMCID: PMC10813503 DOI: 10.3390/bioengineering11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The Circle of Willis (CoW) describes the arterial system in the human brain enabling the neurovascular blood supply. Neurovascular diseases like intracranial aneurysms (IAs) can occur within the CoW and carry the risk of rupture, which can lead to subarachnoid hemorrhage. The assessment of hemodynamic information in these pathologies is crucial for their understanding regarding detection, diagnosis and treatment. Multi-dimensional in silico approaches exist to evaluate these hemodynamics based on patient-specific input data. The approaches comprise low-scale (zero-dimensional, one-dimensional) and high-scale (three-dimensional) models as well as multi-scale coupled models. The input data can be derived from medical imaging, numerical models, literature-based assumptions or from measurements within healthy subjects. Thus, the most realistic description of neurovascular hemodynamics is still controversial. Within this systematic review, first, the models of the three scales (0D, 1D, 3D) and second, the multi-scale models, which are coupled versions of the three scales, were discussed. Current best practices in describing neurovascular hemodynamics most realistically and their clinical applicablility were elucidated. The performance of 3D simulation entails high computational expenses, which could be reduced by analyzing solely the region of interest in detail. Medical imaging to establish patient-specific boundary conditions is usually rare, and thus, lower dimensional models provide a realistic mimicking of the surrounding hemodynamics. Multi-scale coupling, however, is computationally expensive as well, especially when taking all dimensions into account. In conclusion, the 0D-1D-3D multi-scale approach provides the most realistic outcome; nevertheless, it is least applicable. A 1D-3D multi-scale model can be considered regarding a beneficial trade-off between realistic results and applicable performance.
Collapse
Affiliation(s)
- Jana Korte
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
| | - Ehlar Sophie Klopp
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Pei Y, Wang Z, Hao S, Wu R, Qiao X, Zhang G. Analysis of independent risk factors for aneurysm rupture based on carotid tortuosity index and morphological parameters of single intracranial aneurysms in anterior circulation. Clin Neurol Neurosurg 2023; 234:107993. [PMID: 37778106 DOI: 10.1016/j.clineuro.2023.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Our study focused on the risk factors associated with anterior circulation intracranial aneurysm (IA) rupture by examining the carotid artery (CA) tortuosity index (TI) and anterior circulation IA morphological parameters. METHOD This study conducted a retrospective analysis of clinical and imaging data from 163 patients with anterior circulation IA diagnosed by head and neck computed tomography angiography (CTA). The patients were categorized into two groups: the ruptured group (57 cases) and the unruptured group (106 cases). CA was categorized based on its location into three segments: the extracranial segment of the internal carotid artery (EICA) TI, the angle of the internal carotid artery (ICA) and the common carotid artery (CCA) TI. Measure the morphological parameters of all IA: IA length neck (L), IA height (H), aneurysm diameter width (D), the ratio of L to the mean diameter of the IA-bearing artery (SR), the ratio of H to D (AR), the angle of flow inflow (FA) and IA angle (AA). The study conducted five types of analysis to determine the risk factors for anterior circulation IA rupture. The first was an univariate analysis of the risk factors. The second was an analysis of the correlation between CA TI and IA morphological parameters. The third used multivariate logistic stepwise regression analysis to analyse independent risk factors for IA rupture. The fourth was to plot ROC curves to build a predictive model for IA rupture and calculate diagnostic thresholds. Finally, a data set from another hospital (78 cases) was used as a validation set to validate the multivariate model. RESULT Univariate analysis revealed that there were statistically significant differences (P < 0.05) in gender, EICA TI, location of IA and IA morphological parameters (FA, H, AR, L, SR), which acted as risk factors for anterior circulation IA rupture. The results of Spearman correlation analysis indicate that CCA TI is significantly correlated with SR, H and L (P < 0.05), while EICA TI is significantly correlated with FA and L (P < 0.05). The results of multivariate logistic analysis showed that FA (OR = 1.072, 95%CI = 1.04-1.10, P < 0.001), SR (OR = 4.949, 95%CI = 1.96-12.53, P = 0.001), EICA TI (OR = 1.037, 95%CI = 1.01-1.07, P = 0.003) were independent risk factors for IA rupture. The ROC curve plotting results suggest that the area under the curve (AUC) of FA is 0.860 with a diagnostic threshold of 110.1°; the AUC of SR is 0.786 with a diagnostic threshold of 1.67; the AUC of EICA TI is 0.723 with a diagnostic threshold of 28.845; the AUC of the three combined is 0.903 with a threshold of 0.480. The combined factor diagnostic model is validated according to the validation set, and the results show that the AUC (0.866) of the validation set is not much different from the AUC (0.903) of the multivariate model, and the multivariate model has a better diagnostic effect. CONCLUSION In clinical practice, it is important to consider the evaluation of aneurysm rupture in combination with imaging, as FA, SR and ECIA TI are independent risk factors for IA rupture in the anterior circulation. Unlike the IA morphological parameters, EICA TI is an often overlooked extracranial parameter, but is equally important in its power to predict IA rupture. When the EICA TI exceeds 28.845, the IA has the possibility of rupture. Finally, multivariate diagnostic model are of interest when considering rupture of the anterior circulation IA.
Collapse
Affiliation(s)
- Yusong Pei
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhiguo Wang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanhu Hao
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruixian Wu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinxin Qiao
- Department of Radiology, The Peoples Hospital of China Medical University, Shenyang, China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
16
|
Korte J, Voß S, Janiga G, Beuing O, Behme D, Saalfeld S, Berg P. Is Accurate Lumen Segmentation More Important than Outlet Boundary Condition in Image-Based Blood Flow Simulations for Intracranial Aneurysms? Cardiovasc Eng Technol 2023; 14:617-630. [PMID: 37582997 PMCID: PMC10602961 DOI: 10.1007/s13239-023-00675-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
PURPOSE Image-based blood flow simulations are increasingly used to investigate the hemodynamics in intracranial aneurysms (IAs). However, a strong variability in segmentation approaches as well as the absence of individualized boundary conditions (BCs) influence the quality of these simulation results leading to imprecision and decreased reliability. This study aims to analyze these influences on relevant hemodynamic parameters within IAs. METHODS As a follow-up study of an international multiple aneurysms challenge, the segmentation results of five IAs differing in size and location were investigated. Specifically, five possible outlet BCs were considered in each of the IAs. These are comprised of the zero-pressure condition (BC1), a flow distribution based on Murray's law with the exponents n = 2 (BC2) and n = 3 (BC3) as well as two advanced flow-splitting models considering the real vessels by including circular cross sections (BC4) or anatomical cross sections (BC5), respectively. In total, 120 time-dependent blood flow simulations were analyzed qualitatively and quantitatively, focusing on five representative intra-aneurysmal flow and five shear parameters such as vorticity and wall shear stress. RESULTS The outlet BC variation revealed substantial differences. Higher shear stresses (up to Δ9.69 Pa), intrasaccular velocities (up to Δ0.15 m/s) and vorticities (up to Δ629.22 1/s) were detected when advanced flow-splitting was applied compared to the widely used zero-pressure BC. The tendency of outlets BCs to over- or underestimate hemodynamic parameters is consistent across different segmentations of a single aneurysm model. Segmentation-induced variability reaches Δ19.58 Pa, Δ0.42 m/s and Δ957.27 1/s, respectively. Excluding low fidelity segmentations, however, (a) reduces the deviation drastically (>43%) and (b) leads to a lower impact of the outlet BC on hemodynamic predictions. CONCLUSION With a more realistic lumen segmentation, the influence of the BC on the resulting hemodynamics is decreased. A realistic lumen segmentation can be ensured, e.g., by using high-resolved 2D images. Furthermore, the selection of an advanced outflow-splitting model is advised and the use of a zero-pressure BC and BC based on Murray's law with exponent n = 3 should be avoided.
Collapse
Affiliation(s)
- Jana Korte
- Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany.
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany.
| | - Samuel Voß
- Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - Oliver Beuing
- Department of Radiology, AMEOS Hospital, Bernburg, Germany
| | - Daniel Behme
- Department of Neuroradiology, University Hospital of Magdeburg, Magdeburg, Germany
| | - Sylvia Saalfeld
- Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Computer Science and Automation, Ilmenau University of Technology, Ilmenau , Germany
| | - Philipp Berg
- Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Irfan M, Malik KM, Ahmad J, Malik G. StrokeNet: An automated approach for segmentation and rupture risk prediction of intracranial aneurysm. Comput Med Imaging Graph 2023; 108:102271. [PMID: 37556901 DOI: 10.1016/j.compmedimag.2023.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Intracranial Aneurysms (IA) present a complex challenge for neurosurgeons as the risks associated with surgical intervention, such as Subarachnoid Hemorrhage (SAH) mortality and morbidity, may outweigh the benefits of aneurysmal occlusion in some cases. Hence, there is a critical need for developing techniques that assist physicians in assessing the risk of aneurysm rupture to determine which aneurysms require treatment. However, a reliable IA rupture risk prediction technique is currently unavailable. To address this issue, this study proposes a novel approach for aneurysm segmentation and multidisciplinary rupture prediction using 2D Digital Subtraction Angiography (DSA) images. The proposed method involves training a fully connected convolutional neural network (CNN) to segment aneurysm regions in DSA images, followed by extracting and fusing different features using a multidisciplinary approach, including deep features, geometrical features, Fourier descriptor, and shear pressure on the aneurysm wall. The proposed method also adopts a fast correlation-based filter approach to drop highly correlated features from the set of fused features. Finally, the selected fused features are passed through a Decision Tree classifier to predict the rupture severity of the associated aneurysm into four classes: Mild, Moderate, Severe, and Critical. The proposed method is evaluated on a newly developed DSA image dataset and on public datasets to assess its generalizability. The system's performance is also evaluated on DSA images annotated by expert neurosurgeons for the rupture risk assessment of the segmented aneurysm. The proposed system outperforms existing state-of-the-art segmentation methods, achieving an 85 % accuracy against annotated DSA images for the risk assessment of aneurysmal rupture.
Collapse
Affiliation(s)
- Muhammad Irfan
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA
| | - Khalid Mahmood Malik
- SMILES LAB, Department of Computer Science and Engineering, Oakland University, Rochester, MI, 48309, USA.
| | - Jamil Ahmad
- Department of Computer Vision, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, United Arab Emirates
| | - Ghaus Malik
- Executive Vice-Chair at Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
18
|
Maramkandam EB, Sudhir BJ, Kannath SK, Patnaik BSV. A novel parameter for the prediction of rupture risk of cerebral aneurysms based on morphology. Proc Inst Mech Eng H 2023; 237:1091-1101. [PMID: 37533293 DOI: 10.1177/09544119231188697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Neurosurgeons often encounter dilemmas in the clinical management of cerebral aneurysms owing to an uncertainty of their rupture status and rupture risk. This study evaluates the influence of natural frequency of an aneurysm, as a novel morphological parameter to understand and analyze rupture status and risk prediction. In this work, we employ the natural frequency of 20 idealized and 50 patient specific aneurysms. The natural frequency of patient specific aneurysms is then compared against their rupture status. A strong correlation was observed between various morphological indicators and natural frequency for ideal and patient specific geometries. A statistical analysis with both Mann Whitney U test and T-test for rupture status against natural frequency has given a p-value less than 0.01 indicating a strong correlation between them. The correlation of morphological parameters with natural frequency from Pearson correlation coefficient and T-test suggests a holistic reflection of their effects on the natural frequency of an aneurysm. Thus, natural frequency could be a good indicator to discern the rupture potential of an aneurysm. The correlation between rupture status and natural frequency makes it a novel parameter that can differentiate between ruptured and unruptured patient specific aneurysms.
Collapse
Affiliation(s)
- Eldhose Babu Maramkandam
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - B J Sudhir
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Santhosh K Kannath
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - B S V Patnaik
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
19
|
Gao B, Ding H, Ren Y, Bai D, Wu Z. Study of Typical Ruptured and Unruptured Intracranial Aneurysms Based on Fluid-Structure Interaction. World Neurosurg 2023; 175:e115-e128. [PMID: 36914031 DOI: 10.1016/j.wneu.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Most intracranial aneurysms (IAs) will be abnormal bulges on the walls of intracranial arteries that result from the dynamic interaction of geometric morphology, hemodynamics, and pathophysiology. Hemodynamics plays a key role in the origin, development, and rupture of IAs. In the past, hemodynamic studies of IAs were mostly based on the rigid wall hypothesis of computational fluid dynamics, and the influence of arterial wall deformation was ignored. We used fluid-structure interaction (FSI) to study the features of ruptured aneurysms, because it can solve this problem very well and the simulation will be more realistic. METHODS A total of 12 IAs, 8 ruptured and 4 unruptured, at the middle cerebral artery bifurcation were studied using FSI to better identify the characteristics of ruptured IAs. We studied the differences in the hemodynamic parameters, including the flow pattern, wall shear stress (WSS), oscillatory shear index (OSI), and displacement and deformation of the arterial wall. RESULTS Ruptured IAs had a larger low WSS area and more complex, concentrated, and unstable flow. Also, the OSI was higher. In addition, the displacement deformation area at the ruptured IA was more concentrated and larger. CONCLUSIONS A large aspect ratio; a large height/width ratio; complex, unstable, and concentrated flow patterns with small impact areas; a large low WSS region; large WSS fluctuation, high OSI; and large displacement of the aneurysm dome could be risk factors associated with aneurysm rupture. If similar cases are encountered when simulation is used in the clinic, priority should be given to diagnosis and treatment.
Collapse
Affiliation(s)
- Bei Gao
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Hongchang Ding
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China.
| | - Yande Ren
- The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Di Bai
- The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Zeyu Wu
- The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
20
|
Hachem E, Meliga P, Goetz A, Rico PJ, Viquerat J, Larcher A, Valette R, Sanches AF, Lannelongue V, Ghraieb H, Nemer R, Ozpeynirci Y, Liebig T. Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms. Sci Rep 2023; 13:7147. [PMID: 37130900 PMCID: PMC10154322 DOI: 10.1038/s41598-023-34007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/22/2023] [Indexed: 05/04/2023] Open
Abstract
Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to improve the life quality and expectancy of patients. This study aims at identifying and characterizing novel flow-deviator stent devices through a high-fidelity computational framework that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algorithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment of the functional parameters in the implanted state.
Collapse
Affiliation(s)
- E Hachem
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France.
| | - P Meliga
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - A Goetz
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - P Jeken Rico
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - J Viquerat
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - A Larcher
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - R Valette
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - A F Sanches
- Department of Neuroradiology, University Hospital Munich (LMU), Munich, Germany
| | - V Lannelongue
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - H Ghraieb
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - R Nemer
- MINES Paris, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, 06904, Sophia Antipolis Cedex, France
| | - Y Ozpeynirci
- Department of Neuroradiology, University Hospital Munich (LMU), Munich, Germany
| | - T Liebig
- Department of Neuroradiology, University Hospital Munich (LMU), Munich, Germany
| |
Collapse
|
21
|
Williams KA, Shields A, Setlur Nagesh SV, Chudzik M, Bednarek DR, Rudin S, Ionita C. Angiographic velocimetry analysis using contrast dilution gradient method with a 1000 frames per second photon-counting detector. J Med Imaging (Bellingham) 2023; 10:033502. [PMID: 37287600 PMCID: PMC10242414 DOI: 10.1117/1.jmi.10.3.033502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/11/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose Contrast dilution gradient (CDG) analysis is a quantitative method allowing blood velocity estimation using angiographic acquisitions. Currently, CDG is restricted to peripheral vasculature due to the suboptimal temporal resolution of current imaging systems. We investigate extension of CDG methods to the flow conditions of proximal vasculature using 1000 frames per second (fps) high-speed angiographic (HSA) imaging. Approach We performed in-vitro HSA acquisitions using the XC-Actaeon detector and 3D-printed patient-specific phantoms. The CDG approach was used for blood velocity estimation expressed as the ratio of temporal and spatial contrast gradients. The gradients were extracted from 2D contrast intensity maps synthesized by plotting intensity profiles along the arterial centerline at each frame. In-vitro results obtained at various frame rates via temporal binning of 1000 fps data were retrospectively compared to computational fluid dynamics (CFD) velocimetry. Full-vessel velocity distributions were estimated at 1000 fps via parallel line expansion of the arterial centerline analysis. Results Using HSA, the CDG method displayed agreement with CFD at or above 250 fps [mean-absolute error (MAE): 2.6 ± 6.3 cm / s , p = 0.05 ]. Relative velocity distributions correlated well with CFD at 1000 fps with universal underapproximation due to effects of pulsatile contrast injection (MAE: 4.3 cm/s). Conclusions Using 1000 fps HSA, CDG-based extraction of velocities across large arteries is possible. The method is sensitive to noise; however, image processing techniques and a contrast injection, which adequately fills the vessel assist algorithm accuracy. The CDG method provides high resolution quantitative information for rapidly transient flow patterns observed in arterial circulation.
Collapse
Affiliation(s)
- Kyle A. Williams
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Radiology, Buffalo, New York, United States
| | - Allison Shields
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Radiology, Buffalo, New York, United States
| | - Swetadri Vasan Setlur Nagesh
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Neurosurgery, Buffalo, New York, United States
| | - Mitchell Chudzik
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Daniel R. Bednarek
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Radiology, Buffalo, New York, United States
| | - Stephen Rudin
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Radiology, Buffalo, New York, United States
- University at Buffalo, Department of Neurosurgery, Buffalo, New York, United States
| | - Ciprian Ionita
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- University at Buffalo, Department of Radiology, Buffalo, New York, United States
- University at Buffalo, Department of Neurosurgery, Buffalo, New York, United States
| |
Collapse
|
22
|
Stahl J, Marsh LMM, Thormann M, Ding A, Saalfeld S, Behme D, Berg P. Assessment of the flow-diverter efficacy for intracranial aneurysm treatment considering pre- and post-interventional hemodynamics. Comput Biol Med 2023; 156:106720. [PMID: 36878124 DOI: 10.1016/j.compbiomed.2023.106720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Endovascular treatment of intracranial aneurysms with flow diverters (FD) has become one of the most promising interventions. Due to its woven high-density structure they are particularly applicable for challenging lesions. Although several studies have already conducted realistic hemodynamic quantification of the FD efficacy, a comparison with morphologic post-interventional data is still missing. This study analyses the hemodynamics of ten intracranial aneurysm patients treated with a novel FD device. Based on pre- and post-interventional 3D digital subtraction angiography image data, patient-specific 3D models of both treatment states are generated applying open source threshold-based segmentation methods. Using a fast virtual stenting approach, the real stent positions available in the post-interventional data are virtually replicated and both treatment scenarios were characterized using image-based blood flow simulations. The results show FD-induced flow reductions at the ostium by a decrease in mean neck flow rate (51%), inflow concentration index (56%) and mean inflow velocity (53%). Intraluminal reductions in flow activity for time-averaged wall shear stress (47%) and kinetic energy (71%) are present as well. However, an intra-aneurysmal increase in flow pulsatility (16%) for the post-interventional cases can be observed. Patient-specific FD simulations demonstrate the desired flow redirection and activity reduction inside the aneurysm beneficial for thrombosis formation. Differences in the magnitude of hemodynamic reduction exist over the cardiac cycle which may be addressed in a clinical setting by anti-hypertensive treatment in selected cases.
Collapse
Affiliation(s)
- Janneck Stahl
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, 39106, Germany.
| | | | - Maximilian Thormann
- University Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, 39120, Germany
| | | | - Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Simulation and Graphics, University of Magdeburg, Magdeburg, 39106, Germany
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; University Clinic for Neuroradiology, University Hospital Magdeburg, Magdeburg, 39120, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, 39106, Germany; Department of Medical Engineering, University of Magdeburg, Magdeburg, 39106, Germany
| |
Collapse
|
23
|
Mu N, Rezaeitaleshmahalleh M, Lyu Z, Wang M, Tang J, Strother CM, Gemmete JJ, Pandey AS, Jiang J. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms? Biomed Phys Eng Express 2023; 9:037001. [PMID: 36626819 PMCID: PMC9999353 DOI: 10.1088/2057-1976/acb1b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Although applying machine learning (ML) algorithms to rupture status assessment of intracranial aneurysms (IA) has yielded promising results, the opaqueness of some ML methods has limited their clinical translation. We presented the first explainability comparison of six commonly used ML algorithms: multivariate logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), multi-layer perceptron neural network (MLPNN), and Bayesian additive regression trees (BART). A total of 112 IAs with known rupture status were selected for this study. The ML-based classification used two anatomical features, nine hemodynamic parameters, and thirteen morphologic variables. We utilized permutation feature importance, local interpretable model-agnostic explanations (LIME), and SHapley Additive exPlanations (SHAP) algorithms to explain and analyze 6 Ml algorithms. All models performed comparably: LR area under the curve (AUC) was 0.71; SVM AUC was 0.76; RF AUC was 0.73; XGBoost AUC was 0.78; MLPNN AUC was 0.73; BART AUC was 0.73. Our interpretability analysis demonstrated consistent results across all the methods; i.e., the utility of the top 12 features was broadly consistent. Furthermore, contributions of 9 important features (aneurysm area, aneurysm location, aneurysm type, wall shear stress maximum during systole, ostium area, the size ratio between aneurysm width, (parent) vessel diameter, one standard deviation among time-averaged low shear area, and one standard deviation of temporally averaged low shear area less than 0.4 Pa) were nearly the same. This research suggested that ML classifiers can provide explainable predictions consistent with general domain knowledge concerning IA rupture. With the improved understanding of ML algorithms, clinicians' trust in ML algorithms will be enhanced, accelerating their clinical translation.
Collapse
Affiliation(s)
- N Mu
- Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - M Rezaeitaleshmahalleh
- Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - Z Lyu
- Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
| | - M Wang
- Department of Management Science and Statistics, The University of Texas at San Antonio, San Antonino, TX, United States of America
| | - J Tang
- Department of Health Administration and Policy, George Mason University, Fairfax, VA, United States of America
| | - C M Strother
- Department of Radiology, University of Wisconsin, Madison, WI, United States of America
| | - J J Gemmete
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States of America
| | - A S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States of America
| | - J Jiang
- Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America
- Center for Biocomputing and Digital Health, Health Research Institute and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, MI, United States of America
| |
Collapse
|
24
|
Vagner SA, Gorina AV, Konovalov AN, Grebenev FV, Telyshev DV. Simulation of Hemodynamics in a Giant Cerebral Aneurysm. BIOMEDICAL ENGINEERING 2023. [DOI: 10.1007/s10527-023-10245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
25
|
Sunderland K, Jia W, He W, Jiang J, Zhao F. Impact of spatial and temporal stability of flow vortices on vascular endothelial cells. Biomech Model Mechanobiol 2023; 22:71-83. [PMID: 36271263 PMCID: PMC9975038 DOI: 10.1007/s10237-022-01632-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Intracranial aneurysms (IAs) are pathological dilations of cerebrovascular vessels due to degeneration of the mechanical strength of the arterial wall, precluded by altered cellular functionality. The presence of swirling hemodynamic flow (vortices) is known to alter vascular endothelial cell (EC) morphology and protein expression indicative of IAs. Unfortunately, less is known if vortices with varied spatial and temporal stability lead to differing levels of EC change. The aim of this work is to investigate vortices of varying spatial and temporal stability impact on ECs. METHODS Vortex and EC interplay was investigated by a novel combination of parallel plate flow chamber (PPFC) design and computational analysis. ECs were exposed to laminar (7.5 dynes/[Formula: see text] wall shear stress) or low (<1 dynes/[Formula: see text]) stress vortical flow using PPFCs. Immunofluorescent imaging analyzed EC morphology, while ELISA tests quantified VE-cadherin (cell-cell adhesion), VCAM-1 (macrophage-EC adhesion), and cleaved caspase-3 (apoptotic signal) expression. PPFC flow was simulated, and vortex stability was calculated via the temporally averaged degree of (volume) overlap (TA-DVO) of vortices within a given area. RESULTS EC morphological changes were independent of vortex stability. Increased stability promoted VE-cadherin degradation (correlation coefficient r = [Formula: see text]0.84) and 5-fold increased cleaved caspase-3 post 24 h in stable (TA-DVO 0.736 ± 0.05) vs unstable (TA-DVO 0.606 [Formula: see text]0.2) vortices. ECs in stable vortices displayed a 4.5-fold VCAM-1 increase than unstable counterparts after 12 h. CONCLUSION This work demonstrates highly stable disturbed flow imparts increased inflammatory signaling, degraded cell-cell adhesion, and increased cellular apoptosis than unstable vortices. Such knowledge offers novel insight toward understanding IA development and rupture.
Collapse
Affiliation(s)
- Kevin Sunderland
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Wenkai Jia
- Biomedical Engineering, Texas A &M University, 400 Bizzell St, College Station, TX, 77843, USA
| | - Weilue He
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Jingfeng Jiang
- Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| | - Feng Zhao
- Biomedical Engineering, Texas A &M University, 400 Bizzell St, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade. Sci Rep 2023; 13:219. [PMID: 36604495 PMCID: PMC9816094 DOI: 10.1038/s41598-022-27354-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Computational fluid dynamics (CFD) simulations are increasingly utilised to evaluate intracranial aneurysm (IA) haemodynamics to aid in the prediction of morphological changes and rupture risk. However, these models vary and differences in published results warrant the investigation of IA-CFD reproducibility. This study aims to explore sources of intra-team variability and determine its impact on the aneurysm morphology and CFD parameters. A team of four operators were given six sets of magnetic resonance angiography data spanning a decade from one patient with a middle cerebral aneurysm. All operators were given the same protocol and software for model reconstruction and numerical analysis. The morphology and haemodynamics of the operator models were then compared. The segmentation, smoothing factor, inlet and outflow branch lengths were found to cause intra-team variability. There was 80% reproducibility in the time-averaged wall shear stress distribution among operators with the major difference attributed to the level of smoothing. Based on these findings, it was concluded that the clinical applicability of CFD simulations may be feasible if a standardised segmentation protocol is developed. Moreover, when analysing the aneurysm shape change over a decade, it was noted that the co-existence of positive and negative values of the wall shear stress divergence (WSSD) contributed to the growth of a daughter sac.
Collapse
|
27
|
Flow Resistance Analysis of Clinically Significant Portal Hypertension in Patients with Liver Cirrhosis. Can J Gastroenterol Hepatol 2022; 2022:9396371. [PMID: 36199982 PMCID: PMC9529497 DOI: 10.1155/2022/9396371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis-induced clinically significant portal hypertension (CSPH) is a fatal disease. Early detection of CSPH is vitally important to reduce the patients' mortality rate. In this study, combined with three-dimensional image construction technology and computational fluid dynamics (CFD), an image-based flow resistance analysis was proposed. The flow resistance analysis was performed for nine cirrhosis patients with CSPH and ten participants without liver diseases, respectively. The results showed that the flow resistance coefficient of the portal vein system in CSPH patients was significantly lower than that in the control group (0.97 ± 0.11 Pa/(mL/s) for CSPH patients; 1.80 ± 0.40 Pa/(mL/s) for the control group; P = 0.028). In contrast, although main portal vein dilation was found in CSPH patients, the cross-sectional area enlargement was not statistically significant (186.01 ± 57.48 mm2 for CSPH patients; 166.26 ± 33.74 mm2 for the control group; P = 0.39). The research outcomes indicated that the flow resistance analysis was more sensitive than the commonly used vessel size measurement in the detection of CSPH. In summary, we suggest using flow resistance analysis as a supplementary noninvasive method to detect cirrhosis patients with CSPH.
Collapse
|
28
|
Shit S, Zimmermann J, Ezhov I, Paetzold JC, Sanches AF, Pirkl C, Menze BH. SRflow: Deep learning based super-resolution of 4D-flow MRI data. Front Artif Intell 2022; 5:928181. [PMID: 36034591 PMCID: PMC9411720 DOI: 10.3389/frai.2022.928181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.
Collapse
Affiliation(s)
- Suprosanna Shit
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Suprosanna Shit
| | - Judith Zimmermann
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Germany
| | | | - Augusto F. Sanches
- Institute of Neuroradiology, University Hospital LMU Munich, Munich, Germany
| | - Carolin Pirkl
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Bjoern H. Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Fu M, Peng F, Zhang M, Chen S, Niu H, He X, Xu B, Liu A, Li R. Aneurysmal wall enhancement and hemodynamics: pixel-level correlation between spatial distribution. Quant Imaging Med Surg 2022; 12:3692-3704. [PMID: 35782262 PMCID: PMC9246729 DOI: 10.21037/qims-21-1203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/29/2022] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inflammation and hemodynamics are interrelated risk factors for intracranial aneurysm rupture. This study aimed to identify the relationship between these risk factors from an individual-patient perspective using biomarkers of aneurysm wall enhancement (AWE) derived from high-resolution magnetic resonance imaging (HR-MRI) and hemodynamic parameters by four-dimensional flow MRI (4D-flow MRI). METHODS A total of 29 patients with 29 unruptured intracranial aneurysms larger than 4 mm were included in this prospective cross-sectional study. A total of 24 aneurysms had AWE and 5 did not have AWE. A three-dimensional (3D) vessel model of each individual aneurysm was generated with 3D time-of-flight magnetic resonance angiography (3D TOF-MRA). Quantification of AWE was sampled with HR-MRI. Time-averaged wall shear stress (WSS) and oscillatory shear index (OSI) were calculated from the 4D-flow MRI. The correlation between spatial distribution of AWE and hemodynamic parameters measured at pixel-level was evaluated for each aneurysm. RESULTS In aneurysms with AWE, the spatial distribution of WSS was negatively correlated with AWE in 100% (24/24) of aneurysms, though 2 had an absolute value of the correlation coefficient <0.1. The OSI was positively correlated with AWE in 91.7% (22/24) of aneurysms; the other 2 aneurysms showed a negative correlation with AWE. In aneurysms with no AWE, there was no correlation between WSS (100%, 5/5), OSI (80%, 4/5), and wall inflammation. CONCLUSIONS The spatial distribution of WSS was negatively correlated with AWE in aneurysms with AWE, and OSI was positively correlated with AWE in most aneurysms with AWE. While aneurysms that did not contain AWE showed no correlation between hemodynamics and wall inflammation.
Collapse
Affiliation(s)
- Mingzhu Fu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Peng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Miaoqi Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hao Niu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoxin He
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Boya Xu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
30
|
Pahlavania H, Ozdemira IB, Yildirimb D. CFD Models for Aneurysm Analyses and their Use in Identifying Thrombosis Formation and Risk Assessment. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Jeon JP, Kim S, Kim TY, Han SW, Lim SH, Youn DH, Kim BJ, Hong EP, Park CH, Kim JT, Ahn JH, Rhim JK, Park JJ, Kim HC, Kang SH. Association Between Copeptin and Six-Month Neurologic Outcomes in Patients With Moderate Traumatic Brain Injury. Front Neurol 2022; 12:749110. [PMID: 35547639 PMCID: PMC9081440 DOI: 10.3389/fneur.2021.749110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Copeptin has been reported as a predictive biomarker for the prognosis after traumatic brain injury (TBI). However, most of them were in patients with severe TBI and limited value in predicting outcomes in patients with moderate TBI defined as Glasgow Coma Scale (GCS) score from 9 to 12. We aimed to investigate the predictive value of copeptin in assessing the neurologic outcome following moderate TBI. Methods Patients were prospectively enrolled between May 2017 and November 2020. We consecutively measured plasma copeptin within 24 h after trauma, days 3, 5, and 7 using ELISA. The primary outcome was to correlate plasma copeptin levels with poor neurologic outcome at 6 months after moderate TBI. The secondary outcome was to compare the prognostic accuracy of copeptin and C-reactive protein (CRP) in assessing the outcome of patient. Results A total of 70 patients were included for the final analysis. The results showed that 29 patients (41.4%) experienced a poor neurologic outcome at 6 months. Multivariable logistic regression analysis revealed that increased copeptin (odds ration [OR] = 1.020, 95% CI: 1.005–1.036), GCS score of 9 or 10 (OR = 4.507, 95% CI: 1.266–16.047), and significant abnormal findings on CT (OR = 4.770; 95% CI: 1.133–20.076) were independent risk factors for poor outcomes. Consecutive plasma copeptin levels were significantly different according to outcomes (p < 0.001). Copeptin on day 7 exhibited better prognostic performance than CRP with an area under receiver operating characteristic curve (AUROC) difference of 0.179 (95% CI: 0.032–0.325) in predicting 6-month poor outcomes. Conclusion Plasma copeptin level can be a useful marker in predicting 6-month outcomes in patients with moderate TBI.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seonghyeon Kim
- Department of Orthopaedic Surgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Seung Hyuk Lim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk Medical Center, Seoul, South Korea
| | - Heung Cheol Kim
- Department of Radioilogy, Hallym University College of Medicine, Chuncheon, South Korea
| | - Suk Hyung Kang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
32
|
Zhu H, Hao Z, Xing Z, Tan J, Zhao Y, Li M. Impinging Flow Induces Expression of Monocyte Chemoattractant Protein-1 in Endothelial Cells Through Activation of the c-Jun N-terminal Kinase/c-Jun/p38/c-Fos Pathway. World Neurosurg 2022; 164:e681-e693. [PMID: 35580782 DOI: 10.1016/j.wneu.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Monocyte chemoattractant protein-1 (MCP-1) is an important regulator of the formation and development of intracranial aneurysms. This study explored the molecular mechanisms underlying the induction of MCP-1 and related inflammatory factors in human umbilical vein endothelial cells (HUVECs) under hemodynamic conditions. METHODS A modified T chamber was used to simulate fluid flow at the bifurcation of the artery and wall shear stress on HUVECs in vitro. Changes in HUVECs were analyzed in response to impinging flow. And HUVECs without impinging flow were used as the control group. Protein expression levels of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, activator protein-1, and MCP-1 were detected by Western blot, and the messenger RNA expression levels of MCP-1, interleukin (IL)-1β, and IL-6 were determined by quantitative reverse transcription polymerase chain reaction. RESULTS Under impinging flow, the phosphorylation levels of ERK, JNK, and p38, as well as the protein levels of MCP-1, c-Jun, and c-Fos, increased. The messenger RNA expression of MCP-1, IL-1β, and IL-6 also increased in HUVECs. Pretreatment of the HUVECs with inhibitors of JNK and p38 significantly attenuated the increased expression of MCP-1, IL-1β, and IL-6, while ERK inhibitors had no obvious effect. CONCLUSIONS Under impinging flow, MCP-1 and inflammatory factors are regulated through the JNK/c-Jun/p38/c-Fos pathway and participate in EC inflammation.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zheng Hao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Trauma Center, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zelong Xing
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Department of Neurosurgery, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
33
|
Tikhvinskii D, Kuianova J, Kislitsin D, Orlov K, Gorbatykh A, Parshin D. Numerical Assessment of the Risk of Abnormal Endothelialization for Diverter Devices: Clinical Data Driven Numerical Study. J Pers Med 2022; 12:652. [PMID: 35455768 PMCID: PMC9025183 DOI: 10.3390/jpm12040652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/07/2022] Open
Abstract
Numerical modeling is an effective tool for preoperative planning. The present work is devoted to a retrospective analysis of neurosurgical treatments for the occlusion of cerebral aneurysms using flow-diverters and hemodynamic factors affecting stent endothelization. Several different geometric approaches have been considered for virtual flow-diverters deployment. A comparative analysis of hemodynamic parameters as a result of computational modeling has been carried out basing on the four clinical cases: one successful treatment, one with no occlusion and two with in stent stenosis. For the first time, a quantitative assessment of both: the limiting magnitude of shear stresses that are necessary for the occurrence of in stent stenosis (MaxWSS > 1.23) and for conditions in which endothelialization is insufficiently active and occlusion of the cervical part of the aneurysm does not occur (MaxWSS < 1.68)—has been statistacally proven (p < 0.01).
Collapse
Affiliation(s)
- Denis Tikhvinskii
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| | - Julia Kuianova
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| | - Dmitrii Kislitsin
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Kirill Orlov
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Anton Gorbatykh
- Neurosurgery Department, Meshalkin National Medical Research Center, 630055 Novosibirsk, Russia; (D.K.); (K.O.); (A.G.)
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentiev Avenue 15, 630090 Novosibirsk, Russia; (D.T.); (J.K.)
| |
Collapse
|
34
|
Integrating computational fluid dynamics data into medical image visualization workflows via DICOM. Int J Comput Assist Radiol Surg 2022; 17:1143-1154. [DOI: 10.1007/s11548-022-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
|
35
|
Xin S, Chen Y, Zhao B, Liang F. Combination of Morphological and Hemodynamic Parameters for Assessing the Rupture Risk of Intracranial Aneurysms: a Retrospective Study On Mirror Middle Cerebral Artery Aneurysms. J Biomech Eng 2022; 144:1135619. [PMID: 35147191 DOI: 10.1115/1.4053793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/08/2022]
Abstract
Discordant findings were frequently reported by studies dedicated to exploring the association of morphological/hemodynamic factors with the rupture of intracranial aneurysms (IAs), probably owing to insufficient control of confounding factors. In this study, we aimed to minimize the influences of confounding factors by focusing IAs of interest on mirror aneurysms and, meanwhile, modeling IAs together with the cerebral arterial network to improve the physiological fidelity of hemodynamic simulation. 52 mirror aneurysms located at the middle cerebral artery (MCA) in 26 patients were retrospectively investigated. Numerical tests performed on two randomly selected patients demonstrated that over truncation of cerebral arteries proximal to the MCA during image-based model reconstruction led to uncertain changes in computed values of intra-aneurysmal hemodynamic parameters, which justified the minimal truncation strategy adopted in our study. Five morphological parameters (i.e., volume (V), height (H), dome area (DA), non-sphericity index (NSI), and size ratio (SR)) and two hemodynamic parameters (i.e., peak WSS (peakWSS), and pressure loss coefficient (PLc)) were found to differ significantly between the ruptured and unruptured aneurysms and proved by receiver operating characteristic (ROC) analysis to have potential value for differentiating the rupture status of aneurysm with the areas under curve (AUCs) ranging from 0.681 to 0.763. Integrating V, SR, peakWSS and PLc or some of them into regression models considerably improved the classification of aneurysms, elevating AUC up to 0.864, which indicates that morphological and hemodynamic parameters have complementary roles in assessing the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Shangzhe Xin
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongchun Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fuyou Liang
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
36
|
Saalfeld S, Stahl J, Korte J, Miller Marsh LM, Preim B, Beuing O, Cherednychenko Y, Behme D, Berg P. Can Endovascular Treatment of Fusiform Intracranial Aneurysms Restore the Healthy Hemodynamic Environment?–A Virtual Pilot Study. Front Neurol 2022; 12:771694. [PMID: 35140672 PMCID: PMC8818669 DOI: 10.3389/fneur.2021.771694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies assess intracranial aneurysm rupture risk based on morphological and hemodynamic parameter analysis in addition to clinical information such as aneurysm localization, age, and sex. However, intracranial aneurysms mostly occur with a saccular shape located either lateral to the parent artery or at a bifurcation. In contrast, fusiform intracranial aneurysms (FIAs), i.e., aneurysms with a non-saccular, dilated form, occur in approximately 3–13% of all cases and therefore have not yet been as thoroughly studied. To improve the understanding of FIA hemodynamics, this pilot study contains morphological analyses and image-based blood flow simulations in three patient-specific cases. For a precise and realistic comparison to the pre-pathological state, each dilation was manually removed and the time-dependent blood flow simulations were repeated. Additionally, a validated fast virtual stenting approach was applied to evaluate the effect of virtual endovascular flow-diverter deployment focusing on relevant hemodynamic quantities. For two of the three patients, post-interventional information was available and included in the analysis. The results of this numerical pilot study indicate that complex flow structures, i.e., helical flow phenomena and the presence of high oscillating flow features, predominantly occur in FIAs with morphologically differing appearances. Due to the investigation of the individual healthy states, the original flow environment could be restored which serves as a reference for the virtual treatment target. It was shown that the realistic deployment led to a considerable stabilization of the individual hemodynamics in all cases. Furthermore, a quantification of the stent-induced therapy effect became feasible for the treating physician. The results of the morphological and hemodynamic analyses in this pilot study show that virtual stenting can be used in FIAs to quantify the effect of the planned endovascular treatment.
Collapse
Affiliation(s)
- Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
- *Correspondence: Sylvia Saalfeld
| | - Janneck Stahl
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - Jana Korte
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Laurel Morgan Miller Marsh
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Oliver Beuing
- Department of Radiology, AMEOS Hospital Bernburg, Bernburg, Germany
| | - Yurii Cherednychenko
- Endovascular Centre, Dnipropetrovsk Regional Clinical Hospital named after I.I. Mechnikov, Dnipro, Ukraine
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
37
|
Futami K, Misaki K, Uno T, Nambu I, Kamide T, Nakada M. Morphological factors affecting vortex core instability on 4D flow MRI of unruptured cerebral aneurysms. Neurol Res 2021; 44:455-462. [PMID: 34791984 DOI: 10.1080/01616412.2021.2004365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The spatiotemporal instability of intra-aneurysmal vortex flow may be associated with unruptured cerebral aneurysm rupture. We identified morphological factors that affect intra-aneurysmal vortex core patterns classified based on the instability on four-dimensional (4D) flow magnetic resonance imaging (MRI) and determined cutoff values for the factors to discriminate unstable core patterns. METHODS We classified vortex core patterns of 40 unruptured aneurysms on 4D flow MRI into stable, stable with a flapping tip, continuously deforming wave-or-coil-like, and non-visualized. We statistically compared nine morphological parameters among aneurysm groups with individual patterns. RESULTS The vortex cores were stable (n = 16) (group A), stable with a flapping tip (n = 15) (group B), wave-or-coil-like (n = 7) (group C), and non-visualized (n = 2) (group D). Since there were no statistically significant differences between groups A and B, we compared the difference between the groups A and B and the other groups. Multivariate logistic regression analyses found that size ratio (SR) was an only independently significant parameter (p < 0.05). The receiver-operating characteristic analysis between groups A and B and group C and between groups A and B and groups C and D revealed that the area under the curve value for SR was the highest (0.829 [95% CI, 0.642-1.0]; 0.867 [95% CI, 0.715-1.0], respectively) among morphological factors; the cutoff value for SR was 1.72 (specificity 0.714, sensitivity 0.756; specificity 0.806, sensitivity 0.778, respectively). CONCLUSION SR was an independent morphological factor contributing to vortex core instability based on the vortex core patterns on 4D flow MRI.Abbreviations: CFD: computational fluid dynamics; 3D: three-dimensional; 4D: four-dimensional; MRI: magnetic resonance imaging; MRA: magnetic resonance angiography; ICA: internal carotid artery; AR: aspect ratio; SR: size ratio; CI: confidence interval; AUC: area under the curve; ROC: receiver-operating characteristic.
Collapse
Affiliation(s)
- Kazuya Futami
- Department of Neurosurgery, Hokuriku Central Hospital of Japan Mutual Aid Association of Public School Teachers, Oyabe, Japan
| | - Kouichi Misaki
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Takehiro Uno
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Iku Nambu
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University School of Medicine, Kanazawa, Japan
| |
Collapse
|
38
|
Real-Time Evaluation of Blood Flow Patterns Using AneurysmFlow for an in vivo Abdominal Aortic Aneurysm Model. Ann Vasc Surg 2021; 80:256-263. [PMID: 34752852 DOI: 10.1016/j.avsg.2021.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Many new tools for abdominal aortic aneurysm (AAA) rupture risk evaluation have been developed. These new tools need detailed hemodynamic information in AAA. However, hemodynamic data obtained from in vivo research are lacking. Thus, the objective of this study was to analyze blood flow patterns in an in vivo AAA model to acquire real-time hemodynamic information using AneurysmFlow, a novel flow evaluation system. METHODS Digital subtraction angiography images of patients who underwent endovascular aneurysm repair were analyzed using the visualization function of the AneurysmFlow to classify blood flow patterns as laminar or turbulent flow. The presence of boundary layer separation was also evaluated. The time taken for contrast medium to travel from the infrarenal aortic neck to aortic bifurcation was acquired to calculate the flow velocity. Associations between characteristics of aneurysm including lumen occupying ratio of intraluminal thrombus (ILT) and the hemodynamic flow pattern were evaluated. RESULTS A total of 37 AAA patients was enrolled. Their blood flow patterns were evaluated using the AneurysmFlow. Logistic regression analyses with lumen occupying ratio of ILT as an independent variable showed that the larger the lumen occupying ratio of ILT, the more likely the aneurysm was to show a laminar pattern (P = 0.03) and the more likely the boundary layer separation would not exist (P = 0.04). The flow velocity from the infrarenal aortic neck to the aortic bifurcation showed a positive association with the lumen occupying ratio of the ILT in linear regression analysis (P < 0.001). CONCLUSION Hemodynamic analysis of AAA with the AneurysmFlow using real-time individual patient models showed different flow patterns and flow velocities depending on ILT. This novel analytic approach using AneurysmFlow has potential to play an important role in obtaining clinically meaningful hemodynamic information of AAA.
Collapse
|
39
|
Wang Y, Sun J, Li R, Liu P, Liu X, Ji J, Chen C, Chen Y, Qi H, Li Y, Zhang L, Jia L, Peng F, Fu M, Wang Y, Xu M, Kong C, Xia S, Wang X, He L, Zhang Q, Chen Z, Liu A, Li Y, Lv M, Chen H. Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm. J Neurol 2021; 269:2715-2719. [PMID: 34731309 DOI: 10.1007/s00415-021-10869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022]
Abstract
Aneurysm wall permeability has recently emerged as an in vivo marker of aneurysm wall remodeling. We sought to study the spatial relationship between hemodynamic forces derived from 4D-flow MRI and aneurysm wall permeability by DCE-MRI in a region-based analysis of unruptured saccular intracranial aneurysms (IAs). We performed 4D-flow MRI and DCE-MRI on patients with unruptured IAs of ≥ 5 mm to measure hemodynamic parameters, including wall shear stress (WSS), oscillatory shear index (OSI), WSS temporal (WSSGt) and spatial (WSSGs) gradient, and aneurysm wall permeability (Ktrans) in different sectors of aneurysm wall defined by evenly distributed radial lines emitted from the aneurysm center. The spatial association between Ktrans and hemodynamic parameters measured at the sector level was evaluated. Thirty-one patients were scanned. Ktrans not only varied between aneurysms but also demonstrated spatial heterogeneity within an aneurysm. Among all 159 sectors, higher Ktrans was associated with lower WSS, which was seen in both Spearman's correlation analysis (rho = - 0.18, p = 0.025) and linear regression analysis using generalized estimating equation to account for correlations between multiple sectors of the same aneurysm (regression coefficient = - 0.33, p = 0.006). Aneurysm wall permeability by DCE-MRI was shown to be spatially heterogenous in unruptured saccular IAs and associated with local WSS by 4D-flow MRI.
Collapse
Affiliation(s)
- Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Peng Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xian Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, Zhejiang, China
| | - Chunmiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, Zhejiang, China
| | - Yu Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Haikun Qi
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Yunduo Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Longhui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luqiong Jia
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Peng
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingzhu Fu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, Zhejiang, China
| | - Chunli Kong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, Zhejiang, China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, Zhejiang, China
| | - Xiaole Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
40
|
Khan MO, Toro Arana V, Najafi M, MacDonald DE, Natarajan T, Valen-Sendstad K, Steinman DA. On the prevalence of flow instabilities from high-fidelity computational fluid dynamics of intracranial bifurcation aneurysms. J Biomech 2021; 127:110683. [PMID: 34454331 DOI: 10.1016/j.jbiomech.2021.110683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
High-fidelity computational fluid dynamics (HF-CFD) has revealed the potential for high-frequency flow instabilities (aka "turbulent-like" flow) in intracranial aneurysms, consistent with classic in vivo and in vitro reports of bruits and/or wall vibrations. However, HF-CFD has typically been performed on limited numbers of cases, often with unphysiological inflow conditions or focused on sidewall-type aneurysms where flow instabilities may be inherently less prevalent. Here we report HF-CFD of 50 bifurcation aneurysm cases from the open-source Aneurisk model repository. These were meshed using quadratic finite elements having an average effective spatial resolution of 0.065 mm, and solved under physiologically-pulsatile flow conditions using a well-validated, minimally-dissipative solver with 20,000 time-steps per cardiac cycle Flow instability was quantified using the recently introduced spectral power index (SPI), which quantifies, from 0 to 1, the power associated with velocity fluctuations above those of the driving inflow waveform. Of the 50 cases, nearly half showed regions within the sac having SPI up to 0.5, often with non-negligible power into the 100's of Hz, and roughly 1/3 had sac-averaged SPI > 0.1. High SPI did not significantly predict rupture status in this cohort. Proper orthogonal decomposition of cases with highest SPIavg revealed time-varying energetics consistent with transient turbulence. Our reported prevalence of high-frequency flow instabilities in HF-CFD modelling of aneurysms suggests that care must be taken to avoid routinely overlooking them if we are to understand the highly dynamic mechanical forces to which some aneurysm walls may be exposed, and their prevalence in vivo.
Collapse
Affiliation(s)
- M O Khan
- Cardiovascular Imaging, Modelling and Biomechanics Lab, Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Ontario, Canada.
| | - V Toro Arana
- Stanford University School of Medicine, Stanford, CA, USA
| | - M Najafi
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - D E MacDonald
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - T Natarajan
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Simula Research Laboratory, Lysaker Norway
| | | | - D A Steinman
- Biomedical Simulation Laboratory, Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Choi HS, Yoon JW, Seo H, Kang K, Kim JT. Diabetes is not protective against the formation of unruptured cerebral aneurysm. Clin Neurol Neurosurg 2021; 209:106944. [PMID: 34560386 DOI: 10.1016/j.clineuro.2021.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Diabetes appears to decrease the risk of subarachnoid hemorrhage. However, it is not clear whether diabetes decreases the risk of aneurysm formation. The aim of our study to evaluate the risk of unruptured cerebral aneurysm in patients with diabetes mellitus. METHODS We used data from participants who underwent brain magnetic resonance angiography (MRA) and laboratory tests at the Healthcare System Gangnam Center of Seoul National University Hospital between January 2010 and December 2013. From the 17,368 participants who underwent brain MRA, we analyzed 16,337 subjects whose diabetes status could be identified. RESULTS The number of participants with diabetes was 2299 (14.1%). The proportion of participants with cerebral aneurysms was 2.3% in the diabetic group and 2.7% in the non-diabetic group, which was not significantly different (P = 0.225). There were no significant differences in the size, location, and multiplicity of aneurysms between the diabetes and control groups. In multivariate logistic regression, older age showed significant risk effects on cerebral aneurysms, but female sex, hypertension, diabetes, obesity, and smoking did not show significant risk effects. CONCLUSION In this study, diabetes did not affect the risk of cerebral aneurysm formation. In addition, neither smoking, nor hypertension was a significant risk factor for unruptured cerebral aneurysms. The lack of association between cerebral aneurysm and the traditional risk factors for subarachnoid hemorrhage requires further study. Risk factors for cerebral aneurysm development and those for cerebral aneurysm rupture may be different.
Collapse
Affiliation(s)
- Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Gangwon-do, Republic of Korea
| | - Ji Won Yoon
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Hyobin Seo
- Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Kyusik Kang
- Department of Neurology, Nowon Eulji Medical Center, Eulji University College of Medicine, Seoul, Republic of Korea.
| | - Jin Taek Kim
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Gaidzik F, Pravdivtseva M, Larsen N, Jansen O, Hövener JB, Berg P. Luminal enhancement in intracranial aneurysms: fact or feature?-A quantitative multimodal flow analysis. Int J Comput Assist Radiol Surg 2021; 16:1999-2008. [PMID: 34519953 PMCID: PMC8589743 DOI: 10.1007/s11548-021-02486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022]
Abstract
Purpose Intracranial aneurysm (IA) wall enhancement on post-contrast vessel wall magnetic resonance imaging (VW-MRI) is assumed to be a biomarker for vessel wall inflammation and aneurysm instability. However, the exact factors contributing to enhancement are not yet clarified. This study investigates the relationship between luminal enhancement and intra-aneurysmal flow behaviour to assess the suitability of VW-MRI as a surrogate method for determining quantitative and qualitative flow behaviour in the aneurysm sac. Methods VW-MRI signal is measured in the lumen of three patient-specific IA flow models and compared with the intra-aneurysmal flow fields obtained using phase-contrast magnetic resonance imaging (PC-MRI) and computational fluid dynamics (CFD). The IA flow models were supplied with two different time-varying flow regimes. Results Overall, the velocity fields acquired using PC-MRI or CFD were in good agreement with the VW-MRI enhancement patterns. Generally, the regions with slow-flowing blood show higher VW-MRI signal intensities, whereas high flow leads to a suppression of the signal. For all aneurysm models, a signal value above three was associated with velocity values below three cm/s. Conclusion Regions with lower enhancements have been correlated with the slow and high flow at the same time. Thus, further factors like flow complexity and stability can contribute to flow suppression in addition to the flow magnitude. Nevertheless, VW-MRI can qualitatively assess intra-aneurysmal flow phenomena and estimate the velocity range present in the corresponding region.
Collapse
Affiliation(s)
- Franziska Gaidzik
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University, University of Magdeburg, Forschungscampus STIMULATE, Universitätsplatz 3, 39106, Magdeburg, Germany.
| | - Mariya Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke University, University of Magdeburg, Forschungscampus STIMULATE, Universitätsplatz 3, 39106, Magdeburg, Germany
| |
Collapse
|
43
|
Wiśniewski K, Tyfa Z, Tomasik B, Reorowicz P, Bobeff EJ, Posmyk BJ, Hupało M, Stefańczyk L, Jóźwik K, Jaskólski DJ. Risk Factors for Recanalization after Coil Embolization. J Pers Med 2021; 11:jpm11080793. [PMID: 34442437 PMCID: PMC8398571 DOI: 10.3390/jpm11080793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of our study was to identify risk factors for recanalization 6 months after coil embolization using clinical data followed by computational fluid dynamics (CFD) analysis. Methods: Firstly, clinical data of 184 patients treated with coil embolization were analyzed retrospectively. Secondly, aneurysm models for high/low recanalization risk were generated based on ROC curves and their cut-off points. Afterward, CFD was utilized to validate the results. Results: In multivariable analysis, aneurysm filling during the first embolization was an independent risk factor whilst packing density was a protective factor of recanalization after 6 months in patients with aSAH. For patients with unruptured aneurysms, packing density was found to be a protective factor whilst the aneurysm neck size was an independent risk factor. Complex flow pattern and multiple vortices were associated with aneurysm shape and were characteristic of the high recanalization risk group. Conclusions: Statistical analysis suggested that there are various factors influencing recanalization risk. Once certain values of morphometric parameters are exceeded, a complex flow with numerous vortices occurs. This phenomenon was revealed due to CFD investigations that validated our statistical research. Thus, the complex flow pattern itself can be treated as a relevant recanalization predictor.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland; (E.J.B.); (B.J.P.); (M.H.); (D.J.J.)
- Correspondence: ; Tel.: +48-042-6776770
| | - Zbigniew Tyfa
- Institute of Turbomachinery, Medical Apparatus Division, Lodz University of Technology, Wolczanska 219/223, 90-924 Lodz, Poland; (Z.T.); (P.R.); (K.J.)
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 15 Mazowiecka St., 92-215 Lodz, Poland;
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Piotr Reorowicz
- Institute of Turbomachinery, Medical Apparatus Division, Lodz University of Technology, Wolczanska 219/223, 90-924 Lodz, Poland; (Z.T.); (P.R.); (K.J.)
| | - Ernest J. Bobeff
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland; (E.J.B.); (B.J.P.); (M.H.); (D.J.J.)
| | - Bartłomiej J. Posmyk
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland; (E.J.B.); (B.J.P.); (M.H.); (D.J.J.)
| | - Marlena Hupało
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland; (E.J.B.); (B.J.P.); (M.H.); (D.J.J.)
| | - Ludomir Stefańczyk
- Department of Radiology-Diagnostic Imaging, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland;
| | - Krzysztof Jóźwik
- Institute of Turbomachinery, Medical Apparatus Division, Lodz University of Technology, Wolczanska 219/223, 90-924 Lodz, Poland; (Z.T.); (P.R.); (K.J.)
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Kopcińskiego 22, 90-153 Lodz, Poland; (E.J.B.); (B.J.P.); (M.H.); (D.J.J.)
| |
Collapse
|
44
|
Li S, Pan R, Gupta A, Xu S, Fang Y, Huang H. Predicting the risk of rupture for vertebral aneurysm based on geometric features of blood vessels. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210392. [PMID: 34430044 PMCID: PMC8355691 DOI: 10.1098/rsos.210392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
A significant proportion of the adult population worldwide suffers from cerebral aneurysms. If left untreated, aneurysms may rupture and lead to fatal massive internal bleeding. On the other hand, treatment of aneurysms also involve significant risks. It is desirable, therefore, to have an objective tool that can be used to predict the risk of rupture and assist in surgical decision for operating on the aneurysms. Currently, such decisions are made mostly based on medical expertise of the healthcare team. In this paper, we investigate the possibility of using machine learning algorithms to predict rupture risk of vertebral artery fusiform aneurysms based on geometric features of the blood vessels surrounding but excluding the aneurysm. For each of the aneurysm images (12 ruptured and 25 unruptured), the vessel is segmented into distal and proximal parts by cross-sectional area and 382 non-aneurysm-related geometric features extracted. The decision tree model using two of the features (standard deviation of eccentricity of proximal vessel, and diameter at the distal endpoint) achieved 83.8% classification accuracy. Additionally, with support vector machine and logistic regression, we also achieved 83.8% accuracy with another set of two features (ratio of mean curvature between distal and proximal parts, and diameter at the distal endpoint). Combining the aforementioned three features with integration of curvature of proximal vessel and also ratio of mean cross-sectional area between distal and proximal parts, these models achieve an impressive 94.6% accuracy. These results strongly suggest the usefulness of geometric features in predicting the risk of rupture.
Collapse
Affiliation(s)
- Shixuan Li
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ruiqi Pan
- Department of Computer Science, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Arvind Gupta
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Shixin Xu
- Data Science Research Center, Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Jiangsu, People’s Republic of China
| | - Yibin Fang
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Huaxiong Huang
- Research Centre for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, People’s Republic of China
- BNU-HKBU United International College, Zhuhai, People’s Republic of China
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Analysis of Morphological-Hemodynamic Risk Factors for Aneurysm Rupture Including a Newly Introduced Total Volume Ratio. J Pers Med 2021; 11:jpm11080744. [PMID: 34442388 PMCID: PMC8399007 DOI: 10.3390/jpm11080744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of this study was to evaluate morphological and hemodynamic factors, including the newly developed total volume ratio (TVR), in evaluating rupture risk of cerebral aneurysms using ≥7 mm sized aneurysms. Twenty-three aneurysms (11 unruptured and 12 ruptured) ≥ 7 mm were analyzed from 3-dimensional rotational cerebral angiography and computational fluid dynamics (CFD). Ten morphological and eleven hemodynamic factors of the aneurysms were qualitatively and quantitatively compared. Correlation analysis between morphological and hemodynamic factors was performed, and the relationship among the hemodynamic factors was analyzed. Morphological factors (ostium diameter, ostium area, aspect ratio, and bottleneck ratio) and hemodynamic factors (TVR, minimal wall shear stress of aneurysms, time-averaged wall shear stress of aneurysms, oscillatory shear index, relative residence time, low wall shear stress area, and ratio of low wall stress area) were statistically different between ruptured and unruptured aneurysms (p < 0.05). By simple regression analysis, the morphological factor aspect ratio and the hemodynamic factor TVR were significantly correlated (r2 = 0.602, p = 0.001). Ruptured aneurysms had complex and unstable flow. In ≥7 mm ruptured aneurysms, high aspect ratio, bottleneck ratio, complex flow, unstable flow, low TVR, wall shear stress at aneurysm, high oscillatory shear index, relative resistance time, low wall shear stress area, and ratio of low wall stress area were significant in determining the risk of aneurysm rupture.
Collapse
|
46
|
Pei Y, Xu Z, Liang G, Jin H, Duan Y, Yang B, Qiao X, You H, Xing D. Risk Factors of Anterior Circulation Intracranial Aneurysm Rupture: Extracranial Carotid Artery Tortuosity and Aneurysm Morphologic Parameters. Front Neurol 2021; 12:693549. [PMID: 34322085 PMCID: PMC8313111 DOI: 10.3389/fneur.2021.693549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background: This study was conducted to explore the risk factors of anterior circulation intracranial aneurysm rupture based on extracranial carotid artery (ECA) tortuosity. Methods: This retrospective study, conducted from January 1, 2017, to March 1, 2021, collected and reviewed the clinical and imaging data of 308 patients with anterior circulation intracranial aneurysm [133 (43.2%) patients in the ruptured aneurysm group; 175 (56.8%) patients in the unruptured aneurysm group]. Computed tomography angiography (CTA) of the head and neck was used to determine the ECA tortuosity (normal, simple tortuosity, kink, coil) and the morphologic parameters of the aneurysms. The relationship of aneurysm rupture to ECA tortuosity and the morphologic parameters were analyzed. Results: After univariate analysis, kink, angle of flow inflow (FA), aspect ratio (AR), aneurysm length (L), the distance from the tortuosity to the aneurysm (distance), and size ratio (SR) were significantly correlated with anterior circulation intracranial aneurysm rupture (p < 0.05). Spearman correlation analysis showed that ECA tortuosity was correlated with FA and SR (p < 0.05). Multiple logistic analyses showed that FA [odds ratio (OR), 1.013; 95% CI, 1.002–1.025], SR (OR, 1.521; 95% CI, 1.054–2.195), and kink (OR, 1.823; 95% CI, 1.074–3.096) were independently associated with aneurysm rupture. Conclusion: Study results suggest that FA, SR, and ECA kink were independent risk factors associated with anterior circulation intracranial aneurysm rupture.
Collapse
Affiliation(s)
- Yusong Pei
- Jinzhou Medical University General Hospital of Northern Theater Command Postgraduate Training Base, Shenyang, China
| | - Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Duan
- Center for Neuroimaging, General Hospital of Northern Theater Command, Shenyang, China
| | - Benqiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinxin Qiao
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hongrui You
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dengxiang Xing
- Center for Medical Data, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
47
|
Oliveira IL, Santos GB, Gasche JL, Militzer J, Baccin CE. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. J Biomech Eng 2021; 143:071006. [PMID: 33729441 DOI: 10.1115/1.4050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 11/08/2022]
Abstract
When simulating blood flow in intracranial aneurysms (IAs), the Newtonian model seems to be ubiquitous. However, analyzing the results from the few studies on this subject, the doubt remains on whether it is necessary to use non-Newtonian models in computational fluid dynamics (CFD) simulations of cerebral vascular flows. The objective of this study is to investigate whether different rheology models would influence the hemodynamic parameters related to the wall shear stress (WSS) for ruptured and unruptured IA cases, especially because ruptured aneurysms normally have morphological features, such as lobular regions and blebs, that could trigger non-Newtonian phenomena in the blood flow due to low shear rates. Using CFD in an open-source framework, we simulated four ruptured and four unruptured patient-specific aneurysms to assess the influence of the blood modeling on the main hemodynamic variables associated with aneurysm formation, growth, and rupture. Results for WSS and oscillatory shear index (OSI) and their metrics were obtained using Casson and Carreau-Yasuda non-Newtonian models and were compared with those obtained using the Newtonian model. We found that all differences between non-Newtonian and the Newtonian models were consistent among all cases irrespective of their rupture status. We further found that the WSS at peak systole is overestimated by more than 50% by using the non-Newtonian models, but its metrics based on time and surface averaged values are less affected-the maximum relative difference among the cases is 7% for the Casson model. On the other hand, the surface-averaged OSI is underestimated by more than 30% by the non-Newtonian models. These results suggest that it is recommended to investigate different blood rheology models in IAs simulations when specific parameters to characterize the flow are needed, such as peak-systole WSS and OSI.
Collapse
Affiliation(s)
- Iago L Oliveira
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - Gabriel B Santos
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - José L Gasche
- Mechanical Engineering Department, São Paulo State University (UNESP), Ilha Solteira, São Paulo 15385-000, Brazil
| | - Julio Militzer
- Department of Mechanical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Carlos E Baccin
- Interventional Neuroradiology, Hospital Israelita Albert Einstein, São Paulo, São Paulo 05652-900, Brazil
| |
Collapse
|
48
|
Shibata A, Kamide T, Ikeda S, Yoshikawa S, Tsukagoshi E, Yonezawa A, Takeda R, Kikkawa Y, Kohyama S, Kurita H. Clinical and Morphological Characteristics of Ruptured Small (<5 mm) Posterior Communicating Artery Aneurysms. Asian J Neurosurg 2021; 16:335-339. [PMID: 34268161 PMCID: PMC8244715 DOI: 10.4103/ajns.ajns_495_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/09/2022] Open
Abstract
Context: Small intracranial aneurysms (IAs) are considered to have a low risk of rupture; however, in clinical practice, we often encounter patients with subarachnoid hemorrhage (SAH) due to rupture of small IAs. Aims: This study aims to clarify the clinical and morphological characteristics of ruptured small IA, focusing on posterior communicating artery (PCoA) aneurysms as a prone site. Settings and Design: We retrospectively reviewed 102 consecutive patients with SAH due to ruptured PCoA aneurysm who underwent microsurgical or endovascular aneurysm repair between April 2013 and March 2018. Subjects and Methods: All PCoA aneurysms were diagnosed using three-dimensional rotation angiography or three-dimensional computed tomography angiography. Information regarding the following clinical characteristics was collected: age, sex, past medical history, current smoking, antithrombotic therapy, multiplicity, hydrocephalus, intracerebral hemorrhage, intraventricular hemorrhage, and World Federation of Neurosurgical Societies (WFNS) Grade on admission. Statistical Analysis Used: We analyzed factors of ruptured small IA, focusing on PCoA aneurysms using univariate and multivariate regression analyses. Results: Univariate and multivariate analyses revealed that low aspect ratio (AR) (odds ratio [OR] = 0.33, P = 0.01) and nonfetal type of PCoA (OR = 0.31, P = 0.02) might be independent characteristics of ruptured small PCoA aneurysms. However, age, sex, past medical history, WFNS grade, and treatment outcome were not different between the small and nonsmall PCoA aneurysms. The aneurysm size was not associated to the selection of treatment, proportion of complications, and treatment outcome. Conclusions: In cases of ruptured PCoA aneurysms, low AR and nonfetal type of PCoA might be associated with rupture of small aneurysms.
Collapse
Affiliation(s)
- Aoto Shibata
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Tomoya Kamide
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Shunsuke Ikeda
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Shinichiro Yoshikawa
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Eisuke Tsukagoshi
- Department of Neuro Endovascular Therapy, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Azusa Yonezawa
- Department of Neuro Endovascular Therapy, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Ririko Takeda
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yuichiro Kikkawa
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Shinya Kohyama
- Department of Neuro Endovascular Therapy, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
49
|
Morphological and Hemodynamic Changes during Cerebral Aneurysm Growth. Brain Sci 2021; 11:brainsci11040520. [PMID: 33921861 PMCID: PMC8073033 DOI: 10.3390/brainsci11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Computational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes. Aneurysm geometries were segmented via the medical image processing software Mimics. The geometries were meshed and a computational fluid dynamics (CFD) analysis was performed using ANSYS. Results showed that major geometry bulk growth occurred in areas of low wall shear stress (WSS). Wall shape remodeling near neck impingement regions occurred in areas with large gradients of WSS and oscillatory shear index. This study found that growth occurred in areas where low WSS was accompanied by high velocity gradients between the aneurysm wall and large swirling flow structures. A new finding was that all cases showed an increase in kinetic energy from the first time point to the second, and this change in kinetic energy seems correlated to the change in aneurysm volume.
Collapse
|
50
|
Shi Z, Chen GZ, Mao L, Li XL, Zhou CS, Xia S, Zhang YX, Zhang B, Hu B, Lu GM, Zhang LJ. Machine Learning-Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study. AJNR Am J Neuroradiol 2021; 42:648-654. [PMID: 33664115 PMCID: PMC8041003 DOI: 10.3174/ajnr.a7034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Small intracranial aneurysms are being increasingly detected while the rupture risk is not well-understood. We aimed to develop rupture-risk models of small aneurysms by combining clinical, morphologic, and hemodynamic information based on machine learning techniques and to test the models in external validation datasets. MATERIALS AND METHODS From January 2010 to December 2016, five hundred four consecutive patients with only small aneurysms (<5 mm) detected by CTA and invasive cerebral angiography (or surgery) were retrospectively enrolled and randomly split into training (81%) and internal validation (19%) sets to derive and validate the proposed machine learning models (support vector machine, random forest, logistic regression, and multilayer perceptron). Hemodynamic parameters were obtained using computational fluid dynamics simulation. External validation was performed in other hospitals to test the models. RESULTS The support vector machine performed the best with areas under the curve of 0.88 (95% CI, 0.85-0.92) and 0.91 (95% CI, 0.74-0.98) in the training and internal validation datasets, respectively. Feature ranks suggested hemodynamic parameters, including stable flow pattern, concentrated inflow streams, and a small (<50%) flow-impingement zone, and the oscillatory shear index coefficient of variation, were the best predictors of aneurysm rupture. The support vector machine showed an area under the curve of 0.82 (95% CI, 0.69-0.94) in the external validation dataset, and no significant difference was found for the areas under the curve between internal and external validation datasets (P = .21). CONCLUSIONS This study revealed that machine learning had a good performance in predicting the rupture status of small aneurysms in both internal and external datasets. Aneurysm hemodynamic parameters were regarded as the most important predictors.
Collapse
Affiliation(s)
- Z Shi
- From the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - G Z Chen
- Department of Medical Imaging (G.Z.C.), Nanjing First Hospital, Nanjing, Jiangsu, China
| | - L Mao
- Deepwise AI Lab (L.M., X.L.L.), Beijing, China
| | - X L Li
- Deepwise AI Lab (L.M., X.L.L.), Beijing, China
| | - C S Zhou
- From the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - S Xia
- Department of Radiology (S.X.), Tianjin First Central Hospital, Tianjin, China
| | - Y X Zhang
- Laboratory of Image Science and Technology (Y.X.Z.), School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - B Zhang
- Department of Radiology (B.Z.), Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - B Hu
- From the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - G M Lu
- From the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - L J Zhang
- From the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|