1
|
Lubián-Gutiérrez M, Benavente-Fernández I, Marín-Almagro Y, Jiménez-Luque N, Zuazo-Ojeda A, Sánchez-Sandoval Y, Lubián-López SP. Corpus callosum long-term biometry in very preterm children related to cognitive and motor outcomes. Pediatr Res 2024; 96:409-417. [PMID: 38225451 PMCID: PMC11343715 DOI: 10.1038/s41390-023-02994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The corpus callosum (CC) is suggested as an indirect biomarker of white matter volume, which is often affected in preterm birth. However, diagnosing mild white matter injury is challenging. METHODS We studied 124 children born preterm (mean age: 8.4 ± 1.1 years), using MRI to assess CC measurements and cognitive/motor outcomes based on the Wechsler Intelligence Scale for Children-V (WPPSI-V) and Movement Assessment Battery for Children-2 (MABC-2). RESULTS Children with normal outcomes exhibited greater height (10.2 ± 2.1 mm vs. 9.4 ± 2.3 mm; p = 0.01) and fractional anisotropy at splenium (895[680-1000] vs 860.5[342-1000]) and total CC length (69.1 ± 4.8 mm vs. 67.3 ± 5.1 mm; p = 0.02) compared to those with adverse outcomes. All measured CC areas were smaller in the adverse outcome group. Models incorporating posterior CC measurements demonstrated the highest specificity (83.3% Sp, AUC: 0.65) for predicting neurological outcomes. CC length and splenium height were the only linear measurements associated with manual dexterity and total MABC-2 score while both the latter and genu were related with Full-Scale Intelligence Quotient. CONCLUSIONS CC biometry in children born very preterm at school-age is associated with outcomes and exhibits a specific subregion alteration pattern. The posterior CC may serve as an important neurodevelopmental biomarker in very preterm infants. IMPACT The corpus callosum has the potential to serve as a reliable and easily measurable biomarker of white matter integrity in very preterm children. Estimating diffuse white matter injury in preterm infants using conventional MRI sequences is not always conclusive. The biometry of the posterior part of the corpus callosum is associated with cognitive and certain motor outcomes at school age in children born very preterm. Length and splenium measurements seem to serve as reliable biomarkers for assessing neurological outcomes in this population.
Collapse
Affiliation(s)
- Manuel Lubián-Gutiérrez
- Division of Neurology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, C/Doctor Marañón, 3, Cádiz, Spain
| | - Isabel Benavente-Fernández
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cádiz, C/Doctor Marañón, 3, Cádiz, Spain.
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain.
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain.
| | - Yolanda Marín-Almagro
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Natalia Jiménez-Luque
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Amaya Zuazo-Ojeda
- Radiology Department, Puerta del Mar University Hospital, Cádiz, Spain
| | - Yolanda Sánchez-Sandoval
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Developmental and Educational Psychology, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Simón P Lubián-López
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Division of Neonatology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
2
|
Siffredi V, Liverani MC, Van De Ville D, Freitas LGA, Borradori Tolsa C, Hüppi PS, Ha-Vinh Leuchter R. Corpus callosum structural characteristics in very preterm children and adolescents: Developmental trajectory and relationship to cognitive functioning. Dev Cogn Neurosci 2023; 60:101211. [PMID: 36780739 PMCID: PMC9925611 DOI: 10.1016/j.dcn.2023.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Previous studies suggest that structural alteration of the corpus callosum, i.e., the largest white matter commissural pathway, occurs after a preterm birth in the neonatal period and lasts across development. The present study aims to unravel corpus callosum structural characteristics across childhood and adolescence in very preterm (VPT) individuals, and their associations with general intellectual, executive and socio-emotional functioning. Neuropsychological assessments, T1-weighted and multi-shell diffusion MRI were collected in 79 VPT and 46 full term controls aged 6-14 years. Volumetric, diffusion tensor and neurite orientation dispersion and density imaging (NODDI) measures were extracted on 7 callosal portions using TractSeg. A multivariate data-driven approach (partial least squares correlation) and a cohort-based age normative modelling approach were used to explore associations between callosal characteristics and neuropsychological outcomes. The VPT and a full-term control groups showed similar trends of white-matter maturation over time, i.e., increase FA and reduced ODI, in all callosal segments, that was associated with increase in general intellectual functioning. However, using a cohort-based age-related normative modelling, findings show atypical pattern of callosal development in the VPT group, with reduced callosal maturation over time that was associated with poorer general intellectual and working memory functioning, as well as with lower gestational age.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland; Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
3
|
Neumane S, Gondova A, Leprince Y, Hertz-Pannier L, Arichi T, Dubois J. Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome. Front Neurosci 2022; 16:932386. [PMID: 36507362 PMCID: PMC9732267 DOI: 10.3389/fnins.2022.932386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
Collapse
Affiliation(s)
- Sara Neumane
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Andrea Gondova
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Yann Leprince
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Tomoki Arichi
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jessica Dubois
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| |
Collapse
|
4
|
Zöllei L, Jaimes C, Saliba E, Grant PE, Yendiki A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 2019; 199:1-17. [PMID: 31132451 PMCID: PMC6688923 DOI: 10.1016/j.neuroimage.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022] Open
Abstract
The ongoing myelination of white-matter fiber bundles plays a significant role in brain development. However, reliable and consistent identification of these bundles from infant brain MRIs is often challenging due to inherently low diffusion anisotropy, as well as motion and other artifacts. In this paper we introduce a new tool for automated probabilistic tractography specifically designed for newborn infants. Our tool incorporates prior information about the anatomical neighborhood of white-matter pathways from a training data set. In our experiments, we evaluate this tool on data from both full-term and prematurely born infants and demonstrate that it can reconstruct known white-matter tracts in both groups robustly, even in the presence of differences between the training set and study subjects. Additionally, we evaluate it on a publicly available large data set of healthy term infants (UNC Early Brain Development Program). This paves the way for performing a host of sophisticated analyses in newborns that we have previously implemented for the adult brain, such as pointwise analysis along tracts and longitudinal analysis, in both health and disease.
Collapse
Affiliation(s)
- Lilla Zöllei
- Massachusetts General Hospital, Boston, United States.
| | | | | | | | | |
Collapse
|
5
|
Bonkowsky JL, Son JH. Hypoxia and connectivity in the developing vertebrate nervous system. Dis Model Mech 2018; 11:11/12/dmm037127. [PMID: 30541748 PMCID: PMC6307895 DOI: 10.1242/dmm.037127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The developing nervous system depends upon precise regulation of oxygen levels. Hypoxia, the condition of low oxygen concentration, can interrupt developmental sequences and cause a range of molecular, cellular and neuronal changes and injuries. The roles and effects of hypoxia on the central nervous system (CNS) are poorly characterized, even though hypoxia is simultaneously a normal component of development, a potentially abnormal environmental stressor in some settings, and a clinically important complication, for example of prematurity. Work over the past decade has revealed that hypoxia causes specific disruptions in the development of CNS connectivity, altering axon pathfinding and synapse development. The goals of this article are to review hypoxia's effects on the development of CNS connectivity, including its genetic and molecular mediators, and the changes it causes in CNS circuitry and function due to regulated as well as unintended mechanisms. The transcription factor HIF1α is the central mediator of the CNS response to hypoxia (as it is elsewhere in the body), but hypoxia also causes a dysregulation of gene expression. Animals appear to have evolved genetic and molecular responses to hypoxia that result in functional behavioral alterations to adapt to the changes in oxygen concentration during CNS development. Understanding the molecular pathways underlying both the normal and abnormal effects of hypoxia on CNS connectivity may reveal novel insights into common neurodevelopmental disorders. In addition, this Review explores the current gaps in knowledge, and suggests important areas for future studies. Summary: The nervous system's exposure to hypoxia has developmental and clinical relevance. In this Review, the authors discuss the effects of hypoxia on the development of the CNS, and its long-term behavioral and neurodevelopmental consequences.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Jong-Hyun Son
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,Department of Biology, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
6
|
White matter injury predicts disrupted functional connectivity and microstructure in very preterm born neonates. NEUROIMAGE-CLINICAL 2018; 21:101596. [PMID: 30458986 PMCID: PMC6411591 DOI: 10.1016/j.nicl.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/28/2022]
Abstract
Objective To determine whether the spatial extent and location of early-identified punctate white matter injury (WMI) is associated with regionally-specific disruptions in thalamocortical-connectivity in very-preterm born neonates. Methods 37 very-preterm born neonates (median gestational age: 28.1 weeks; interquartile range [IQR]: 27–30) underwent early MRI (median age 32.9 weeks; IQR: 32–35), and WMI was identified in 13 (35%) neonates. Structural T1-weighted, resting-state functional Magnetic Resonance Imaging (rs-fMRI, n = 34) and Diffusion Tensor Imaging (DTI, n = 31) sequences were acquired using 3 T-MRI. A probabilistic map of WMI was developed for the 13 neonates demonstrating brain injury. A neonatal atlas was applied to the WMI maps, rs-fMRI and DTI analyses to extract volumetric, functional and microstructural data from regionally-specific brain areas. Associations of thalamocortical-network strength and alterations in fractional anisotropy (FA, a measure of white-matter microstructure) with WMI volume were assessed in general linear models, adjusting for age at scan and cerebral volumes. Results WMI volume in the superior (β = −0.007; p = .02) and posterior corona radiata (β = −0.01; p = .01), posterior thalamic radiations (β = −0.01; p = .005) and superior longitudinal fasciculus (β = −0.02; p = .001) was associated with reduced connectivity strength between thalamus and parietal resting-state networks. WMI volume in the left (β = −0.02; p = .02) and right superior corona radiata (β = −0.03; p = .008), left posterior corona radiata (β = −0.03; p = .01), corpus callosum (β = −0.11; p < .0001) and right superior longitudinal fasciculus (β = −0.02; p = .02) was associated with functional connectivity strength between thalamic and sensorimotor networks. Increased WMI volume was also associated with decreased FA values in the corpus callosum (β = −0.004, p = .015). Conclusions Regionally-specific alterations in early functional and structural network complexity resulting from WMI may underlie impaired outcomes. Lesions in white matter pathways predicted altered functional connectivity. White matter lesions predicted alterations in white matter microstructure. Findings of lesion location and size were regionally-specific. White matter lesion size and location may underlie later delays in development.
Collapse
|
7
|
Sparrow SA, Anblagan D, Drake AJ, Telford EJ, Pataky R, Piyasena C, Semple SI, Bastin ME, Boardman JP. Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: Comparison between region-of-interest and whole tract averaged measurements. Eur J Paediatr Neurol 2018; 22:807-813. [PMID: 29804802 PMCID: PMC6148214 DOI: 10.1016/j.ejpn.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Measures of white matter (WM) microstructure inferred from diffusion magnetic resonance imaging (dMRI) are useful for studying brain development. There is uncertainty about agreement between FA and MD values obtained from region-of-interest (ROI) versus whole tract approaches. We investigated agreement between dMRI measures using ROI and Probabilistic Neighbourhood Tractography (PNT) in genu of corpus callosum (gCC) and corticospinal tracts (CST). MATERIALS AND METHODS 81 neonates underwent 64 direction DTI at term equivalent age. FA and MD values were extracted from a 8 mm3 ROI placed within the gCC, right and left posterior limbs of internal capsule. PNT was used to segment gCC and CSTs to calculate whole tract-averaged FA and MD. Agreement between values obtained by each method was compared using Bland-Altman statistics and Pearson's correlation. RESULTS Across the 3 tracts the mean difference in FA measured by PNT and ROI ranged between 0.13 and 0.17, and the 95% limits of agreement did not include the possibility of no difference. For MD, the mean difference in values obtained from PNT and ROI ranged between 0.101 and 0.184 mm2/s × 10-3 mm2/s: the mean difference in gCC was 0.101 × 10-3 mm2/s with 95% limits of agreement that included the possibility of no difference, but there was significant disagreement in MD values measured in the CSTs. CONCLUSION Agreement between dMRI measures of neonatal WM microstructure calculated from ROI and whole tract averaged methods is weak. ROI approaches may not provide sufficient representation of tract microstructure at the level of neural systems in newborns.
Collapse
Affiliation(s)
- Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Devasuda Anblagan
- Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chinthika Piyasena
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Clinical Research Imaging Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
8
|
Pecheva D, Kelly C, Kimpton J, Bonthrone A, Batalle D, Zhang H, Counsell SJ. Recent advances in diffusion neuroimaging: applications in the developing preterm brain. F1000Res 2018; 7. [PMID: 30210783 PMCID: PMC6107996 DOI: 10.12688/f1000research.15073.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar–cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jessica Kimpton
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexandra Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
9
|
Knight MJ, Smith-Collins A, Newell S, Denbow M, Kauppinen RA. Cerebral White Matter Maturation Patterns in Preterm Infants: An MRI T2 Relaxation Anisotropy and Diffusion Tensor Imaging Study. J Neuroimaging 2017; 28:86-94. [PMID: 29205635 DOI: 10.1111/jon.12486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Preterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterized with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multimodal magnetic resonance imaging (MRI). METHODS Infants born very preterm (<32 weeks gestation) and late preterm (33-36 weeks gestation) were scanned at 3 T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analyzed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very preterm and late preterm groups. RESULTS Across widespread regions of WM, T2 is longer in very preterm infants than in late preterm ones. These effects are more prevalent in regions of WM that myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very preterm group, with a bias toward earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fiber and magnetic field, and this effect is modulated by FA. CONCLUSIONS Combined T2 relaxometry and DTI characterizes specific patterns of retarded WM maturation, at term equivalent age, in infants born very preterm relative to late preterm.
Collapse
Affiliation(s)
| | - Adam Smith-Collins
- Clinical Research and Imaging Centre, University of Bristol, UK.,Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Sarah Newell
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Mark Denbow
- Fetal Medicine Unit, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, UK
| | - Risto A Kauppinen
- School of Experimental Psychology, University of Bristol, UK.,Clinical Research and Imaging Centre, University of Bristol, UK
| |
Collapse
|
10
|
Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, Jacokes Z. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin 2017; 16:355-368. [PMID: 28861337 PMCID: PMC5568883 DOI: 10.1016/j.nicl.2017.08.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/30/2023]
Abstract
Perinatal care advances emerging over the past twenty years have helped to diminish the mortality and severe neurological morbidity of extremely and very preterm neonates (e.g., cystic Periventricular Leukomalacia [c-PVL] and Germinal Matrix Hemorrhage - Intraventricular Hemorrhage [GMH-IVH grade 3-4/4]; 22 to < 32 weeks of gestational age, GA). However, motor and/or cognitive disabilities associated with mild-to-moderate white and gray matter injury are frequently present in this population (e.g., non-cystic Periventricular Leukomalacia [non-cystic PVL], neuronal-axonal injury and GMH-IVH grade 1-2/4). Brain research studies using magnetic resonance imaging (MRI) report that 50% to 80% of extremely and very preterm neonates have diffuse white matter abnormalities (WMA) which correspond to only the minimum grade of severity. Nevertheless, mild-to-moderate diffuse WMA has also been associated with significant affectations of motor and cognitive activities. Due to increased neonatal survival and the intrinsic characteristics of diffuse WMA, there is a growing need to study the brain of the premature infant using non-invasive neuroimaging techniques sensitive to microscopic and/or diffuse lesions. This emerging need has led the scientific community to try to bridge the gap between concepts or ideas from different methodologies and approaches; for instance, neuropathology, neuroimaging and clinical findings. This is evident from the combination of intense pre-clinical and clinicopathologic research along with neonatal neurology and quantitative neuroimaging research. In the following review, we explore literature relating the most frequently observed neuropathological patterns with the recent neuroimaging findings in preterm newborns and infants with perinatal brain injury. Specifically, we focus our discussions on the use of neuroimaging to aid diagnosis, measure morphometric brain damage, and track long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Manuel Hinojosa-Rodríguez
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Thalía Harmony
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - Cristina Carrillo-Prado
- Unidad de Investigación en Neurodesarrollo, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Mexico
| | - John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Carinna Torgerson
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| | - Zachary Jacokes
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, SHN, Los Angeles, California 90033, USA
| |
Collapse
|
11
|
Wang HW, Wu B, Liu J, Liu F, Wu XH, Ge MM. [Quantitative evaluation of white matter development in fetus with growth restriction by diffusion tensor imaging]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017. [PMID: 28774363 DOI: 10.7499/j.issn.1008-8830.2017.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether fetal growth restriction (FGR) has an adverse effect on white matter development. METHODS A total of 28 full-term small for gestational age (SGA) infants were enrolled as study subjects and 15 full-term appropriate for gestational age infants were enrolled as control group. Conventional head magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) were performed for all infants. The white matter was divided into 122 regions. The two groups were compared in terms of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity of different brain regions. RESULTS Compared with the control group, the SGA group had a significantly lower fractional anisotropy in 16 brain regions (P<0.01), a significantly higher mean diffusivity in 7 brain regions (P<0.05), a significantly higher axial diffusivity in 8 brain regions (P<0.05), and a significantly higher radial diffusivity in 16 brain regions (P<0.05). CONCLUSIONS FGR may cause abnormalities in the maturity and integrity of white matter fiber tracts.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Neonatal Intensive Care Unite, Bayi Children's Hospital, Army General Hospital of the Chinese People Liberation Army, Beijing 100700, China.
| | | | | | | | | | | |
Collapse
|
12
|
Malavolti AM, Chau V, Brown-Lum M, Poskitt KJ, Brant R, Synnes A, Grunau RE, Miller SP. Association between corpus callosum development on magnetic resonance imaging and diffusion tensor imaging, and neurodevelopmental outcome in neonates born very preterm. Dev Med Child Neurol 2017; 59:433-440. [PMID: 27976377 DOI: 10.1111/dmcn.13364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
AIM To characterize corpus callosum development in neonates born very preterm from early in life to term-equivalent age and its relationship with neurodevelopmental outcome at 18 months corrected age. METHOD In a prospective cohort of 193 neonates born preterm, 24 to 32 weeks' gestation, we used magnetic resonance imaging and diffusion tensor imaging acquired early in life (n=193) and at term-equivalent age (n=159) to measure corpus callosum development: mid-sagittal area (including corpus callosum subdivisions) and length, and fractional anisotropy from the genu and splenium. We examined the association of (1) intraventricular haemorrhage (IVH) and white matter injury (WMI) severity, and (2) neurodevelopmental outcome at 18 months corrected age with corpus callosum development. RESULTS Severe WMI and severe IVH were strongly associated with reduced corpus callosum area (both p<0.001) and WMI with lower fractional anisotropy (p=0.002). Mild WMI predicted smaller corpus callosum area only posteriorly; mild IVH predicted smaller area throughout. Adverse motor outcome was associated with smaller corpus callosum size in the posterior subdivision (p=0.003). Abnormal cognitive outcomes were associated with lower corpus callosum fractional anisotropy (p=0.008). INTERPRETATION In newborn infants born very preterm, brain injury is associated with changes in simple metrics of corpus callosum development. In this population, the development of the corpus callosum, as reflected by size and microstructure, is associated with neurodevelopmental outcomes at 18 months corrected age.
Collapse
Affiliation(s)
- Anna M Malavolti
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Vann Chau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Meisan Brown-Lum
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada
| | - Kenneth J Poskitt
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Rollin Brant
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Statistics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Steven P Miller
- Department of Pediatrics, University of British Columbia and BC Children's and Women's Hospital, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada
| |
Collapse
|
13
|
Keunen K, Išgum I, van Kooij BJM, Anbeek P, van Haastert IC, Koopman-Esseboom C, Fieret-van Stam PC, Nievelstein RAJ, Viergever MA, de Vries LS, Groenendaal F, Benders MJNL. Brain Volumes at Term-Equivalent Age in Preterm Infants: Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age. J Pediatr 2016; 172:88-95. [PMID: 26774198 DOI: 10.1016/j.jpeds.2015.12.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/30/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the relationship between brain volumes at term and neurodevelopmental outcome through early school age in preterm infants. STUDY DESIGN One hundred twelve preterm infants (born mean gestational age 28.6 ± 1.7 weeks) were studied prospectively with magnetic resonance imaging (imaged at mean 41.6 ± 1.0 weeks). T2- and T1-weighted images were automatically segmented, and volumes of 6 tissue types were related to neurodevelopmental outcome assessed using the Bayley Scales of Infant and Toddler Development, Third Edition (cognitive, fine, and gross motor scores) at 24 months corrected age (n = 112), Griffiths Mental Development Scales (developmental quotient) at age 3.5 years (n = 98), Movement Assessment Battery for Children, Second Edition (n = 85), and Wechsler Preschool and Primary Scale of Intelligence, Third Edition at age 5.5 years (n = 44). Corrections were made for intracranial volume, maternal education, and severe brain lesions. RESULTS Ventricular volumes were negatively related to neurodevelopmental outcome at age 24 months and 3.5 years, as well as processing speed at age 5.5 years. Unmyelinated white matter (UWM) volume was positively associated with motor outcome at 24 months and with processing speed at age 5.5 years. Cortical gray matter (CGM) volume demonstrated a negative association with motor performance and cognition at 24 months and with developmental quotient at age 3.5 years. Cerebellar volume was positively related to cognition at these time points. Adjustment for brain lesions attenuated the relations between cerebellar and CGM volumes and cognition. CONCLUSIONS Brain volumes of ventricles, UWM, CGM, and cerebellum may serve as biomarkers for neurodevelopmental outcome in preterm infants. The relationship between larger CGM volumes and adverse neurodevelopment may reflect disturbances in neuronal and/or axonal migration at the UWM-CGM boundary and warrants further investigation.
Collapse
Affiliation(s)
- Kristin Keunen
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivana Išgum
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Britt J M van Kooij
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petronella Anbeek
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ingrid C van Haastert
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Max A Viergever
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Hagmann C, Singer J, Latal B, Knirsch W, Makki M. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery. J Child Neurol 2016; 31:300-8. [PMID: 26129977 DOI: 10.1177/0883073815591214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants.
Collapse
Affiliation(s)
- Cornelia Hagmann
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Jitka Singer
- Department of Neonatology, University Hospital, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, University Children's Hospital, Zurich, Switzerland
| | - Malek Makki
- MRI Research Centre, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
15
|
Travis KE, Adams JN, Ben-Shachar M, Feldman HM. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents. PLoS One 2015; 10:e0142860. [PMID: 26560745 PMCID: PMC4641645 DOI: 10.1371/journal.pone.0142860] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood.
Collapse
Affiliation(s)
- Katherine E. Travis
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Jenna N. Adams
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, 5290002, Israel
- Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Heidi M. Feldman
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| |
Collapse
|
16
|
Thompson DK, Lee KJ, van Bijnen L, Leemans A, Pascoe L, Scratch SE, Cheong J, Egan GF, Inder TE, Doyle LW, Anderson PJ. Accelerated corpus callosum development in prematurity predicts improved outcome. Hum Brain Mapp 2015; 36:3733-48. [PMID: 26108187 DOI: 10.1002/hbm.22874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To determine: (1) whether corpus callosum (CC) size and microstructure at 7 years of age or their change from infancy to 7 years differed between very preterm (VP) and full-term (FT) children; (2) perinatal predictors of CC size and microstructure at 7 years; and (3) associations between CC measures at 7 years or trajectories from infancy to 7 years and neurodevelopmental outcomes. EXPERIMENTAL DESIGN One hundred and thirty-six VP (gestational age [GA] <30 weeks and/or birth weight <1,250 g) and 33 FT children had usable magnetic resonance images at 7 years of age, and of these, 76 VP and 16 FT infants had usable data at term equivalent age. The CC was traced and divided into six sub-regions. Fractional anisotropy, mean, axial, radial diffusivity and volume were measured from tractography. Perinatal data were collected, and neurodevelopmental tests administered at 7 years' corrected age. PRINCIPAL OBSERVATIONS VP children had smaller posterior CC regions, higher diffusivity and lower fractional anisotropy compared with FT 7-year-olds. Reduction in diffusivity over time occurred faster in VP than FT children (P ≤ 0.002). Perinatal brain abnormality and earlier GA were associated with CC abnormalities. Microstructural abnormalities at 7 years or slower development of the CC were associated with motor dysfunction, poorer mathematics and visual perception. CONCLUSIONS This study is the first to demonstrate an accelerated trajectory of CC white matter diffusion following VP birth, associated with improved neurodevelopmental functioning. Findings suggest there is a window of opportunity for neurorestorative intervention to improve outcomes. Hum Brain Mapp 36:3733-3748, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine J Lee
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Loeka van Bijnen
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Alexander Leemans
- Imaging Science Institute, University Medical Center, Utrecht, Netherlands
| | - Leona Pascoe
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Shannon E Scratch
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Jeanie Cheong
- Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gary F Egan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Brigham and Women's Hospital, Boston, Massachusetts.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Royal Women's Hospital, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pediatrics, Washington University in St Louis Medical School, St Louis, Missouri
| |
Collapse
|
17
|
Zhang Y, Inder TE, Neil JJ, Dierker DL, Alexopoulos D, Anderson PJ, Van Essen DC. Cortical structural abnormalities in very preterm children at 7 years of age. Neuroimage 2015; 109:469-79. [PMID: 25614973 DOI: 10.1016/j.neuroimage.2015.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022] Open
Abstract
We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.
Collapse
Affiliation(s)
- Yuning Zhang
- Division of Biomedical and Biological Science, Washington University School of Medicine, St Louis, MO, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna L Dierker
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Peter J Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Victoria, Australia
| | - David C Van Essen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
18
|
Pieterman K, Plaisier A, Govaert P, Leemans A, Lequin MH, Dudink J. Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review. Pediatr Radiol 2015; 45:1372-81. [PMID: 25820411 PMCID: PMC4526590 DOI: 10.1007/s00247-015-3307-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/15/2015] [Accepted: 02/05/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. OBJECTIVE To review the literature to evaluate acquisition and processing methodology in diffusion tensor imaging studies of preterm infants. MATERIALS AND METHODS We searched the Embase, Medline, Web of Science and Cochrane databases for relevant papers published between 2003 and 2013. The following keywords were included in our search: prematurity, neuroimaging, brain, and diffusion tensor imaging. RESULTS We found 74 diffusion tensor imaging studies in preterm infants meeting our inclusion criteria. There was wide variation in acquisition and processing methodology, and we found incomplete reporting of these settings. Nineteen studies (26%) reported the use of neonatal hardware. Data quality assessment was not reported in 13 (18%) studies. Artefacts-correction and data-exclusion was not reported in 33 (45%) and 18 (24%) studies, respectively. Tensor estimation algorithms were reported in 56 (76%) studies but were often suboptimal. CONCLUSION Diffusion tensor imaging acquisition and processing settings are incompletely described in current literature, vary considerably, and frequently do not meet the highest standards.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center - Sophia, dr. Molewaterplein 60, 3015, GJ, Rotterdam, The Netherlands,
| | - Annemarie Plaisier
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paul Govaert
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Pediatrics, Koningin Paola Children’s Hospital, Antwerp, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten H. Lequin
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center – Sophia, dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands ,Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Broekman BFP, Wang C, Li Y, Rifkin-Graboi A, Saw SM, Chong YS, Kwek K, Gluckman PD, Fortier MV, Meaney MJ, Qiu A. Gestational age and neonatal brain microstructure in term born infants: a birth cohort study. PLoS One 2014; 9:e115229. [PMID: 25535959 PMCID: PMC4275243 DOI: 10.1371/journal.pone.0115229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To understand healthy brain development between 37-41 weeks of gestational age, our study assessed the in utero growth of the brain in healthy term born babies with DTI scanning soon after birth. METHODS A cohort of 93 infants recruited from maternity hospitals in Singapore underwent diffusion tensor imaging between 5 to 17 days after birth. We did a cross-sectional examination of white matter microstructure of the brain among healthy term infants as a function of gestational age via voxel-based analysis on fractional anisotropy. RESULTS Greater gestational age at birth in term infants was associated with larger fractional anisotropy values in early developing brain regions, when corrected for age at scan. Specifically, it was associated with a cluster located at the corpus callosum (corrected p<0.001), as well as another cluster spanning areas of the anterior corona radiata, anterior limb of internal capsule, and external capsule (corrected p<0.001). CONCLUSIONS Our findings show variation in brain maturation associated with gestational age amongst 'term' infants, with increased brain maturation when born with a relatively higher gestational age in comparison to those infants born with a relatively younger gestational age. Future studies should explore if these differences in brain maturation between 37 and 41 weeks of gestational age will persist over time due to development outside the womb.
Collapse
Affiliation(s)
- Birit F. P. Broekman
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
| | - Changqing Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yue Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, Singapore
- Clinical Imaging Research Centre, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
20
|
Functional connectivity in preterm infants derived from EEG coherence analysis. Eur J Paediatr Neurol 2014; 18:780-9. [PMID: 25205233 DOI: 10.1016/j.ejpn.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To quantify the neuronal connectivity in preterm infants between homologous channels of both hemispheres. METHODS EEG coherence analysis was performed on serial EEG recordings collected from preterm infants with normal neurological follow-up. The coherence spectrum was divided in frequency bands: δnewborn(0-2 Hz), θnewborn(2-6 Hz), αnewborn(6-13 Hz), βnewborn(13-30 Hz). Coherence values were evaluated as a function of gestational age (GA) and postnatal maturation. RESULTS All spectra show two clear peaks in the δnewborn and θnewborn-band, corresponding to the delta and theta EEG waves observed in preterm infants. In the δnewborn-band the peak magnitude coherence decreases with GA and postnatal maturation for all channels. In the θnewborn-band, the peak magnitude coherence decreases with GA for all channels, but increases with postnatal maturation for the frontal polar channels. In the βnewborn-band a modest magnitude coherence peak was observed in the occipital channels, which decreases with GA. CONCLUSIONS Interhemispherical connectivity develops analogously with electrocortical maturation: signal intensities at low frequencies decrease with GA and postnatal maturation, but increase at high frequencies with postnatal maturation. In addition, peak magnitude coherence is a clear trend indicator for brain maturation. SIGNIFICANCE Coherence analysis can aid in the clinical assessment of the functional connectivity of the infant brain with maturation.
Collapse
|
21
|
Abstract
White matter injury and hemorrhage are common findings in extremely preterm infants. Large hemorrhages and extensive cystic lesions are identified with cranial ultrasound. MRI, which is more sensitive, is especially useful in the identification of small intraventricular hemorrhage; cerebellar hemorrhage; punctate lesion in the white matter and cerebellum; and diffuse, noncystic white matter injury. Imaging sequences such as diffusion-weighted, diffusion tensor, and susceptibility weighted imaging may improve recognition and prediction of outcome. These techniques improve understanding of the underlying pathophysiology of white matter injury and its effects on brain development and neurodevelopmental outcome.
Collapse
|
22
|
Pannek K, Scheck SM, Colditz PB, Boyd RN, Rose SE. Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review. Dev Med Child Neurol 2014; 56:113-24. [PMID: 24102176 DOI: 10.1111/dmcn.12250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2013] [Indexed: 12/13/2022]
Abstract
AIM Preterm birth is associated with an increased risk of adverse neurodevelopmental outcomes. Diffusion magnetic resonance imaging (dMRI) combined with tractography can be used to assess non-invasively white matter microstructure and brain development in preterm infants. Our aim was to conduct a systematic review of the current evidence obtained from tractography studies of preterm infants in whom MRI was performed up to term-equivalent age. METHOD Databases were searched for dMRI tractography studies of preterm infants. RESULTS Twenty-two studies were assessed. The most frequently assessed tracts included the corticospinal tract, the corpus callosum, and the optic radiations. The superior longitudinal fasciculus, and the anterior and superior thalamic radiations were investigated less frequently. A clear relationship exists between diffusion metrics and postmenstrual age at the time of scanning, although the evidence of an effect of gestational age at birth and white matter injury is conflicting. Sex and laterality may play an important role in the relationship between diffusion metrics, early clinical assessment, and outcomes. INTERPRETATION Studies involving infants of all gestational ages are required to elucidate the relationship between gestational age and diffusion metrics, and to establish the utility of tractography as a predictive tool. There is a need for more robust acquisition and analysis methods to improve the accuracy of assessing development of white matter pathways.
Collapse
Affiliation(s)
- Kerstin Pannek
- School of Medicine, The University of Queensland, Brisbane, Qld;, Australia
| | | | | | | | | |
Collapse
|
23
|
Automatic segmentation of eight tissue classes in neonatal brain MRI. PLoS One 2013; 8:e81895. [PMID: 24358132 PMCID: PMC3866108 DOI: 10.1371/journal.pone.0081895] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 10/28/2013] [Indexed: 12/05/2022] Open
Abstract
Purpose Volumetric measurements of neonatal brain tissues may be used as a biomarker for later neurodevelopmental outcome. We propose an automatic method for probabilistic brain segmentation in neonatal MRIs. Materials and Methods In an IRB-approved study axial T1- and T2-weighted MR images were acquired at term-equivalent age for a preterm cohort of 108 neonates. A method for automatic probabilistic segmentation of the images into eight cerebral tissue classes was developed: cortical and central grey matter, unmyelinated and myelinated white matter, cerebrospinal fluid in the ventricles and in the extra cerebral space, brainstem and cerebellum. Segmentation is based on supervised pixel classification using intensity values and spatial positions of the image voxels. The method was trained and evaluated using leave-one-out experiments on seven images, for which an expert had set a reference standard manually. Subsequently, the method was applied to the remaining 101 scans, and the resulting segmentations were evaluated visually by three experts. Finally, volumes of the eight segmented tissue classes were determined for each patient. Results The Dice similarity coefficients of the segmented tissue classes, except myelinated white matter, ranged from 0.75 to 0.92. Myelinated white matter was difficult to segment and the achieved Dice coefficient was 0.47. Visual analysis of the results demonstrated accurate segmentations of the eight tissue classes. The probabilistic segmentation method produced volumes that compared favorably with the reference standard. Conclusion The proposed method provides accurate segmentation of neonatal brain MR images into all given tissue classes, except myelinated white matter. This is the one of the first methods that distinguishes cerebrospinal fluid in the ventricles from cerebrospinal fluid in the extracerebral space. This method might be helpful in predicting neurodevelopmental outcome and useful for evaluating neuroprotective clinical trials in neonates.
Collapse
|
24
|
Ling X, Tang W, Liu G, Huang L, Li B, Li X, Liu S, Xu J. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN). Eur J Radiol 2013; 82:e476-83. [DOI: 10.1016/j.ejrad.2013.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/01/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
|
25
|
Pandit AS, Ball G, Edwards AD, Counsell SJ. Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology 2013; 55 Suppl 2:65-95. [PMID: 23942765 DOI: 10.1007/s00234-013-1242-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
INTRODUCTION White matter injury and abnormal maturation are thought to be major contributors to the neurodevelopmental disabilities observed in children and adolescents who were born preterm. Early detection of abnormal white matter maturation is important in the design of preventive, protective, and rehabilitative strategies for the management of the preterm infant. Diffusion-weighted magnetic resonance imaging (d-MRI) has become a valuable tool in assessing white matter maturation and injury in survivors of preterm birth. In this review, we aim to (1) describe the basic concepts of d-MRI; (2) evaluate the methods that are currently used to analyse d-MRI; (3) discuss neuroimaging correlates of preterm brain injury observed at term corrected age; during infancy, adolescence and in early adulthood; and (4) explore the relationship between d-MRI measures and subsequent neurodevelopmental performance. METHODS References for this review were identified through searches of PubMed and Google Scholar before March 2013. RESULTS The impact of premature birth on cerebral white matter can be observed from term-equivalent age through to adulthood. Disruptions to white matter development, identified by d-MRI, are related to diminished performance in functional domains including motor performance, cognition and behaviour in early childhood and in later life. CONCLUSION d-MRI is an effective tool for investigating preterm white matter injury. With advances in image acquisition and analysis approaches, d-MRI has the potential to be a biomarker of subsequent outcome and to evaluate efficacy of clinical interventions in this population.
Collapse
Affiliation(s)
- Anand S Pandit
- Centre for the Developing Brain, Department of Perinatal Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, First Floor, South Wing, St Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
26
|
Pannek K, Hatzigeorgiou X, Colditz PB, Rose S. Assessment of structural connectivity in the preterm brain at term equivalent age using diffusion MRI and T2 relaxometry: a network-based analysis. PLoS One 2013; 8:e68593. [PMID: 23950872 PMCID: PMC3737239 DOI: 10.1371/journal.pone.0068593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/01/2013] [Indexed: 12/05/2022] Open
Abstract
Preterm birth is associated with a high prevalence of adverse neurodevelopmental outcome. Non-invasive techniques which can probe the neural correlates underpinning these deficits are required. This can be achieved by measuring the structural network of connections within the preterm infant's brain using diffusion MRI and tractography. We used diffusion MRI and T2 relaxometry to identify connections with altered white matter properties in preterm infants compared to term infants. Diffusion and T2 data were obtained from 9 term neonates and 18 preterm-born infants (born <32 weeks gestational age) at term equivalent age. Probabilistic tractography incorporating multiple fibre orientations was used in combination with the Johns Hopkins neonatal brain atlas to calculate the structural network of connections. Connections of altered diffusivity or T2, as well as their relationship with gestational age at birth and postmenstrual age at the time of MRI, were identified using the network based statistic framework. A total of 433 connections were assessed. FA was significantly reduced in 17, and T2 significantly increased in 18 connections in preterm infants, following correction for multiple comparisons. Cortical networks associated with affected connections mainly involved left frontal and temporal cortical areas: regions which are associated with working memory, verbal comprehension and higher cognitive function – deficits which are often observed later in children and adults born preterm. Gestational age at birth correlated with T2, but not diffusion in several connections. We found no association between diffusion or T2 and postmenstrual age at the time of MRI in preterm infants. This study demonstrates that alterations in the structural network of connections can be identified in preterm infants at term equivalent age, and that incorporation of non-diffusion measures such as T2 in the connectome framework provides complementary information for the assessment of brain development.
Collapse
Affiliation(s)
- Kerstin Pannek
- The University of Queensland, School of Medicine, Brisbane, Australia
- The University of Queensland, Queensland Cerebral Palsy and Rehabilitation Research Centre, Brisbane, Australia
| | - Xanthy Hatzigeorgiou
- The University of Queensland, Perinatal Research Centre, Brisbane, Australia
- The University of Queensland and Royal Children's Hospital, Children's Nutrition Research Centre, Brisbane, Australia
| | - Paul B. Colditz
- The University of Queensland, Perinatal Research Centre, Brisbane, Australia
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia
| | - Stephen Rose
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
- * E-mail:
| |
Collapse
|
27
|
De Bruïne FT, Van Wezel-Meijler G, Leijser LM, Steggerda SJ, Van Den Berg-Huysmans AA, Rijken M, Van Buchem MA, Van Der Grond J. Tractography of white-matter tracts in very preterm infants: a 2-year follow-up study. Dev Med Child Neurol 2013; 55:427-33. [PMID: 23441853 DOI: 10.1111/dmcn.12099] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to determine whether tractography of white-matter tracts can independently predict neurodevelopmental outcome in very preterm infants. METHOD Out of 84 very preterm infants admitted to a neonatal intensive care unit, 64 (41 males, 23 females; median gestational age 29.1 weeks [range 25.6-31.9]; birthweight 1163 g [range 585-1960]) underwent follow-up at 2 years. Diffusion tensor imaging (DTI) values obtained around term were associated with a neurological examination and mental and psychomotor developmental index scores at 2 years based on the Bayley Scales of Infant Development (version 3). Univariate and logistic regression analyses tested for associations between DTI values and follow-up parameters. Cut-off values predicting motor delay and cerebral palsy (CP) were determined for fractional anisotropy, apparent diffusion coefficient (ADC), and fibre lengths. RESULTS Infants with psychomotor delay and CP had significantly lower fractional anisotropy values (p=0.002, p=0.04 respectively) and shorter fibre lengths (p=0.02, p=0.02 respectively) of the posterior limb of the internal capsule. Infants with psychomotor delay also had significantly higher ADC values (p=0.03) and shorter fibre lengths (p=0.002) of the callosal splenium. Fractional anisotropy values of the posterior limb of the internal capsule independently predicted motor delay and CP, with sensitivity between 80 and 100% and specificity between 66 and 69%. ADC values of the splenium independently predicted motor delay with sensitivity of 100% and specificity of 65%. INTERPRETATION Diffusion tensor imaging tractography at term-equivalent age independently predicts psychomotor delay at 2 years of age in preterm infants.
Collapse
|
28
|
Heemskerk AM, Leemans A, Plaisier A, Pieterman K, Lequin MH, Dudink J. Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data. AJNR Am J Neuroradiol 2013; 34:1496-505. [PMID: 23518355 DOI: 10.3174/ajnr.a3465] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diffusion tensor imaging is a valuable measure in clinical settings to assess diagnosis and prognosis of neonatal brain development. However, obtaining reliable images is not straightforward because of the tissue characteristics of the neonatal brain and the high likelihood of motion artifacts. In this review, we present guidelines on how to acquire DTI data of the neonatal brain and recommend high-quality data acquisition and processing as an essential means to obtain accurate and robust parametric maps. Sudden head movements are problematic for DTI in neonates, and these may lead to incorrect values. We describe strategies to minimize the corrupting effects both in terms of acquisition (eg, more gradient directions) and postprocessing (eg, tensor estimation methods). In addition, tools are described that can help assess whether a dataset is of sufficient quality for further assessment.
Collapse
Affiliation(s)
- A M Heemskerk
- Division of Neonatology, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Lee AY, Jang SH, Lee E, Ahn SH, Cho HK, Jo HM, Son SM. Radiologic differences in white matter maturation between preterm and full-term infants: TBSS study. Pediatr Radiol 2013; 43:612-9. [PMID: 23149651 DOI: 10.1007/s00247-012-2545-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Widespread white matter (WM) pathology in preterm children has been proposed. OBJECTIVE The purpose of this study was to investigate maturational differences of WM between preterm infants with thinning of the corpus callosum and full-term infants. MATERIALS AND METHODS A total of 18 preterm children and 18 full-term children were divided into three subgroups according to the corrected age at the time of diffusion tensor imaging scanning. Tract-based spatial statistics was used for assessing differences in fractional anisotropy (FA) between preterm and full-term children, and between each age-related subgroup in preterm and in full-term children. RESULTS In the preterm group, FA values of overall WM showed an increase with age. This trend indicates that WM maturation is a gradual occurrence during a child's first 2 years. In the full-term group, most WM structures had reached maturation at around 1 year of age; however, centrum semiovale level showed sustained maturation during the first 2 years. CONCLUSION Results of our study demonstrate radiologic maturational differences of WM and provide evidence of the need for therapeutic intervention within 2 years of birth to prevent specific functional impairment and to improve clinical outcome in preterm children.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1 Daemyungdong, Namku, Taegu, South Korea, 705-717
| | | | | | | | | | | | | |
Collapse
|