1
|
Wang Y, Fellah S, Reis M, Guilliams KP, Fields ME, Steger-May K, Mirro AE, Lewis JB, Ying C, Cohen RA, Hulbert ML, King AA, Chen Y, Lee JM, An H, Ford AL. Cerebral Oxygen Metabolic Stress in Children and Adults With Large Vessel Vasculopathy Due to Sickle Cell Disease. Neurology 2024; 103:e210032. [PMID: 39546738 PMCID: PMC11573263 DOI: 10.1212/wnl.0000000000210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Large vessel vasculopathy (LVV), or moyamoya syndrome, increases the risk of stroke in patients with sickle cell disease (SCD), yet effective treatments are lacking. In atherosclerotic carotid disease, previous studies demonstrated elevated oxygen extraction fraction (OEF) as a predictor of ipsilateral stroke. In a SCD cohort, we examined hemispheric hemodynamic and oxygen metabolic dysfunction as tissue-based biomarkers of cerebral ischemic risk in patients with LVV. METHODS Children and adults with SCD were recruited from a SCD clinic associated with a tertiary medical center and underwent prospective brain MRI and MR angiography. LVV was defined as ≥75% stenosis in a major anterior circulation artery, excluding occlusion or previous revascularization surgery. Baseline characteristics, cerebral blood flow (CBF), normalized OEF (nOEF), infarct volume, white matter microstructure, and brain volume were compared in hemispheres with vs without LVV. In a cross-sectional analysis, mixed-effects linear multivariable models examined the effect of LVV on: (1) CBF and nOEF, as tissue markers of hemodynamic and oxygen metabolic stress, respectively, and (2) endpoints of cerebral ischemic injury including infarct volume, white matter microstructure, and brain volume. RESULTS Of 155 patients (22 [12-31] years, 57% female), 33 (21%) had ≥25% stenosis, 22 (14%) had ≥50% stenosis, 14 (9%) had 75%-99% stenosis, and 5 (3%) had 100% occlusion. After excluding hemispheres with previous revascularization surgery, LVV was present in 16 hemispheres from 11 patients. Hemispheres with (N = 16) vs without (N = 283) LVV had lower CBF (25.2 vs 32.1 mL/100 g/min, p = 0.01) and higher nOEF (0.99 vs 0.95, p = 0.02). On multivariable analysis, CBF was nonsignificantly lower (β = -0.16, p = 0.07) while nOEF remained higher in hemispheres with LVV (β = 0.04, p = 0.03). Moreover, LVV was associated with greater hemispheric infarct volume, microstructural disruption, and atrophy. DISCUSSION Beyond greater infarct burden, LVV was associated with hemispheric atrophy and white matter microstructural injury. As an indicator of active hypoxia, elevated nOEF likely represents a compensatory response to flow-limiting stenosis in hemispheres with LVV. The study is limited by a small number of patients with severe stenosis. Future studies are needed to evaluate the potential of tissue-based CBF and nOEF in assessing stroke risk and guide timely treatment of vasculopathy in SCD.
Collapse
Affiliation(s)
- Yan Wang
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Slim Fellah
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Martin Reis
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Kristin P Guilliams
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Melanie E Fields
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karen Steger-May
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amy E Mirro
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Josiah B Lewis
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Chunwei Ying
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Rachel A Cohen
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Monica L Hulbert
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allison A King
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Yasheng Chen
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jin-Moo Lee
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Hongyu An
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Andria L Ford
- From the Department of Neurology (Y.W., S.F., K.G., M.E.F., J.B.L., Y.C., J.-M.L.), Mallinckrodt Institute of Radiology (M.R., K.G., M.E.F., C.Y., J.-M.L., H.A.), and Division of Pediatrics (K.G., A.E.M., M.L.H.), Center for Biostatistics and Data Science (K.S.-M.), Washington University School of Medicine; Washington University in St. Louis (R.A.C.); and Division of Hematology/Oncology (A.A.K., A.L.F.), Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Zarrinkoob L, Myrnäs S, Wåhlin A, Eklund A, Malm J. Cerebral Blood Flow Patterns in Patients With Low-Flow Carotid Artery Stenosis, a 4D-PCMRI Assessment. J Magn Reson Imaging 2024; 60:1521-1529. [PMID: 38168876 DOI: 10.1002/jmri.29216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Compromised cerebral blood flow can contribute to future ischemic events in patients with symptomatic carotid artery disease. However, there is limited knowledge of the effects on cerebral hemodynamics resulting from a reduced internal carotid artery (ICA) blood flow rate (BFR). PURPOSE Investigate how reduced ICA-BFR, relates to BFR in the cerebral arteries. STUDY TYPE Prospective. SUBJECTS Thirty-eight patients, age 72 ± 6 years (11 female). FIELD STRENGTH/SEQUENCE 3-Tesla, four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI). ASSESSMENT Patients with ischemic stroke or transient ischemic attack were evaluated regarding the degree of stenosis. 4D-PCMRI was used to measure cerebral BFR in 38 patients with symptomatic carotid stenosis (≥50%). BFR in the cerebral arteries was assessed in two subgroups based on symptomatic ICA-BFR: reduced ICA-flow (<160 mL/minutes) and preserved ICA-flow (≥160 mL/minutes). BFR laterality was defined as a difference in the paired ipsilateral-contralateral arteries. STATISTICAL TESTS Patients were grouped based on ICA-BFR (reduced vs. preserved). Statistical tests (independent sample t-test/paired t-test) were used to compare groups and hemispheres. Significance was determined at P < 0.05. RESULTS The degree of stenosis was not significantly different, 80% (95% confidence interval [CI] = 73%-87%) in the reduced ICA-flow vs. 72% (CI = 66%-76%) in the preserved ICA-flow; P = 0.09. In the reduced ICA-flow group, a significantly reduced BFR was found in the ipsilateral middle cerebral artery and anterior cerebral artery (A1), while significantly increased in the contralateral A1. Retrograde BFR was found in the posterior communicating artery and ophthalmic artery. Significant BFR laterality was present in all paired arteries in the reduced ICA-flow group, contrasting the preserved ICA-flow group (P = 0.14-0.93). DATA CONCLUSIONS 4D-PCMRI revealed compromised cerebral BFR due to carotid stenosis, not possible to detect by solely analyzing the degree of stenosis. In patients with reduced ICA-flow, collaterals were not sufficient to maintain symmetrical BFR distribution to the two hemispheres. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Laleh Zarrinkoob
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Sanne Myrnäs
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
- Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Wegener S, Baron JC, Derdeyn CP, Fierstra J, Fromm A, Klijn CJM, van Niftrik CHB, Schaafsma JD. Hemodynamic Stroke: Emerging Concepts, Risk Estimation, and Treatment. Stroke 2024; 55:1940-1950. [PMID: 38864227 DOI: 10.1161/strokeaha.123.044386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ischemic stroke can arise from the sudden occlusion of a brain-feeding artery by a clot (embolic), or local thrombosis. Hemodynamic stroke occurs when blood flow does not sufficiently meet the metabolic demand of a brain region at a certain time. This discrepancy between demand and supply can occur with cerebropetal arterial occlusion or high-grade stenosis but also arises with systemic conditions reducing blood pressure. Treatment of hemodynamic stroke is targeted toward increasing blood flow to the affected area by either systemically or locally enhancing perfusion. Thus, blood pressure is often maintained above normal values, and extra-intracranial flow augmentation bypass surgery is increasingly considered. Still, current evidence supporting the superiority of pressure or flow increase over conservative measures is limited. However, methods assessing hemodynamic impairment and identifying patients at risk of hemodynamic stroke are rapidly evolving. Sophisticated models incorporating clinical and imaging factors have been suggested to aid patient selection. In this narrative review, we provide current state-of-the-art knowledge about hemodynamic stroke, tools for assessment, and treatment options.
Collapse
Affiliation(s)
- Susanne Wegener
- Department of Neurology (S.W.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Jean Claude Baron
- Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Université Paris Cité, Inserm U1266, FHU NeuroVasc, France (J.C.B.)
| | - Colin P Derdeyn
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville (C.P.D.)
| | - Jorn Fierstra
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Annette Fromm
- Department of Neurology, Haukeland University Hospital, Bergen, Norway (A.F.)
| | - Catharina J M Klijn
- Department of Neurology at Radboud University Nijmegen, the Netherlands (C.J.M.K.)
| | - Christiaan Hendrik Bas van Niftrik
- Department of Neurosurgery (J.F., C.H.B.v.N.), University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
- Clinical Neurocenter Zurich and Neuroscience Center Zurich (ZNZ), Switzerland (S.W., J.F., C.H.B.v.N.)
| | - Joanna D Schaafsma
- Division of Neurology, Department of Medicine (JDS) and Division of Neuroradiology, Department of Medical Imaging, University Health Network, Toronto, Canada (DJM, DMM) (J.D.S.)
| |
Collapse
|
4
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Baron JC. Predicting Stroke Recurrence in Occlusive Disease Using Noninvasive Quantitative Mapping of Cerebrovascular Reserve. Stroke 2024; 55:622-624. [PMID: 38328925 DOI: 10.1161/strokeaha.124.046235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Affiliation(s)
- Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, GHU Paris Psychiatrie et Neurosciences, FHU NeuroVasc, France. Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, France
| |
Collapse
|
6
|
van Niftrik CHB, Sebök M, Germans MR, Halter M, Pokorny T, Stumpo V, Bellomo J, Piccirelli M, Pangalu A, Katan M, Wegener S, Tymianski M, Kulcsár Z, Luft AR, Fisher JA, Mikulis DJ, Regli L, Fierstra J. Increased Risk of Recurrent Stroke in Symptomatic Large Vessel Disease With Impaired BOLD Cerebrovascular Reactivity. Stroke 2024; 55:613-621. [PMID: 38328926 DOI: 10.1161/strokeaha.123.044259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Impaired cerebrovascular reactivity (CVR) has been correlated with recurrent ischemic stroke. However, for clinical purposes, most CVR techniques are rather complex, time-consuming, and lack validation for quantitative measurements. The recent adaptation of a standardized hypercapnic stimulus in combination with a blood-oxygenation-level-dependent (BOLD) magnetic resonance imaging signal as a surrogate for cerebral blood flow offers a potential universally comparable CVR assessment. We investigated the association between impaired BOLD-CVR and risk for recurrent ischemic events. METHODS We conducted a retrospective analysis of patients with symptomatic cerebrovascular large vessel disease who had undergone a prospective hypercapnic-challenged BOLD-CVR protocol at a single tertiary stroke referral center between June 2014 and April 2020. These patients were followed up for recurrent acute ischemic events for up to 3 years. BOLD-CVR (%BOLD signal change per mm Hg CO2) was calculated on a voxel-by-voxel basis. Impaired BOLD-CVR of the affected (ipsilateral to the vascular pathology) hemisphere was defined as an average BOLD-CVR, falling 2 SD below the mean BOLD-CVR of the right hemisphere in a healthy age-matched reference cohort (n=20). Using a multivariate Cox proportional hazards model, the association between impaired BOLD-CVR and ischemic stroke recurrence was assessed and Kaplan-Meier survival curves to visualize the acute ischemic stroke event rate. RESULTS Of 130 eligible patients, 28 experienced recurrent strokes (median, 85 days, interquartile range, 5-166 days). Risk factors associated with an increased recurrent stroke rate included impaired BOLD-CVR, a history of atrial fibrillation, and heart insufficiency. After adjusting for sex, age group, and atrial fibrillation, impaired BOLD-CVR exhibited a hazard ratio of 10.73 (95% CI, 4.14-27.81; P<0.001) for recurrent ischemic stroke. CONCLUSIONS Among patients with symptomatic cerebrovascular large vessel disease, those exhibiting impaired BOLD-CVR in the affected hemisphere had a 10.7-fold higher risk of recurrent ischemic stroke events compared with individuals with nonimpaired BOLD-CVR.
Collapse
Affiliation(s)
- Christiaan H B van Niftrik
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Martina Sebök
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Menno R Germans
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Matthias Halter
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Thomas Pokorny
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Vittorio Stumpo
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Jacopo Bellomo
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Marco Piccirelli
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Athina Pangalu
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Mira Katan
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Susanne Wegener
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Michael Tymianski
- Division of Neurosurgery, Toronto Western Hospital (M.T., J.F.), University of Toronto, ON, Canada
| | - Zsolt Kulcsár
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (M.P., A.P., Z.K.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Andreas R Luft
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Department of Neurology (T.P., M.K., S.W., A.R.L.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Joseph A Fisher
- Institute of Medical Science (J.A.F.), University of Toronto, ON, Canada
- Department of Anesthesia and Pain Management (J.A.F.), University Health Network, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and Functional Neuroimaging Laboratory (D.J.M.), University Health Network, Toronto, ON, Canada
| | - Luca Regli
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
| | - Jorn Fierstra
- Department of Neurosurgery (C.H.B.v.N., M.S., M.R.G., M.H., V.S., J.B., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Clinical Neuroscience Center (C.H.B.v.N., M.S., M.R.G., M.H., T.P., V.S., J.B., M.P., A.P., M.K., S.W., Z.K., A.R.L., L.R., J.F.), University Hospital of Zürich, University of Zürich, Switzerland
- Division of Neurosurgery, Toronto Western Hospital (M.T., J.F.), University of Toronto, ON, Canada
| |
Collapse
|
7
|
Le LNN, Wheeler GJ, Holy EN, Donnay CA, Blockley NP, Yee AH, Ng KL, Fan AP. Cortical oxygen extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation. Front Physiol 2023; 14:1231793. [PMID: 37869717 PMCID: PMC10588655 DOI: 10.3389/fphys.2023.1231793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: We aimed to demonstrate non-invasive measurements of regional oxygen extraction fraction (OEF) from quantitative BOLD MRI modeling at baseline and after pharmacological vasodilation. We hypothesized that OEF decreases in response to vasodilation with acetazolamide (ACZ) in healthy conditions, reflecting compensation in regions with increased cerebral blood flow (CBF), while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also aimed to assess the relationship between OEF and perfusion in the default mode network (DMN) regions that have shown associations with vascular risk factors and cerebrovascular reactivity in different neurological conditions. Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were scanned on a 3 T scanner with a 32-channel head coil before and after administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated blood volume, and reversible transverse relaxation rate (R2 ') and 2) a multi-post labeling delay arterial spin labeling scan to measure CBF. To assess changes in each parameter due to vasodilation, two-way t-tests were performed for all pairs (baseline versus vasodilation) in the DMN brain regions with Bonferroni correction for multiple comparisons. The relationships between CBF versus OEF and CBF versus R2' were analyzed and compared across DMN regions using linear, mixed-effect models. Results: During vasodilation, CBF significantly increased in the medial frontal cortex (P = 0.004 ), posterior cingulate gyrus (pCG) (P = 0.004 ), precuneus cortex (PCun) (P = 0.004 ), and occipital pole (P = 0.001 ). Concurrently, a significant decrease in OEF was observed only in the pCG (8.8%, P = 0.003 ) and PCun (8.7 % , P = 0.001 ). CMRO2 showed a trend of increased values after vasodilation, but these differences were not significant after correction for multiple comparisons. Although R2' showed a slightly decreasing trend, no statistically significant changes were found in any regions in response to ACZ. The CBF response to ACZ exhibited a stronger negative correlation with OEF (β = - 0.104 ± 0.027 ; t = - 3.852 , P < 0.001 ), than with R2' (β = - 0.016 ± 0.006 ; t = - 2.692 , P = 0.008 ). Conclusion: Quantitative BOLD modeling can reliably measure OEF across multiple physiological conditions and captures vascular changes with higher sensitivity than R2' values. The inverse correlation between OEF and CBF across regions in DMN, suggests that these two measurements, in response to ACZ vasodilation, are reliable indicators of tissue health in this healthy cohort.
Collapse
Affiliation(s)
- Linh N. N. Le
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory J. Wheeler
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Emily N. Holy
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Corinne A. Donnay
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Nicholas P. Blockley
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alan H. Yee
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Kwan L. Ng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Quiroga A, Novi S, Martins G, Bortoletto LF, Avelar W, Guillaumon AT, Li LM, Cendes F, Mesquita RC. Quantification of the Tissue Oxygenation Delay Induced by Breath-Holding in Patients with Carotid Atherosclerosis. Metabolites 2022; 12:metabo12111156. [PMID: 36422296 PMCID: PMC9697605 DOI: 10.3390/metabo12111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Carotid artery stenosis (CAS) is a common vascular disease with long-term consequences for the brain. Although CAS is strongly associated with impaired cerebral hemodynamics and neurodegeneration, the mechanisms underlying hemodynamic impairment in the microvasculature remain unknown. In this work, we employed functional near-infrared spectroscopy (fNIRS) to introduce a methodological approach for quantifying the temporal delay of the evoked hemodynamic response. The method was validated during a vasodilatory task (breath-holding) in 50 CAS patients and 20 controls. Our results suggest that the hemodynamic response to breath-holding can be delayed by up to 6 s in the most severe patients, a significant increase from the median 4 s measured for the control group (p = 0.01). In addition, the fraction of brain regions that responded to the task decreased as the CAS severity increased, from a median of 90% in controls to 73% in the most severe CAS group (p = 0.04). The presence of collateral circulation increases the response to breath-holding and decreases the average time delays across the brain, although the number of communicating arteries alone cannot predict these fNIRS-based hemodynamic variables (p > 0.09). Overall, this work proposes a method to quantitatively assess impaired cerebral hemodynamics in CAS patients.
Collapse
Affiliation(s)
- Andrés Quiroga
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
- Correspondence: (A.Q.); (R.C.M.)
| | - Sergio Novi
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
| | - Giovani Martins
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
| | - Luis Felipe Bortoletto
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
| | - Wagner Avelar
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
- Clinical Hospital, University of Campinas, Campinas 13083-888, SP, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas 13083-894, SP, Brazil
| | - Ana Terezinha Guillaumon
- Clinical Hospital, University of Campinas, Campinas 13083-888, SP, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas 13083-894, SP, Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
- Clinical Hospital, University of Campinas, Campinas 13083-888, SP, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas 13083-894, SP, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
- Clinical Hospital, University of Campinas, Campinas 13083-888, SP, Brazil
- Faculty of Medical Sciences, University of Campinas, Campinas 13083-894, SP, Brazil
| | - Rickson Coelho Mesquita
- “Gleb Wataghin” Institute of Physics, University of Campinas, Campinas 13083-859, SP, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas 13083-970, SP, Brazil
- Correspondence: (A.Q.); (R.C.M.)
| |
Collapse
|
9
|
Yang L, Cho J, Chen T, Gillen KM, Li J, Zhang Q, Guo L, Wang Y. Oxygen extraction fraction (OEF) assesses cerebral oxygen metabolism of deep gray matter in patients with pre-eclampsia. Eur Radiol 2022; 32:6058-6069. [PMID: 35348866 DOI: 10.1007/s00330-022-08713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objective of this study was to compare oxygen extraction fraction (OEF) values in the deep gray matter (GM) of pre-eclampsia (PE) patients, pregnant healthy controls (PHCs), and non-pregnant healthy controls (NPHCs) to explore their brain oxygen metabolism differences in GM. METHODS Forty-seven PE patients, forty NPHCs, and twenty-one PHCs were included. Brain OEF values were computed from quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD = QQ)-based mapping. One-way ANOVA was used to compare mean OEF values in the three groups. The area under the curve of the mean OEF value in each region of interest was estimated using a receiver operating characteristic curve analysis. RESULTS We found that the mean OEF values in the thalamus, putamen, caudate nucleus, pallidum, and substantia nigra were significantly different in these three groups (F = 5.867, p = 0.004; F = 5.142, p = 0007; F = 6.158, p = 0.003; F = 6.319, p = 0.003; F = 5.491, p = 0.005). The mean OEF values for these 5 regions were higher in PE patients than in NPHCs and in PHCs (p < 0.05). The AUC of these ROIs ranged from 0.673 to 0.692 (p < 0.01) and cutoff values varied from 35.1 to 36.6%, indicating that the OEF values could discriminate patients with and without PE. Stepwise multivariate analysis revealed that the OEF values correlated with hematocrit in pregnant women (r = 0.353, p = 0.003). CONCLUSION OEF values in the brains of pregnant women can be measured in clinical practice using QQ-based OEF mapping for noninvasive assessment of hypertensive disorders. KEY POINTS • Pre-eclampsia is a hypertensive disorder associated with abnormalities in brain oxygen extraction. • Oxygen extraction fraction (OEF) is an indicator of brain tissue viability and function. QQ-based mapping of OEF is a new MRI technique that can noninvasively quantify brain oxygen metabolism. • OEF values in the brains of pregnant women can be measured for noninvasive assessment of hypertensive disorders in clinical practice.
Collapse
Affiliation(s)
- Linfeng Yang
- Jinan Maternity and Child Care Hospital, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 2 Jian-guo Xiao Jing-san Road, Jinan, 250001, Shandong, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Tao Chen
- Jinan Maternity and Child Care Hospital, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 2 Jian-guo Xiao Jing-san Road, Jinan, 250001, Shandong, China
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, Shandong, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| |
Collapse
|
10
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
12
|
Straub S, Stiegeler J, El-Sanosy E, Bendszus M, Ladd ME, Schneider TM. A novel gradient echo data based vein segmentation algorithm and its application for the detection of regional cerebral differences in venous susceptibility. Neuroimage 2022; 250:118931. [PMID: 35085764 DOI: 10.1016/j.neuroimage.2022.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate segmentation of cerebral venous vasculature from gradient echo data is of central importance in several areas of neuroimaging such as for the susceptibility-based assessment of brain oxygenation or planning of electrode placement in deep brain stimulation. In this study, a vein segmentation algorithm for single- and multi-echo gradient echo data is proposed. First, susceptibility maps, true susceptibility-weighted images, and, in the multi-echo case, R2* maps were generated from the gradient echo data. These maps were filtered with an inverted Hamming filter to suppress background contrast as well as artifacts from field inhomogeneities at the brain boundaries. A shearlet-based scale-wise representation was generated to calculate a vesselness function and to generate segmentations based on local thresholding. The accuracy of the proposed algorithm was evaluated for different echo times and image resolutions using a manually generated reference segmentation and two vein segmentation algorithms (Frangi vesselness-based, recursive vesselness filter) as a reference with the Dice and Cohen's coefficients as well as the modified Hausdorff distance. The Frangi-based and recursive vesselness filter methods were significantly outperformed with regard to all error metrics. Applying the algorithm, susceptibility differences likely related to differences in blood oxygenation between superficial and deep venous territories could be demonstrated.
Collapse
Affiliation(s)
- Sina Straub
- Divison of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Janis Stiegeler
- Divison of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Edris El-Sanosy
- Divison of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Mark E Ladd
- Divison of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Till M Schneider
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany.
| |
Collapse
|
13
|
Cho J, Zhang J, Spincemaille P, Zhang H, Hubertus S, Wen Y, Jafari R, Zhang S, Nguyen TD, Dimov AV, Gupta A, Wang Y. QQ-NET - using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM+qBOLD or QQ) based oxygen extraction fraction (OEF) mapping. Magn Reson Med 2021; 87:1583-1594. [PMID: 34719059 DOI: 10.1002/mrm.29057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE To improve accuracy and speed of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction fraction (OEF) mapping using a deep neural network (QQ-NET). METHODS The 3D multi-echo gradient echo images were acquired in 34 ischemic stroke patients and 4 healthy subjects. Arterial spin labeling and diffusion weighted imaging (DWI) were also performed in the patients. NET was developed to solve the QQ model inversion problem based on Unet. QQ-based OEF maps were reconstructed with previously introduced temporal clustering, tissue composition, and total variation (CCTV) and NET. The results were compared in simulation, ischemic stroke patients, and healthy subjects using a two-sample Kolmogorov-Smirnov test. RESULTS In the simulation, QQ-NET provided more accurate and precise OEF maps than QQ-CCTV with 150 times faster reconstruction speed. In the subacute stroke patients, OEF from QQ-NET had greater contrast-to-noise ratio (CNR) between DWI-defined lesions and their unaffected contralateral normal tissue than with QQ-CCTV: 1.9 ± 1.3 vs 6.6 ± 10.7 (p = 0.03). In healthy subjects, both QQ-CCTV and QQ-NET provided uniform OEF maps. CONCLUSION QQ-NET improves the accuracy of QQ-based OEF with faster reconstruction.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jinwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Hang Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Simon Hubertus
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yan Wen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ramin Jafari
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Reduced magnetic resonance angiography signal intensity in the middle cerebral artery ipsilateral to severe carotid stenosis may be a practical index of high oxygen extraction fraction. Eur Radiol 2021; 32:2023-2029. [PMID: 34642810 PMCID: PMC8831255 DOI: 10.1007/s00330-021-08272-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022]
Abstract
Objectives Angiographic “slow flow” in the middle cerebral artery (MCA), caused by carotid stenosis, may be associated with high oxygen extraction fraction (OEF). If the MCA slow flow is associated with a reduced relative signal intensity (rSI) of the MCA on MR angiography, the reduced rSI may be associated with a high OEF. We investigated whether the MCA slow flow ipsilateral to carotid stenosis was associated with a high OEF and aimed to create a practical index to estimate the high OEF. Methods We included patients who underwent digital subtraction angiography (DSA) and MRA between 2015 and 2019 to evaluate carotid stenosis. MCA slow flow by image count using DSA, MCA rSI, minimal luminal diameter (MLD) of the carotid artery, carotid artery stenosis rate (CASr), and whole-brain OEF (wb-OEF) was evaluated. When MCA slow flow was associated with a high wb-OEF, the determinants of MCA slow flow were identified, and their association with high wb-OEF was evaluated. Results One hundred and twenty-seven patients met our inclusion criteria. Angiographic MCA slow flow was associated with high wb-OEF. We identified MCA rSI and MLD as determinants of angiographic MCA slow flow. The upper limits of MCA rSI and MLD for angiographic MCA slow flow were 0.89 and 1.06 mm, respectively. The wb-OEF was higher in patients with an MCA rSI ≤ 0.89 and ipsilateral MLD ≤ 1.06 mm than patients without this combination. Conclusions The combination of reduced MCA rSI and ipsilateral narrow MLD is a straightforward index of high wb-OEF. Key Points • The whole-brain OEF in patients with angiographic slow flow in the MCA ipsilateral to high-grade carotid stenosis was higher than in patients without it. • Independent determinants of MCA slow flow were MCA relative signal intensity (rSI) on MRA or minimal luminal diameter (MLD) of the carotid stenosis. • The wb-OEF was higher in patients with an MCA rSI ≤ 0.89 and ipsilateral MLD ≤ 1.06 mm than patients without this combination. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08272-3.
Collapse
|
15
|
Crespo Pimentel B, Sedlacik J, Schröder J, Heinze M, Østergaard L, Fiehler J, Gerloff C, Thomalla G, Cheng B. Comprehensive Evaluation of Cerebral Hemodynamics and Oxygen Metabolism in Revascularization of Asymptomatic High-Grade Carotid Stenosis. Clin Neuroradiol 2021; 32:163-173. [PMID: 34487195 PMCID: PMC8894147 DOI: 10.1007/s00062-021-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Introduction Revascularization procedures in carotid artery stenosis have shown a positive effect in the restoration of cerebral oxygen metabolism as assessed by T2’ (T2 prime) imaging as well as capillary homeostasis by measurement of capillary transit time heterogeneity (CTH); however, data in patients with asymptomatic carotid stenosis without manifest brain lesions are scarce. Patients and Methods The effect of revascularization on the hemodynamic profile and capillary homeostasis was evaluated in 13 patients with asymptomatic high-grade carotid stenosis without ischemic brain lesions using dynamic susceptibility contrast perfusion imaging and oxygenation-sensitive T2’ mapping before and 6–8 weeks after revascularization by endarterectomy or stenting. The cognitive performance at both timepoints was further assessed. Results Perfusion impairment at baseline was accompanied by an increased CTH (p = 0.008) in areas with a time to peak delay ≥ 2 s in the affected hemisphere compared to contralateral regions. Carotid intervention improved the overall moderate hemodynamic impairment at baseline by leading to an increase in normalized cerebral blood flow (p = 0.017) and a decrease in mean transit time (p = 0.027), oxygen extraction capacity (OEC) (p = 0.033) and CTH (p = 0.048). The T2’ values remained unchanged. Conclusion This study presents novel evidence of a state of altered microvascular function in patients with high-grade carotid artery stenosis in the absence of ischemic brain lesions, which shows sustained normalization after revascularization procedures. Supplementary Information The online version of this article (10.1007/s00062-021-01077-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Sedlacik
- Centre for the Developing Brain & Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Julian Schröder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Heinze
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Fiehler
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Yin Y, Shu S, Qin L, Shan Y, Gao JH, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab 2021; 41:2216-2228. [PMID: 33563081 PMCID: PMC8393298 DOI: 10.1177/0271678x21992896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the effect of limited oxygen availability on brain metabolism during brain activation is an essential step towards a better understanding of brain homeostasis and has obvious clinical implications. However, how the cerebral oxygen extraction fraction (OEF) depends on oxygen availability during brain activation remains unclear, which is mostly attributable to the scarcity and safety of measurement techniques. Recently, a magnetic resonance imaging (MRI) method that enables noninvasive and dynamic measurement of the OEF has been developed and confirmed to be applicable to functional MRI studies. Using this novel method, the present study investigated the motor-evoked OEF response in both normoxia (21% O2) and hypoxia (12% O2). Our results showed that OEF activation decreased in the brain areas involved in motor task execution. Decreases in the motor-evoked OEF response were greater under hypoxia (-21.7% ± 5.5%) than under normoxia (-11.8% ± 3.7%) and showed a substantial decrease as a function of arterial oxygen saturation. These findings suggest a different relationship between oxygen delivery and consumption during hypoxia compared to normoxia. This methodology may provide a new perspective on the effects of mild hypoxia on brain function.
Collapse
Affiliation(s)
- Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institution for Brain Research, Peking University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Mechtouff L, Rascle L, Crespy V, Canet-Soulas E, Nighoghossian N, Millon A. A narrative review of the pathophysiology of ischemic stroke in carotid plaques: a distinction versus a compromise between hemodynamic and embolic mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1208. [PMID: 34430649 PMCID: PMC8350662 DOI: 10.21037/atm-20-7490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerotic carotid artery stenosis causes about 10–20% of all ischemic strokes through two main mechanisms: hemodynamic impairment in case of significant stenosis and thromboembolism from an atherosclerotic plaque regardless of the degree of stenosis. The latter is the most frequent mechanism and appear to result from embolization from a vulnerable atherosclerotic plaque or acute occlusion of the carotid artery and propagation of thrombus distally. Downstream infarcts may occur in a territory of major cerebral artery or at the most distal areas between two territories of major cerebral arteries, the so-called watershed (WS), or border zone area. Although WS infarcts, especially deep WS infarct, were historically thought to be due to hemodynamic compromise, the role of microembolism has also been documented, both mechanisms may act synergistically to promote WS infarcts. Routine and more advanced imaging techniques may provide information on the underlying mechanism involved in ipsilateral ischemic stroke. A better understanding of ischemic stroke pathogenesis in carotid stenosis may limit the use of routine non-selective shunt, whose benefit-risk balance is debated, to patients with hemodynamic impairment. After reviewing existing evidence underpinning the contribution of the two mechanisms in downstream ischemic stroke and the various imaging techniques available to investigate them, we will focus on the pathogenesis of WS infarcts that remains debated.
Collapse
Affiliation(s)
- Laura Mechtouff
- Stroke Center, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, CarMeN Laboratory, University Claude Bernard Lyon 1, Lyon, France
| | - Lucie Rascle
- Stroke Center, Hospices Civils de Lyon, Lyon, France
| | - Valentin Crespy
- Vascular Surgery Department, Hospices Civils de Lyon, Lyon, France
| | | | - Norbert Nighoghossian
- Stroke Center, Hospices Civils de Lyon, Lyon, France.,INSERM U1060, CarMeN Laboratory, University Claude Bernard Lyon 1, Lyon, France
| | - Antoine Millon
- Vascular Surgery Department, Hospices Civils de Lyon, Lyon, France.,LIBM EA7424, Team Atherosclerosis, Thrombosis and Physical Activity, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Mayer SL, Fields ME, Hulbert ML. Neurologic and Cognitive Outcomes in Sickle Cell Disease from Infancy through Adolescence. Neoreviews 2021; 22:e531-e539. [PMID: 34341160 DOI: 10.1542/neo.22-8-e531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Children with sickle cell disease (SCD) are at risk for neurologic and cognitive complications beginning in early childhood. Current treatment for SCD focuses on primary prevention of complications, such as hydroxyurea for prevention of pain and acute chest syndrome, and chronic transfusion therapy for children who are at high risk for strokes. In this article, the prevalence, pathophysiology, and available interventions to prevent and treat neurologic and cognitive complications of SCD will be reviewed.
Collapse
Affiliation(s)
- Sarah L Mayer
- Children's Hospital of Philadelphia, Philadelphia, PA
| | - Melanie E Fields
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University in St Louis, St Louis, MO
| | - Monica L Hulbert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University in St Louis, St Louis, MO
| |
Collapse
|
19
|
Cho J, Spincemaille P, Nguyen TD, Gupta A, Wang Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn Reson Med 2021; 86:2635-2646. [PMID: 34110656 DOI: 10.1002/mrm.28875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
20
|
Prabhakaran S, Liebeskind DS, Cotsonis G, Nizam A, Feldmann E, Sangha RS, Campo-Bustillo I, Romano JG. Predictors of Early Infarct Recurrence in Patients With Symptomatic Intracranial Atherosclerotic Disease. Stroke 2021; 52:1961-1966. [PMID: 33866818 DOI: 10.1161/strokeaha.120.032676] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE While prior studies identified risk factors for recurrent stroke in patients with symptomatic intracranial atherosclerotic disease, few have assessed risk factors for early infarct recurrence. METHODS We performed a post hoc analysis of the MYRIAD study (Mechanisms of Early Recurrence in Intracranial Atherosclerotic Disease) of intracranial atherosclerotic disease patients with recent (<21 days) stroke/transient ischemic attack, 50% to 99% stenosis and who underwent 6- to 8-week magnetic resonance imaging (MRI) per protocol. Infarct recurrence was defined as new infarcts in the territory of the symptomatic artery on brain MRI at 6 to 8 weeks compared to index brain MRI. Qualifying events and clinical and imaging outcomes were centrally ascertained by 2 independent reviewers. We assessed the association between baseline clinical and imaging variables and recurrent infarct in bivariate models and multivariable logistic regression to identify independent predictors of infarct recurrence. RESULTS Of 105 enrolled patients in MYRIAD, 89 (84.8%) were included in this analysis (mean age, 64±12 years, 54 [60.7%] were male, and 53 [59.6%] were White). The median time from qualifying event to MRI was 51+16 days, on which 22 (24.7%) patients had new or recurrent infarcts. Younger age (57.7 versus 66.0 years; P<0.01), diabetes (32.6% versus 14.6%, P=0.05), index stroke (31.3% versus 4.6%, P=0.01), anterior circulation location of stenosis (29.7% versus 12.0%, P=0.08), number of diffusion-weighted imaging lesions (>1: 40.0%, 1: 26.9% versus 0: 4.4%, P<0.01), and borderzone infarct pattern (63.6% versus 25.0%, P=0.01) on baseline MRI were associated with new or recurrent infarcts. Age (adjusted odds ratio, 0.93 [95% CI, 0.89-0.98], P<0.01) and number of diffusion-weighted imaging lesions (adjusted odds ratio, 3.24 [95% CI, 1.36-7.71], P<0.01) were independently associated with recurrent infarct adjusting for hypertension, diabetes, and stenosis location (anterior versus posterior circulation). CONCLUSIONS An index multi-infarct pattern is associated with early recurrent infarcts, a finding that might be explained by plaque instability and artery-to-artery embolism. Further investigation of plaque vulnerability in intracranial atherosclerotic disease is needed. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02121028.
Collapse
Affiliation(s)
| | - David S Liebeskind
- Department of Neurology, University of California at Los Angeles (D.S.L.)
| | - George Cotsonis
- Department of Bioinformatics and Biostatistics, Emory University, Atlanta, GA (G.C., A.N.)
| | - Azhar Nizam
- Department of Bioinformatics and Biostatistics, Emory University, Atlanta, GA (G.C., A.N.)
| | - Edward Feldmann
- Department of Neurology, The University of Massachusetts Medical School-Baystate, Springfield (E.F.)
| | - Rajbeer S Sangha
- Department of Neurology, University of Alabama at Birmingham (R.S.S.)
| | | | - Jose G Romano
- Department of Neurology, University of Miami, FL (I.C.-B., J.G.R.)
| | | |
Collapse
|
21
|
Matsubara K, Ibaraki M, Shinohara Y, Takahashi N, Toyoshima H, Kinoshita T. Prediction of an oxygen extraction fraction map by convolutional neural network: validation of input data among MR and PET images. Int J Comput Assist Radiol Surg 2021; 16:1865-1874. [PMID: 33821419 PMCID: PMC8589760 DOI: 10.1007/s11548-021-02356-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
Purpose Oxygen extraction fraction (OEF) is a biomarker for the viability of brain tissue in ischemic stroke. However, acquisition of the OEF map using positron emission tomography (PET) with oxygen-15 gas is uncomfortable for patients because of the long fixation time, invasive arterial sampling, and radiation exposure. We aimed to predict the OEF map from magnetic resonance (MR) and PET images using a deep convolutional neural network (CNN) and to demonstrate which PET and MR images are optimal as inputs for the prediction of OEF maps. Methods Cerebral blood flow at rest (CBF) and during stress (sCBF), cerebral blood volume (CBV) maps acquired from oxygen-15 PET, and routine MR images (T1-, T2-, and T2*-weighted images) for 113 patients with steno-occlusive disease were learned with U-Net. MR and PET images acquired from the other 25 patients were used as test data. We compared the predicted OEF maps and intraclass correlation (ICC) with the real OEF values among combinations of MRI, CBF, CBV, and sCBF. Results Among the combinations of input images, OEF maps predicted by the model learned with MRI, CBF, CBV, and sCBF maps were the most similar to the real OEF maps (ICC: 0.597 ± 0.082). However, the contrast of predicted OEF maps was lower than that of real OEF maps. Conclusion These results suggest that the deep CNN learned useful features from CBF, sCBF, CBV, and MR images and predict qualitatively realistic OEF maps. These findings suggest that the deep CNN model can shorten the fixation time for 15O PET by skipping 15O2 scans. Further training with a larger data set is required to predict accurate OEF maps quantitatively. Supplementary Information The online version contains supplementary material available at 10.1007/s11548-021-02356-7.
Collapse
Affiliation(s)
- Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota-machi, Akita, 010-0874, Japan.
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota-machi, Akita, 010-0874, Japan
| | - Yuki Shinohara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota-machi, Akita, 010-0874, Japan
| | - Noriyuki Takahashi
- Preparing Section for New Faculty of Medical Science, Fukushima Medical University, Fukushima, Japan
| | - Hideto Toyoshima
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota-machi, Akita, 010-0874, Japan
| | - Toshibumi Kinoshita
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, 6-10 Senshu-Kubota-machi, Akita, 010-0874, Japan
| |
Collapse
|
22
|
Ito H, Uchida M, Takasuna H, Takumi I, Yuichiro T. Analysis of postprocedural microembolic infarctions and global oxygen extraction fraction during balloon-protected carotid artery stenting: Preliminary study. Surg Neurol Int 2021; 12:87. [PMID: 33767891 PMCID: PMC7982096 DOI: 10.25259/sni_919_2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Atherosclerotic carotid stenosis with impaired cerebral perfusion is a risk factor for cerebral ischemia. In major carotid stenoocclusive diseases, increased oxygen extraction fraction (OEF) is associated with ischemic stroke. Balloon-protected carotid artery stenting (CAS) is valuable for high-grade carotid stenosis. However, while balloon-protected CAS can effectively reduce the occurrence of ischemic complications by blocking carotid flow, cerebral hypoperfusion may result in simultaneous cerebral ischemia. We sought to evaluate whether increased OEF during balloon-protected CAS can predict postprocedural microembolic infarction (MI). Methods: Eighty-four patients who underwent balloon-protected CAS were enrolled. Initial, intraprocedural, and postprocedural OEFs were calculated from the cerebral arteriovenous oxygen differences obtained from blood sampled just before the temporary occlusion and reperfusion of the internal carotid artery during and after the procedure. MIs were evaluated by diffusion-weighted imaging (DWI). Patients were classified into two groups based on the presence or absence of new MIs, and the relationship between the OEF and postprocedural MIs was analyzed. Results: New DWI-positive lesions were found in 37 cases (44.0%). Age, signal intensity ratio (SIR) of carotid plaque on T1-weighted black blood magnetic resonance imaging, and intraprocedural OEF were significantly higher in the DWI-positive group. The high SIR and intraprocedural OEF were significantly associated with the development of postprocedural MIs in multivariate analysis. MIs were correlated with the increase in OEF. Conclusion: Increased intraprocedural OEF, obtained by blood sampling during balloon-protected CAS, could predict the incidence of postprocedural MIs. Patients with carotid stenosis could be hemodynamically compromised by carotid flow blockage during balloon-protected CAS.
Collapse
Affiliation(s)
- Hidemichi Ito
- Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaski, Kanagawa, Japan
| | - Masashi Uchida
- Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaski, Kanagawa, Japan
| | - Hiroshi Takasuna
- Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaski, Kanagawa, Japan
| | - Ichiro Takumi
- Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaski, Kanagawa, Japan
| | - Tanaka Yuichiro
- Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaski, Kanagawa, Japan
| |
Collapse
|
23
|
Oumer M, Alemayehu M, Muche A. Association between circle of Willis and ischemic stroke: a systematic review and meta-analysis. BMC Neurosci 2021; 22:3. [PMID: 33478402 PMCID: PMC7818725 DOI: 10.1186/s12868-021-00609-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Circle of Willis is the main structure that provides constant and regular blood flow to the brain, protects the brain from ischemia. Stroke has remained the second leading cause of death globally in the last fifteen years. It is the fifth leading cause of death in the United States. It is also the leading cause of serious adult disability. Interlinked problems related to ischemic stroke are become increasing nowadays. Strong evidence is needed about the pooled measure of association between the circle of Willis (COW) and ischemic stroke. Therefore, this systematic review and meta-analysis were intended to provide compressive and up to date evidence on the association between the variations of COW and ischemic stroke using the available studies. Methods PubMed, Google Scholar, Science Direct, and Cochrane Library databases were systematically searched. All essential data were extracted using a standardized data extraction template. The heterogeneity across studies was assessed by using the Cochrane Q test statistic, I2 test statistic, and P-values. A fixed-effect model was used to estimate the pooled effect of the measure association between COW and ischemic stroke. Results In this meta-analysis, 2,718 participants were involved. The pooled measure of association between COW and ischemic stroke was 1.38 (95% CI 0.87, 2.19). Therefore, this indicated that the presence of any variation in COW was 1.38 times more likely to develop ischemic stroke as compared to the patent COW. The presence of hypoplasia/incompleteness in a posterior communicating artery (PcomA) [Pooled OR: 1.34 (95% CI 0.80, 2.25)] and anterior communicating artery (AcomA) [Pooled OR: 1.32 (95% CI 0.81, 2.19)] were a contributing factor for the development of ischemic stroke. Hypertension was the most common comorbid condition, followed by diabetes mellitus, smoking, coronary artery disease, and hyperlipidemia. Conclusions There was a non-significant positive association between COW variation and ischemic stroke in this meta-analysis.
Collapse
Affiliation(s)
- Mohammed Oumer
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia. .,Department of Epidemiology, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia.
| | - Mekuriaw Alemayehu
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia
| | - Abebe Muche
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Amhara, Ethiopia
| |
Collapse
|
24
|
Baradaran H, Gupta A. Brain imaging biomarkers of carotid artery disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1277. [PMID: 33178809 PMCID: PMC7607077 DOI: 10.21037/atm-20-1939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracranial carotid artery atherosclerotic disease is a major contributor to ischemic stroke. Carotid atherosclerotic disease can present with a spectrum of findings ranging from mild carotid intima-media thickness to high-risk vulnerable carotid plaque features and carotid stenosis. Before leading to clinically overt stroke or transient ischemic attack, there may be other markers of downstream ischemia secondary to carotid atherosclerotic disease. In this review article, we will review some of the imaging findings that may be seen downstream to carotid artery disease on various imaging modalities, including hemodynamic and perfusional abnormalities which may be seen on CT, MR, or using other advanced imaging techniques, white matter hyperintensities on brain imaging, silent or covert brain infarctions, cerebral microbleeds, and regional and generalized cerebral volume loss. Many of these imaging findings are seen routinely on brain magnetic resonance imaging in patients without overt clinical symptoms. Despite frequently being asymptomatic, many of these imaging findings are also strongly associated with increased risk of future stroke, cognitive impairment, and even mortality. We will review the existing evidence underpinning the associations between these frequently encountered imaging findings and carotid artery atherosclerotic disease. Future validation of these imaging findings could lead to them being powerful biomarkers of cerebrovascular health.
Collapse
Affiliation(s)
- Hediyeh Baradaran
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Václavů L, Petr J, Petersen ET, Mutsaerts HJ, Majoie CB, Wood JC, VanBavel E, Nederveen AJ, Biemond BJ. Cerebral oxygen metabolism in adults with sickle cell disease. Am J Hematol 2020; 95:401-412. [PMID: 31919876 PMCID: PMC7155077 DOI: 10.1002/ajh.25727] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/01/2023]
Abstract
In sickle cell disease (SCD), oxygen delivery is impaired due to anemia, especially during times of increased metabolic demand, and cerebral blood flow (CBF) must increase to meet changing physiologic needs. But hyperemia limits cerebrovascular reserve (CVR) and ischemic risk prevails despite elevated CBF. The cerebral metabolic rate of oxygen (CMRO2 ) directly reflects oxygen supply and consumption and may therefore be more insightful than flow-based CVR measures for ischemic risk in SCD. We hypothesized that adults with SCD have impaired CMRO2 at rest and that a vasodilatory challenge with acetazolamide would improve CMRO2 . CMRO2 was calculated from CBF and oxygen extraction fraction (OEF), measured with arterial spin labeling and T2 -prepared tissue relaxation with inversion recovery (T2 -TRIR) MRI. We studied 36 adults with SCD without a clinical history of overt stroke, and nine healthy controls. As expected, CBF was higher in patients with SCD versus controls (mean ± SD: 74 ± 16 versus 46 ± 5 mL/100 g/min, P < .001), resulting in similar oxygen delivery (SCD: 377 ± 67 versus controls: 368 ± 42 μmol O2 /100g/min, P = .69). OEF was lower in patients versus controls (27 ± 4 versus 35 ± 4%, P < .001), resulting in lower CMRO2 in patients versus controls (102 ± 24 versus 127 ± 20 μmol O2 /100g/min, P = .002). After acetazolamide, CMRO2 declined further in patients (P < .01) and did not decline significantly in controls (P = .78), indicating that forcing higher CBF worsened oxygen utilization in SCD patients. This lower CMRO2 could reflect variation between healthy and unhealthy vascular beds in terms of dilatory capacity and resistance whereby dysfunctional vessels become more oxygen-deprived, hence increasing the risk of localized ischemia.
Collapse
Affiliation(s)
- Lena Václavů
- Radiology & Nuclear Medicine, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center, Leiden University Leiden The Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Radiopharmaceutical Cancer Research Dresden Germany
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Hvidovre Hvidovre Denmark
- Center for Magnetic Resonance, Department of Health Technology Technical University of Denmark Kongens Lyngby Denmark
| | - Henri J.M.M. Mutsaerts
- Radiology & Nuclear Medicine, Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Charles B.L. Majoie
- Radiology & Nuclear Medicine, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - John C. Wood
- Cardiology & Radiology Children's Hospital of Los Angeles Los Angeles California
| | - Ed VanBavel
- Biomedical Engineering & Physics, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Aart J. Nederveen
- Radiology & Nuclear Medicine, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Bart J. Biemond
- Hematology, Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
26
|
Cho J, Zhang S, Kee Y, Spincemaille P, Nguyen TD, Hubertus S, Gupta A, Wang Y. Cluster analysis of time evolution (CAT) for quantitative susceptibility mapping (QSM) and quantitative blood oxygen level-dependent magnitude (qBOLD)-based oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) mapping. Magn Reson Med 2020; 83:844-857. [PMID: 31502723 PMCID: PMC6879790 DOI: 10.1002/mrm.27967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/07/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE To improve the accuracy of QSM plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD or QQ)-based mapping of the oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using cluster analysis of time evolution (CAT). METHODS 3D multi-echo gradient echo and arterial spin labeling images were acquired in 11 healthy subjects and 5 ischemic stroke patients. DWI was also carried out on patients. CAT was developed for analyzing signal evolution over TE. QQ-based OEF and CMRO2 were reconstructed with and without CAT, and results were compared using region of interest analysis and a paired t-test. RESULTS Simulations demonstrated that CAT substantially reduced noise error in QQ-based OEF. In healthy subjects, QQ-based OEF appeared less noisy and more uniform with CAT than without CAT; average OEF with and without CAT in cortical gray matter was 32.7 ± 4.0% and 37.9 ± 4.5%, with corresponding CMRO2 of 148.4 ± 23.8 and 171.4 ± 22.4 μmol/100 g/min, respectively. In patients, regions of low OEF were confined within the ischemic lesions defined on DWI when using CAT, which was not observed without CAT. CONCLUSION The cluster analysis of time evolution (CAT) significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Tongji Hospital, Wuhan 430030, China
| | - Youngwook Kee
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Simon Hubertus
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim 68167, Germany
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
27
|
Current Open Surgical Indications for Revascularization in Cerebral Ischemia. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:195-199. [PMID: 31407085 DOI: 10.1007/978-3-030-04615-6_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral revascularization was pioneered half a century ago. Gradual improvements in microsurgical instrumentation and training in microsurgical techniques have allowed significant changes that improved outcomes in neurosurgery, extrapolating this knowledge to other neurosurgical diseases (brain tumor, aneurysms, and skull base tumor surgery). But the popularity of cerebral bypass procedures was followed by their decline, given the lack of clear benefit of bypass surgery in chronic cerebrovascular ischemia after the EC-IC bypass studies. Over the last couple of decades, the formidable advance of neuro-endovascular techniques for revascularization has lessened the need for application of open cerebral revascularization procedures, either for flow augmentation or flow replacement. However, there is still a select group of patients with chronic cerebral ischemia, for whom open cerebral revascularization with flow augmentation is the only treatment option available, and this will be the objective of our current review.
Collapse
|
28
|
Yang Y, Yin Y, Lu J, Zou Q, Gao JH. Detecting resting-state brain activity using OEF-weighted imaging. Neuroimage 2019; 200:101-120. [PMID: 31228637 DOI: 10.1016/j.neuroimage.2019.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
Traditional resting-state functional magnetic resonance imaging (fMRI) is mainly based on the blood oxygenation level-dependent (BOLD) contrast. The oxygen extraction fraction (OEF) represents an important parameter of brain metabolism and is a key biomarker of tissue viability, detecting the ratio of oxygen utilization to oxygen delivery. Investigating spontaneous fluctuations in the OEF-weighted signal is crucial for understanding the underlying mechanism of brain activity because of the immense energy budget during the resting state. However, due to the poor temporal resolution of OEF mapping, no studies have reported using OEF contrast to assess resting-state brain activity. In this fMRI study, we recorded brain OEF-weighted fluctuations for 10 min in healthy volunteers across two scanning visits, using our recently developed pulse sequence that can acquire whole-brain voxel-wise OEF-weighted signals with a temporal resolution of 3 s. Using both group-independent component analysis and seed-based functional connectivity analysis, we robustly identified intrinsic brain networks, including the medial visual, lateral visual, auditory, default mode and bilateral executive control networks, using OEF contrast. Furthermore, we investigated the resting-state local characteristics of brain activity based on OEF-weighted signals using regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF). We demonstrated that the gray matter regions of the brain, especially those in the default mode network, showed higher ReHo and fALFF values with the OEF contrast. Moreover, voxel-wise test-retest reliability comparisons across the whole brain demonstrated that the reliability of resting-state brain activity based on the OEF contrast was moderate for the network indices and high for the local activity indices, especially for ReHo. Although the reliabilities of the OEF-based indices were generally lower than those based on BOLD, the reliability of OEF-ReHo was slightly higher than that of BOLD-ReHo, with a small effect size, which indicated that OEF-ReHo could be used as a reliable index for characterizing resting-state local brain activity as a complement to BOLD. In conclusion, OEF can be used as an effective contrast to study resting-state brain activity with a medium to high test-retest reliability.
Collapse
Affiliation(s)
- Yang Yang
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, 518060, China; Shenzhen Institute of Neuroscience, Shenzhen, 518057, China.
| |
Collapse
|
29
|
Lee SY, Zheng C, Brothers R, Buckley EM. Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths. BIOMEDICAL OPTICS EXPRESS 2019; 10:5362-5377. [PMID: 31646051 PMCID: PMC6788586 DOI: 10.1364/boe.10.005362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 05/27/2023]
Abstract
Millimeter-depth sensitivity with frequency domain near-infrared spectroscopy has been challenging due to the breakdown of the diffusion equation for source-detection separations < 1cm. To overcome this challenge, we employ a Monte-Carlo lookup table-based inverse algorithm to fit small separation (3-6 mm) frequency-domain near-infrared spectroscopy (FDNIRS) data for absorption and reduced scattering coefficients. We verify this small separation FDNIRS method through a series of in vitro and in vivo studies. In vitro, we observed a root mean squared percent error (RMSE) in estimation of the reduced scattering coefficient and absorption coefficient of 2.8% and 7.6%, respectively, in liquid phantoms consisting of Intralipid and Indian ink, and a RMSE in estimation of oxygen saturation and total hemoglobin concentrations of 7.8 and 11.2%, respectively, in blood-mixed liquid phantoms. Next, we demonstrate one particularly valuable in vivo application of this technique wherein we non-invasively measure the optical properties of the mouse brain (n = 4). We find that the measured resting state cerebral oxygen saturation and hemoglobin concentration are consistent with literature reported values, and we observe expected trends during a hyper-/hypoxia challenge that qualitatively mimic changes in partial pressure of oxygen (pO2) measured simultaneously with an invasive pO2 sensor. Further, through simulations of the mouse head geometry, we demonstrate that the skull and scalp exert minimal influence on the estimate oxygen saturation, while leading to small but systematic underestimation of total hemoglobin concentration. In total, these results demonstrate the robustness of small separation FDNIRS to assess tissue optical properties at millimeter depth resolution.
Collapse
Affiliation(s)
- Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Corey Zheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rowan Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr., Atlanta, GA 30322, USA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Guilliams KP, Fields ME, Dowling MM. Advances in Understanding Ischemic Stroke Physiology and the Impact of Vasculopathy in Children With Sickle Cell Disease. Stroke 2019; 50:266-273. [PMID: 30661504 PMCID: PMC6385587 DOI: 10.1161/strokeaha.118.020482] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kristin P Guilliams
- From the Department of Neurology (K.P.G.), Washington University School of Medicine, St Louis, MO
- Department of Pediatrics (K.P.G., M.E.F.), Washington University School of Medicine, St Louis, MO
| | - Melanie E Fields
- Department of Pediatrics (K.P.G., M.E.F.), Washington University School of Medicine, St Louis, MO
| | - Michael M Dowling
- Department of Pediatrics and Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas (M.M.D.)
| |
Collapse
|
31
|
Yaghi S, Khatri P, Prabhakaran S, Yeatts SD, Cutting S, Jayaraman M, Chang AD, Sacchetti D, Liebeskind DS, Furie KL. What Threshold Defines Penumbral Brain Tissue in Patients with Symptomatic Anterior Circulation Intracranial Stenosis: An Exploratory Analysis. J Neuroimaging 2018; 29:203-205. [PMID: 30398302 DOI: 10.1111/jon.12577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/07/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired distal perfusion predicts neurological deterioration in large artery atherosclerosis. We aim to determine the optimal threshold of Tmax delay on perfusion imaging that is associated with neurological deterioration in patients with symptomatic proximal anterior circulation large artery stenosis. METHODS Data were abstracted from a prospective ischemic stroke database of consecutively enrolled patients with symptomatic proximal intracranial stenosis (internal carotid artery or M1 segment of the middle cerebral artery) who underwent magnetic resonance perfusion imaging within 24 hours of symptom onset during a 15-month period. Tissue volumes of perfusion delay Tmax 0-4 seconds, Tmax > 4 seconds, Tmax > 6 seconds, and Tmax > 8 seconds were calculated using an automated approach. A target mismatch (penumbra-core) was defined as ≥15mL of brain tissue using each of the Tmax threshold categories. The outcome was neurological deterioration at 30 days defined as new or worsening neurological deficits that are not attributed to a nonvascular etiology. RESULTS Among 52 patients with symptomatic intracranial stenosis, 26 patients met inclusion criteria. Neurological deterioration was associated with target mismatch profile defined according to Tmax > 6 seconds (66.7% [6/9] vs. 5.9% [1/17], P < .01) and Tmax >8 seconds (57.1% [4/7] vs. 15.8% [3/19], P = .05] but not according to Tmax > 4 seconds (27.3% [6/17] vs. 11.1% [1/9], P = .35]. CONCLUSIONS A target mismatch profile using Tmax > 6 seconds may define tissue at risk in patients with acute symptomatic proximal anterior circulation intracranial stenosis. More studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Shadi Yaghi
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Pooja Khatri
- Department of Neurology, University of Cincinnati, Cincinnati, OH
| | | | - Sharon D Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Shawna Cutting
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Mahesh Jayaraman
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI.,Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI.,Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI
| | - Andrew D Chang
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI
| | - Daniel Sacchetti
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI
| | - David S Liebeskind
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA
| | - Karen L Furie
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
32
|
Cho J, Kee Y, Spincemaille P, Nguyen TD, Zhang J, Gupta A, Zhang S, Wang Y. Cerebral metabolic rate of oxygen (CMRO 2 ) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn Reson Med 2018. [PMID: 29516537 DOI: 10.1002/mrm.27135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To map the cerebral metabolic rate of oxygen (CMRO2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. THEORY AND METHODS 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. RESULTS The average CMRO2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. CONCLUSION Quantitative CMRO2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Youngwook Kee
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Radiology, Tongji Hospital, Wuhan, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
33
|
Guilliams KP, Fields ME, Ragan DK, Eldeniz C, Binkley MM, Chen Y, Comiskey LS, Doctor A, Hulbert ML, Shimony JS, Vo KD, McKinstry RC, An H, Lee JM, Ford AL. Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia. Blood 2018; 131:1012-1021. [PMID: 29255068 PMCID: PMC5833262 DOI: 10.1182/blood-2017-06-789842] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/04/2017] [Indexed: 01/13/2023] Open
Abstract
Blood transfusions are the mainstay of stroke prevention in pediatric sickle cell anemia (SCA), but the physiology conferring this benefit is unclear. Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) are elevated in SCA, likely compensating for reduced arterial oxygen content (CaO2). We hypothesized that exchange transfusions would decrease CBF and OEF by increasing CaO2, thereby relieving cerebral oxygen metabolic stress. Twenty-one children with SCA receiving chronic transfusion therapy (CTT) underwent magnetic resonance imaging before and after exchange transfusions. Arterial spin labeling and asymmetric spin echo sequences measured CBF and OEF, respectively, which were compared pre- and posttransfusion. Volumes of tissue with OEF above successive thresholds (36%, 38%, and 40%), as a metric of regional metabolic stress, were compared pre- and posttransfusion. Transfusions increased hemoglobin (Hb; from 9.1 to 10.3 g/dL; P < .001) and decreased Hb S (from 39.7% to 24.3%; P < .001). Transfusions reduced CBF (from 88 to 82.4 mL/100 g per minute; P = .004) and OEF (from 34.4% to 31.2%; P < .001). At all thresholds, transfusions reduced the volume of peak OEF found in the deep white matter, a location at high infarct risk in SCA (P < .001). Reduction of elevated CBF and OEF, both globally and regionally, suggests that CTT mitigates infarct risk in pediatric SCA by relieving cerebral metabolic stress at patient- and tissue-specific levels.
Collapse
Affiliation(s)
| | | | | | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Michael M Binkley
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO
| | | | | | | | | | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Katie D Vo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Jin-Moo Lee
- Department of Neurology
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | | |
Collapse
|
34
|
Increase in extraction of I-123 iomazenil in patients with chronic cerebral ischemia. PLoS One 2018; 13:e0190720. [PMID: 29324813 PMCID: PMC5764280 DOI: 10.1371/journal.pone.0190720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 12/17/2017] [Indexed: 11/19/2022] Open
Abstract
Background Cerebral extraction of diffusively distributed substances like oxygen has been suggested to change according to the cerebral blood flow (CBF) and status of the microvasculature. The relationships between the cerebral extraction of diffusively distributed lipophilic tracers and the severity of cerebral ischemia has not yet been clarified. In the present study, we attempted to elucidate the association between the extraction fraction of the lipophilic tracer I-123 iomazenil (IMZ) (IMZ-EF) and the oxygen extraction fraction (OEF) derived from O-15 PET in patients with chronic steno-occlusive disease of internal carotid artery (ICA) or middle cerebral artery (MCA). Methods Seven patients with unilateral chronic severe stenosis or occlusion of the middle cerebral/internal cerebral artery were prospectively recruited for this study. All the patients underwent both O-15 PET and quantitative I-123 IMZ SPECT. Parametric images derived from the PET and SPECT scans were anatomically normalized and evaluated by automated image analysis based on the volume-of-interest template. Results The asymmetry index (AI) of IMZ-EF was shown to be significantly correlated with the AI of OEF (r = 0.562, P < 0.001) in the internal carotid artery perfusion area. Strong and significant correlation between the AI of the influx rate constant K1 of IMZ and the AI of the cerebral metabolic rate of oxygen (r = 0.552, P = 0.001) was clarified. Conclusions Our results suggested that the transportation efficiency of I-123 IMZ into the brain tissue was an indicator for evaluating severity of cerebral ischemia in patients with chronic steno-occlusive disease of ICA or MCA. Cerebral metabolic state can possibly be estimated by I-123 IMZ SPECT without cyclotron.
Collapse
|
35
|
Yin Y, Zhang Y, Gao JH. Dynamic measurement of oxygen extraction fraction using a multiecho asymmetric spin echo (MASE) pulse sequence. Magn Reson Med 2018; 80:1118-1124. [PMID: 29315817 DOI: 10.1002/mrm.27078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Yayan Yin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yaoyu Zhang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
36
|
Stout JN, Adalsteinsson E, Rosen BR, Bolar DS. Functional oxygen extraction fraction (OEF) imaging with turbo gradient spin echo QUIXOTIC (Turbo QUIXOTIC). Magn Reson Med 2017; 79:2713-2723. [PMID: 28984056 DOI: 10.1002/mrm.26947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption (QUIXOTIC) is a recent technique that measures voxel-wise oxygen extraction fraction (OEF) but suffers from long scan times, limiting its application. We implemented multiecho QUIXOTIC dubbed turbo QUIXOTIC (tQUIXOTIC) that reduces scan time eightfold and then applied it in functional MRI. METHODS tQUIXOTIC utilizes a novel turbo gradient spin echo readout enabling measurement of venular blood transverse relaxation rate in a single tag-control acquisition. Using tQUIXOTIC, we estimated cortical gray matter (GM) OEF, created voxel-by-voxel GM OEF maps, and quantified changes in visual cortex OEF during a blocked design flashing checkerboard visual stimulus. Contamination from cerebrospinal fluid partial volume averaging was estimated and corrected. RESULTS The average cortical GM OEF was estimated as 0.38 ± 0.06 (n = 8) using a 3.4-min acquisition. The average OEF in the visual cortex was estimated as 0.43 ± 0.04 at baseline and 0.35 ± 0.05 during activation, with an average %ΔOEF of -20%. These values are consistent with those of past studies. CONCLUSION tQUIXOTIC successfully estimated cortical GM OEF in clinical scan times and detected changes in OEF during blocked design visual stimulation. tQUIXOTIC will be useful to monitor regional OEF clinically and in blocked design or event-related functional MRI experiments. Magn Reson Med 79:2713-2723, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA
| | - Elfar Adalsteinsson
- Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Divya S Bolar
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Mao D, Li Y, Liu P, Peng SL, Pillai JJ, Lu H. Three-dimensional mapping of brain venous oxygenation using R2* oximetry. Magn Reson Med 2017; 79:1304-1313. [PMID: 28585238 DOI: 10.1002/mrm.26763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/07/2017] [Accepted: 05/03/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE Cerebral venous oxygenation (Yv ) is an important biomarker for brain diseases. This study aims to develop an R2*-based MR oximetry that can measure cerebral Yv in 3D. METHODS This technique separates blood signal from tissue by velocity-encoding phase contrast and measures the R2* of pure blood by multi-gradient-echo acquisition. The blood R2* was converted to Yv using an R2*-versus-oxygenation (Y) calibration curve, which was obtained by in vitro bovine blood experiments. Reproducibility, sensitivity, validity, and resolution dependence of the technique were evaluated. RESULTS In vitro R2*-Y calibration plot revealed a strong dependence of blood R2* on oxygenation, with additional dependence on hematocrit. In vivo results demonstrated that the technique can provide a 3D venous oxygenation map that depicts both large sinuses and smaller cortical veins, with venous oxygenation ranging from 57 to 72%. Intrasession coefficient of variation of the measurement was 3.0%. The technique detected an average Yv increase of 10.8% as a result of hyperoxia, which was validated by global oxygenation measurement from T2 -Relaxation-Under-Spin-Tagging (TRUST) MRI. Two spatial resolutions, one with an isotropic voxel dimension and the other with a nonisotropic dimension, were tested for full brain coverage. CONCLUSIONS This study demonstrated the feasibility of 3D brain oxygenation mapping without using contrast agent. Magn Reson Med 79:1304-1313, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Deng Mao
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shin-Lei Peng
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Eskreis-Winkler S, Zhang Y, Zhang J, Liu Z, Dimov A, Gupta A, Wang Y. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR IN BIOMEDICINE 2017; 30:e3668. [PMID: 27906525 DOI: 10.1002/nbm.3668] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 09/22/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Quantitative susceptibility mapping (QSM) is an MR technique that depicts and quantifies magnetic susceptibility sources. Mapping iron, the dominant susceptibility source in the brain, has many important clinical applications. Herein, we review QSM applications in the diagnosis, medical management, and surgical treatment of disease. To assist in early disease diagnosis, QSM can identify elevated iron levels in the motor cortex of amyotrophic lateral sclerosis patients, in the substantia nigra of Parkinson's disease (PD) patients, in the globus pallidus, putamen, and caudate of Huntington's disease patients, and in the basal ganglia of Wilson's disease patients. Additionally, QSM can distinguish between hemorrhage and calcification, which could prove useful in tumor subclassification, and can measure microbleeds in traumatic brain injury patients. In guiding medical management, QSM can be used to monitor iron chelation therapy in PD patients, to monitor smoldering inflammation of multiple sclerosis (MS) lesions after the blood-brain barrier (BBB) seals, to monitor active inflammation of MS lesions before the BBB seals without using gadolinium, and to monitor hematoma volume in intracerebral hemorrhage. QSM can also guide neurosurgical treatment. Neurosurgeons require accurate depiction of the subthalamic nucleus, a tiny deep gray matter nucleus, prior to inserting deep brain stimulation electrodes into the brains of PD patients. QSM is arguably the best imaging tool for depiction of the subthalamic nucleus. Finally, we discuss future directions, including bone QSM, cardiac QSM, and using QSM to map cerebral metabolic rate of oxygen. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Yan Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jingwei Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Zhe Liu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
39
|
Zhang J, Cho J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn Reson Med 2017; 79:172-179. [PMID: 28295523 DOI: 10.1002/mrm.26657] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The objective of this study was to demonstrate the feasibility of a cerebral metabolic rate of oxygen (CMRO2 ) mapping method based on its minimum local variance (MLV) without vascular challenge using quantitative susceptibility mapping (QSM) and cerebral blood flow (CBF). METHODS Three-dimensional multi-echo gradient echo imaging and arterial spin labeling were performed in 11 healthy subjects to calculate QSM and CBF. Minimum local variance was used to compute whole-brain CMRO2 map from QSM and CBF. The MLV method was compared with a reference method using the caffeine challenge. Their agreement within the cortical gray matter (CGM) was assessed on CMRO2 and oxygen extraction fraction (OEF) maps at both baseline and challenge states. RESULTS Mean CMRO2 (in µmol/100 g/min) obtained in CGM using the caffeine challenge and MLV were 142 ± 16.5 and 139 ± 14.8 µmol/100 g/min, respectively; the corresponding baseline OEF were 33.0 ± 4.0% and 31.8 ± 3.2%, respectively. The MLV and caffeine challenge methods showed no statistically significant differences across subjects with small ( < 4%) biases in CMRO2 and OEF values. CONCLUSIONS Minimum local variance-based CMRO2 mapping without vascular challenge using QSM and arterial spin labeling is feasible in healthy subjects. Magn Reson Med 79:172-179, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Dong Zhou
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
40
|
Zhang J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM). Magn Reson Med 2016; 77:1762-1773. [DOI: 10.1002/mrm.26253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Dong Zhou
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Thanh D. Nguyen
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Pascal Spincemaille
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Ajay Gupta
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Yi Wang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| |
Collapse
|
41
|
Baradaran H, Mtui EE, Richardson JE, Delgado D, Dunning A, Marshall RS, Sanelli PC, Gupta A. White Matter Diffusion Abnormalities in Carotid Artery Disease: A Systematic Review and Meta-Analysis. J Neuroimaging 2016; 26:481-8. [PMID: 27079165 DOI: 10.1111/jon.12347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND & PURPOSE Abnormalities in apparent diffusion coefficient (ADC), fractional anisotropy (FA), and mean diffusivity (MD) values can be used to assess microstructural damage to white matter tracts and could represent a quantitative marker of chronic ischemia and thereby potentially serve as a stroke risk factor or a measure of existing subclinical ischemic disease burden. We performed a systematic review and 3 separate meta-analyses to evaluate the association between unilateral carotid steno-occlusion and ipsilateral ADC, FA, or MD abnormality. MATERIALS & METHODS A comprehensive literature search evaluating the association of carotid disease and quantitative white matter diffusion imaging was performed. The included studies examined patients for ADC, FA, and MD values ipsilateral and contralateral to the site of carotid artery disease. Three meta-analyses using standardized mean differences with assessment of study heterogeneity were performed. RESULTS Of the 2,920 manuscripts screened, 6 met eligibility for meta-analysis. Of the included manuscripts, 2 studied ADC values, 6 studied FA values, and 2 studied MD values. Our 3 meta-analyses showed standardized mean difference for ADC, FA, and MD values between cerebral hemispheres ipsilateral and contralateral to carotid artery disease site as 1.13 (95% CI: .79-1.47, P < .001), -.42 (95% CI: -.62 to -.21, P < .001), and .23 (95% CI: -.32 to -.77, P = .41), respectively. Measures of heterogeneity showed mild heterogeneity in the 3 meta-analyses. CONCLUSION Carotid artery disease is associated with significant ADC and FA value changes, suggesting that carotid disease is associated with quantifiable white matter microstructural damage.
Collapse
Affiliation(s)
- Hediyeh Baradaran
- Departments of Radiology, NewYork-Presbyterian Hospital, New York, NY
| | - Edward E Mtui
- Departments of Radiology, NewYork-Presbyterian Hospital, New York, NY
| | - Joshua E Richardson
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, New York, NY.,Healthcare Policy and Research, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| | - Diana Delgado
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, New York, NY
| | - Allison Dunning
- Healthcare Policy and Research, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| | - Randolph S Marshall
- Department of Neurology, NewYork-Presbyterian Hospital, Columbia University Medical Center, New York, NY
| | - Pina C Sanelli
- Departments of Radiology, NewYork-Presbyterian Hospital, New York, NY.,Healthcare Policy and Research, NewYork-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| | - Ajay Gupta
- Departments of Radiology, NewYork-Presbyterian Hospital, New York, NY.,Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY
| |
Collapse
|
42
|
Zhang J, Liu T, Gupta A, Spincemaille P, Nguyen TD, Wang Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 ) using quantitative susceptibility mapping (QSM). Magn Reson Med 2015; 74:945-52. [PMID: 25263499 PMCID: PMC4375095 DOI: 10.1002/mrm.25463] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE To quantitatively map cerebral metabolic rate of oxygen ( CMRO2) and oxygen extraction fraction ( OEF) in human brains using quantitative susceptibility mapping (QSM) and arterial spin labeling-measured cerebral blood flow (CBF) before and after caffeine vasoconstriction. METHODS Using the multiecho, three-dimensional gradient echo sequence and an oral bolus of 200 mg caffeine, whole brain CMRO2 and OEF were mapped at 3-mm isotropic resolution on 13 healthy subjects. The QSM-based CMRO2 was compared with an R2*-based CMRO2 to analyze the regional consistency within cortical gray matter (CGM) with the scaling in the R2* method set to provide same total CMRO2 as the QSM method for each subject. RESULTS Compared to precaffeine, susceptibility increased (5.1 ± 1.1 ppb; P < 0.01) and CBF decreased (-23.6 ± 6.7 ml/100 g/min; P < 0.01) at 25-min postcaffeine in CGM. This corresponded to a CMRO2 of 153.0 ± 26.4 μmol/100 g/min with an OEF of 33.9 ± 9.6% and 54.5 ± 13.2% (P < 0.01) pre- and postcaffeine, respectively, at CGM, and a CMRO2 of 58.0 ± 26.6 μmol/100 g/min at white matter. CMRO2 from both QSM- and R2*-based methods showed good regional consistency (P > 0.05), but quantitation of R2*-based CMRO2 required an additional scaling factor. CONCLUSION QSM can be used with perfusion measurements pre- and postcaffeine vascoconstriction to map CMRO2 and OEF.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Tian Liu
- Medimagemetric, LLC, New York, NY, NY, United States Address: 455 Main Street, New York, NY, 10044
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| |
Collapse
|
43
|
Gupta A, Marshall RS. Moving beyond luminal stenosis: imaging strategies for stroke prevention in asymptomatic carotid stenosis. Cerebrovasc Dis 2015; 39:253-61. [PMID: 25870952 DOI: 10.1159/000381108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND With progressive improvements in medical therapy and resultant reductions in stroke risk, luminal stenosis criteria are no longer adequate to inform decisions to pursue surgical revascularization in patients with asymptomatic carotid artery stenosis. SUMMARY In this evidence-based review, we discuss the imaging-based risk stratification strategies that take into account factors beyond luminal stenosis measurements, including cerebral hemodynamics and plaque composition. The existing literature lends support to the use of certain imaging tests in patients with asymptomatic carotid stenosis including cerebrovascular reserve testing, MRI of plaque composition, ultrasound of plaque echolucency, and transcranial Doppler evaluation for microemboli. The highest quality evidence thus far in the literature includes only systematic reviews and meta-analyses of cohort studies with no randomized trials having yet been performed to show how these newer imaging biomarkers could be used to inform treatment decisions in asymptomatic carotid stenosis. Beyond the need for randomized trials, there are additional important steps needed to improve the relevance of evidence supporting risk assessment strategies. Imaging studies evaluating the risk of stroke in carotid disease should clearly define asymptomatic versus symptomatic disease, use uniform definitions of clearly defined outcome measures such as ipsilateral stroke, ensure that imaging interpretations are performed in a manner blinded to treatments and other risk factors, and include cohorts which are on modern intensive medical therapy. Such studies of risk stratification for asymptomatic carotid stenosis will be most valuable if they can integrate multiple high-risk features (including clinical risk factors) into a multi-factorial risk assessment strategy in a manner that is relatively simple to implement and generalizable across a wide range of practice settings. Key Messages: Together, modern imaging strategies allow for a more mechanistic assessment of stroke risk in carotid disease compared to luminal stenosis measurements alone, which, with further validation in randomized controlled trials, may improve current efforts at stroke prevention in asymptomatic carotid stenosis.
Collapse
Affiliation(s)
- Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
44
|
|
45
|
PET quantification of cerebral oxygen metabolism in small animals. ScientificWorldJournal 2014; 2014:159103. [PMID: 25202714 PMCID: PMC4151541 DOI: 10.1155/2014/159103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022] Open
Abstract
Understanding cerebral oxygen metabolism is of great importance in both clinical diagnosis and animal experiments because oxygen is a fundamental source of brain energy and supports brain functional activities. Since small animals such as rats are widely used to study various diseases including cerebral ischemia, cerebrovascular diseases, and neurodegenerative diseases, the development of a noninvasive in vivo measurement method of cerebral oxygen metabolic parameters such as oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) as well as cerebral blood flow (CBF) and cerebral blood volume (CBV) has been a priority. Although positron emission tomography (PET) with (15)O labeled gas tracers has been recognized as a powerful way to evaluate cerebral oxygen metabolism in humans, this method could not be applied to rats due to technical problems and there were no reports of PET measurement of cerebral oxygen metabolism in rats until an (15)O-O2 injection method was developed a decade ago. Herein, we introduce an intravenous administration method using two types of injectable (15)O-O2 and an (15)O-O2 gas inhalation method through an airway placed in the trachea, which enables oxygen metabolism measurements in rats.
Collapse
|