1
|
Gaur P, Gissen P, Biswas A, Mankad K, Sudhakar S, D'Arco F, Schulz A, Fiehler J, Sedlacik J, Löbel U. Enzyme Replacement Therapy for CLN2 Disease: MRI Volumetry Shows Significantly Slower Volume Loss Compared with a Natural History Cohort. AJNR Am J Neuroradiol 2024; 45:1791-1797. [PMID: 38977290 PMCID: PMC11543065 DOI: 10.3174/ajnr.a8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND PURPOSE Neuronal ceroid lipofuscinoses are a group of neurodegenerative disorders. Recently, enzyme replacement therapy (ERT) was approved for neuronal ceroid lipofuscinosis type 2 (CLN2), a subtype of neuronal ceroid lipofuscinoses. The aim of this study was to quantify brain volume loss in CLN2 disease in patients on ERT in comparison with a natural history cohort using MRI. MATERIALS AND METHODS Nineteen (14 female, 5 male) patients with CLN2 disease at 1 UK center were studied using serial 3D T1-weighted MRI (follow-up time, 1-9 years). Brain segmentation was performed using FreeSurfer. Volume measurements for supratentorial gray and white matter, deep gray matter (basal ganglia/thalami), the lateral ventricles, and cerebellar gray and white matter were recorded. The volume change with time was analyzed using a linear mixed-effects model excluding scans before treatment onset. Comparison was made with a published natural history cohort of 12 patients (8 female, 4 male), which was re-analyzed using the same method. RESULTS Brain volume loss of all segmented brain regions was much slower in treated patients compared with the natural history cohort. For example, supratentorial gray matter volume in treated patients decreased by a mean of 3% (SD, 0.74%) (P < .001) annually compared with an annual volume loss of a mean of 16.8% (SD, 1.5%) (P < .001) in the natural history cohort. CONCLUSIONS Our treatment cohort showed a significantly slower rate of brain parenchymal volume loss compared with a natural history cohort in several anatomic regions. Our results complement prior clinical data that found a positive response to ERT. We demonstrate that automated MRI volumetry is a sensitive tool to monitor treatment response in children with CLN2 disease.
Collapse
Affiliation(s)
- Pritika Gaur
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| | - Paul Gissen
- National Institute for Health Research (P. Gissen), Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Asthik Biswas
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| | - Kshitij Mankad
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| | - Sniya Sudhakar
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| | - Felice D'Arco
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| | - Angela Schulz
- Department of Paediatrics (A.S.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Child and Adolescent Health (A.S.), Partner Site Hamburg, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology (J.F.), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Robert Steiner MR Facility (J.S.), Medical Research Council Laboratory of Medical Sciences, Hammersmith Hospital Campus, London, UK
- Mansfield Centre for Innovation (J.S.), Imaging Sciences, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ulrike Löbel
- From the Department of Radiology (P. Gaur, A.B., K.M., S.S., F.D., U.L.), Great Ormond Street Hospital, London, UK
| |
Collapse
|
2
|
Huang H, Liao Y, Yu Y, Qin H, Wei YZ, Cao L. Adult-onset neuronal ceroid lipofuscinosis misdiagnosed as autoimmune encephalitis and normal-pressure hydrocephalus: A 10-year case report and case-based review. Medicine (Baltimore) 2024; 103:e40248. [PMID: 39470529 PMCID: PMC11520998 DOI: 10.1097/md.0000000000040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
RATIONALE Neuronal ceroid lipofuscinoses (NCLs) are rare, fatal, inherited neurodegenerative disorders characterized by myoclonic epilepsy, cognitive decline, brain atrophy, and retinopathy. The pathogenesis and clinical manifestations of NCL are not well understood and frequently result in misdiagnosis and overtreatment. The aim of this case report and review is to improve our understanding of the clinical features and management of NCL. PATIENT CONCERNS A 36-year-old woman initially presented with refractory epilepsy. DIAGNOSES Initially diagnosed with autoimmune encephalitis, the patient was later diagnosed with normal-pressure hydrocephalus. A definitive diagnosis of adult-onset neuronal ceroid lipofuscinosis (ANCL) was established after 10 years of observation, utilizing biopsy and genetic testing. INTERVENTIONS High-dose intravenous immunoglobulin and methylprednisolone were administered, along with the insertion of a ventriculoperitoneal shunt. OUTCOMES Despite various treatments, the patient's condition did not improve. LESSONS ANCL typically presents with the clinical triad of refractory seizures, progressive cognitive decline, and movement disorders. Neuroimaging often reveals progressive brain atrophy on magnetic resonance imaging, while electroencephalograms frequently show epileptiform discharges. The prognosis is generally poor. Improved understanding of ANCL from both clinical and radiological perspectives, coupled with early consideration of differential diagnoses, could minimize unnecessary interventions and optimize patient care.
Collapse
Affiliation(s)
- Huasheng Huang
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Yuqi Liao
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yanni Yu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - HuiHui Qin
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Yi Zhi Wei
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Liming Cao
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Sivananthan S, Lee L, Anderson G, Csanyi B, Williams R, Gissen P. Buffy Coat Score as a Biomarker of Treatment Response in Neuronal Ceroid Lipofuscinosis Type 2. Brain Sci 2023; 13:209. [PMID: 36831752 PMCID: PMC9954623 DOI: 10.3390/brainsci13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
The introduction of intracerebroventricular (ICV) enzyme replacement therapy (ERT) for treatment of neuronal ceroid lipofuscinosis type 2 (CLN2) disease has produced dramatic improvements in disease management. However, assessments of therapeutic effect for ICV ERT are limited to clinical observational measures, namely the CLN2 Clinical Rating Scale, a subjective measure of motor and language performance. There is a need for an objective biomarker to enable assessments of disease progression and response to treatment. To address this, we investigated whether the proportion of cells with abnormal storage inclusions on electron microscopic examination of peripheral blood buffy coats could act as a biomarker of disease activity in CLN2 disease. We conducted a prospective longitudinal analysis of six patients receiving ICV ERT. We demonstrated a substantial and continuing reduction in the proportion of abnormal cells over the course of treatment, whereas symptomatic scores revealed little or no change over time. Here, we proposed the use of the proportion of cells with abnormal storage as a biomarker of response to therapy in CLN2. In the future, as more tissue-specific biomarkers are developed, the buffy coats may form part of a panel of biomarkers in order to give a more holistic view of a complex disease.
Collapse
Affiliation(s)
- Siyamini Sivananthan
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Laura Lee
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Barbara Csanyi
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Ruth Williams
- Department of Children’s Neurosciences, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Paul Gissen
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
4
|
Murray SJ, Almuqbel MM, Felton SA, Palmer NJ, Myall DJ, Shoorangiz R, Ella A, Keller M, Palmer DN, Melzer TR, Mitchell NL. Progressive MRI brain volume changes in ovine models of CLN5 and CLN6 neuronal ceroid lipofuscinosis. Brain Commun 2023; 5:fcac339. [PMID: 36632184 PMCID: PMC9830986 DOI: 10.1093/braincomms/fcac339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/28/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (Batten disease) are a group of inherited lysosomal storage disorders characterized by progressive neurodegeneration leading to motor and cognitive dysfunction, seizure activity and blindness. The disease can be caused by mutations in 1 of 13 ceroid lipofuscinosis neuronal (CLN) genes. Naturally occurring sheep models of the CLN5 and CLN6 neuronal ceroid lipofuscinoses recapitulate the clinical disease progression and post-mortem pathology of the human disease. We used longitudinal MRI to assess global and regional brain volume changes in CLN5 and CLN6 affected sheep compared to age-matched controls over 18 months. In both models, grey matter volume progressively decreased over time, while cerebrospinal fluid volume increased in affected sheep compared with controls. Total grey matter volume showed a strong positive correlation with clinical scores, while cerebrospinal fluid volume was negatively correlated with clinical scores. Cortical regions in affected animals showed significant atrophy at baseline (5 months of age) and progressively declined over the disease course. Subcortical regions were relatively spared with the exception of the caudate nucleus in CLN5 affected animals that degenerated rapidly at end-stage disease. Our results, which indicate selective vulnerability and provide a timeline of degeneration of specific brain regions in two sheep models of neuronal ceroid lipofuscinoses, will provide a clinically relevant benchmark for assessing therapeutic efficacy in subsequent trials of gene therapy for CLN5 and CLN6 disease.
Collapse
Affiliation(s)
- Samantha J Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Mustafa M Almuqbel
- Pacific Radiology Group, Christchurch 8014, New Zealand,New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | | | | | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | | | - Matthieu Keller
- UMR Physiologie de la Reproduction & des Comportements, INRAE/CNRS/University of Tours, F-37380 Nouzilly, France
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | | | - Nadia L Mitchell
- Correspondence to: Nadia Mitchell Faculty of Agricultural and Life Sciences, PO Box 85084, Lincoln University Lincoln 7647, Canterbury, New Zealand E-mail:
| |
Collapse
|
5
|
Ostergaard JR, Nelvagal HR, Cooper JD. Top-down and bottom-up propagation of disease in the neuronal ceroid lipofuscinoses. Front Neurol 2022; 13:1061363. [PMID: 36438942 PMCID: PMC9692088 DOI: 10.3389/fneur.2022.1061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Neuronal Ceroid Lipofuscinoses (NCLs) may be considered distinct neurodegenerative disorders with separate underlying molecular causes resulting from monogenetic mutations. An alternative hypothesis is to consider the NCLs as related diseases that share lipofuscin pathobiology as the common core feature, but otherwise distinguished by different a) initial anatomic location, and b) disease propagation. Methods We have tested this hypothesis by comparing known differences in symptomatology and pathology of the CLN1 phenotype caused by complete loss of PPT1 function (i.e., the classical infantile form) and of the classical juvenile CLN3 phenotype. These two forms of NCL represent early onset and rapidly progressing vs. late onset and slowly progressing disease modalities respectively. Results Despite displaying similar pathological endpoints, the clinical phenotypes and the evidence of imaging and postmortem studies reveal strikingly different time courses and distributions of disease propagation. Data from CLN1 disease are indicative of disease propagation from the body, with early effects within the spinal cord and subsequently within the brainstem, the cerebral hemispheres, cerebellum and retina. In contrast, the retina appears to be the most vulnerable organ in CLN3, and the site where pathology is first present. Pathology subsequently is present in the occipital connectome of the CLN3 brain, followed by a top-down propagation in which cerebral and cerebellar atrophy in early adolescence is followed by involvement of the peripheral nerves in later adolescence/early twenties, with the extrapyramidal system also affected during this time course. Discussion The propagation of disease in these two NCLs therefore has much in common with the “Brain-first” vs. “Body-first” models of alpha-synuclein propagation in Parkinson's disease. CLN1 disease represents a “Body-first” or bottom-up disease propagation and CLN3 disease having a “Brain-first” and top-down propagation. It is noteworthy that the varied phenotypes of CLN1 disease, whether it starts in infancy (infantile form) or later in childhood (juvenile form), still fit with our proposed hypothesis of a bottom-up disease propagation in CLN1. Likewise, in protracted CLN3 disease, where both cognitive and motor declines are delayed, the initial manifestations of disease are also seen in the outer retinal layers, i.e., identical to classical Juvenile NCL disease.
Collapse
Affiliation(s)
- John R. Ostergaard
- Department of Child and Adolescencet, Centre for Rare Diseases, Aarhus, Denmark
- *Correspondence: John R. Ostergaard
| | - Hemanth R. Nelvagal
- Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St Louis, St Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
6
|
Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2022; 23:ijms23105729. [PMID: 35628533 PMCID: PMC9145894 DOI: 10.3390/ijms23105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of rare, inherited, neurodegenerative lysosomal storage disorders that affect children and adults. They are traditionally grouped together, based on shared clinical symptoms and pathological ground. To date, 13 autosomal recessive gene variants, as well as one autosomal dominant gene variant, of NCL have been described. These genes encode a variety of proteins, whose functions have not been fully defined; most are lysosomal enzymes, transmembrane proteins of the lysosome, or other organelles. Common symptoms of NCLs include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and, in rare adult-onset cases, dementia. Depending on the mutation, these symptoms can vary, with respect to the severity and onset of symptoms by age. Currently, all forms of NCL are fatal, and no curative treatments are available. Herein, we provide an overview to summarize the current knowledge regarding the pathophysiology, genetics, and clinical manifestation of these conditions, as well as the approach to diagnosis.
Collapse
|
7
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
8
|
Ostergaard JR. Gait phenotype in Batten disease: A marker of disease progression. Eur J Paediatr Neurol 2021; 35:1-7. [PMID: 34547583 DOI: 10.1016/j.ejpn.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/03/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gait impairment and its etiologic correlate has not previously been subject of special attention in Batten disease. METHODS In the present review, the clinical picture of gait phenotype during Batten disease course accompanied by descriptions of the known concomitant patho-anatomical changes is presented. RESULTS In CLN1 a non-rhythmic gait is seen around 1-1½ years of age. Shortly after, postural hypotonia and exaggerated tendon reflexes develop. The disease reaches a burnt-out stage during the third year of age and subsequently the children are almost without voluntary movements. The existing literature indicates that gait phenotype in CLN1 is caused by early involvement of the spinal interneurons followed by impact of the cortex and the cortico-spinal tracts. The earliest walking abnormality in children with CLN2 is a clumsy, ataxic, and spastic gait, which is in accordance with the existing imaging and histologic studies showing early involvement of the cerebellum and the cortico-spinal pathways. In CLN3, a reduction in walking speed is present at the age of 7-8 years. It occurs simultaneously with a reduction in the white matter microstructure and brain connectivity networks. Functional impairment of the basal ganglia contributing to a parkinsonian gait phenotype occurs in the mid-teens. In the late teens and early twenties involvement of the peripheral nerves, neurogenic musculoskeletal atrophy, loss of tendon reflexes and postural control are seen. CONCLUSION The progressively impaired gait function in Batten disease is related to timing of damage of distinct areas of the nervous system depending on subtype and is a powerful marker of disease progression.
Collapse
Affiliation(s)
- John R Ostergaard
- Centre for Rare Diseases, Department of Children & Youth, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
9
|
Augustine EF, Adams HR, de Los Reyes E, Drago K, Frazier M, Guelbert N, Laine M, Levin T, Mink JW, Nickel M, Peifer D, Schulz A, Simonati A, Topcu M, Turunen JA, Williams R, Wirrell EC, King S. Management of CLN1 Disease: International Clinical Consensus. Pediatr Neurol 2021; 120:38-51. [PMID: 34000449 DOI: 10.1016/j.pediatrneurol.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND CLN1 disease (neuronal ceroid lipofuscinosis type 1) is a rare, genetic, neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase 1 (PPT1) enzyme deficiency. Clinical features include developmental delay, psychomotor regression, seizures, ataxia, movement disorders, visual impairment, and early death. In general, the later the age at symptom onset, the more protracted the disease course. We sought to evaluate current evidence and to develop expert practice consensus to support clinicians who have not previously encountered patients with this rare disease. METHODS We searched the literature for guidelines and evidence to support clinical practice recommendations. We surveyed CLN1 disease experts and caregivers regarding their experiences and recommendations, and a meeting of experts was conducted to ascertain points of consensus and clinical practice differences. RESULTS We found a limited evidence base for treatment and no clinical management guidelines specific to CLN1 disease. Fifteen CLN1 disease experts and 39 caregivers responded to the surveys, and 14 experts met to develop consensus-based recommendations. The resulting management recommendations are uniquely informed by family perspectives, due to the inclusion of caregiver and advocate perspectives. A family-centered approach is supported, and individualized, multidisciplinary care is emphasized in the recommendations. Ascertainment of the specific CLN1 disease phenotype (infantile-, late infantile-, juvenile-, or adult-onset) is of key importance in informing the anticipated clinical course, prognosis, and care needs. Goals and strategies should be periodically reevaluated and adapted to patients' current needs, with a primary aim of optimizing patient and family quality of life.
Collapse
Affiliation(s)
- Erika F Augustine
- Department of Neurology and Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland; Departments of Neurology and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| | - Heather R Adams
- Departments of Neurology and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Emily de Los Reyes
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | | | | | - Norberto Guelbert
- Metabolic Diseases Section, Children's Hospital of Cordoba, Cordoba, Argentina
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tanya Levin
- Medical Writing Consultant, Atlanta, Georgia
| | - Jonathan W Mink
- Departments of Neurology, Neuroscience, and Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine, Verona, Italy
| | - Meral Topcu
- Professor Emeritus, Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Joni A Turunen
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ruth Williams
- Children's Neurosciences Centre, Evelina London Children's Hospital, London, United Kingdom
| | - Elaine C Wirrell
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
10
|
Nelvagal HR, Dearborn JT, Ostergaard JR, Sands MS, Cooper JD. Spinal manifestations of CLN1 disease start during the early postnatal period. Neuropathol Appl Neurobiol 2020; 47:251-267. [PMID: 32841420 PMCID: PMC7867600 DOI: 10.1111/nan.12658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Aim To understand the progression of CLN1 disease and develop effective therapies we need to characterize early sites of pathology. Therefore, we performed a comprehensive evaluation of the nature and timing of early CLN1 disease pathology in the spinal cord, which appears especially vulnerable, and how this may affect behaviour. Methods We measured the spinal volume and neuronal number, and quantified glial activation, lymphocyte infiltration and oligodendrocyte maturation, as well as cytokine profile analysis during the early stages of pathology in Ppt1‐deficient (Ppt1−/−) mouse spinal cords. We then performed quantitative gait analysis and open‐field behaviour tests to investigate the behavioural correlates during this period. Results We detected significant microglial activation in Ppt1−/− spinal cords at 1 month. This was followed by astrocytosis, selective interneuron loss, altered spinal volumes and oligodendrocyte maturation at 2 months, before significant storage material accumulation and lymphocyte infiltration at 3 months. The same time course was apparent for inflammatory cytokine expression that was altered as early as one month. There was a transient early period at 2 months when Ppt1−/− mice had a significantly altered gait that resembles the presentation in children with CLN1 disease. This occurred before an anticipated decline in overall locomotor performance across all ages. Conclusion These data reveal disease onset 2 months (25% of life‐span) earlier than expected, while spinal maturation is still ongoing. Our multi‐disciplinary data provide new insights into the spatio‐temporal staging of CLN1 pathogenesis during ongoing postnatal maturation, and highlight the need to deliver therapies during the presymptomatic period.
Collapse
Affiliation(s)
- H R Nelvagal
- Department of Pediatrics, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - J T Dearborn
- Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - J R Ostergaard
- Centre for Rare Diseases, Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - M S Sands
- Department of Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, USA.,Department of Genetics, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - J D Cooper
- Department of Pediatrics, Washington University in St Louis, School of Medicine, St Louis, MO, USA.,Department of Genetics, Washington University in St Louis, School of Medicine, St Louis, MO, USA.,Department of Neurology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
12
|
Biswas A, Krishnan P, Amirabadi A, Blaser S, Mercimek-Andrews S, Shroff M. Expanding the Neuroimaging Phenotype of Neuronal Ceroid Lipofuscinoses. AJNR Am J Neuroradiol 2020; 41:1930-1936. [PMID: 32855186 DOI: 10.3174/ajnr.a6726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/16/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuronal ceroid lipofuscinoses are a group of neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigments in neuronal cells. As a result of storage material in the brain and retina, clinical manifestations include speech delay, cognitive dysfunction, motor regression, epilepsy, vision loss, and early death. At present, 14 different ceroid lipofuscinosis (CLN) genes are known. Recently, the FDA approved the use of recombinant human proenzyme of tripeptidyl-peptidase 1 for CLN2 disease, while phase I/IIa clinical trials for gene therapy in CLN3 and CLN6 are ongoing. Early diagnosis is, therefore, key to initiating treatment and arresting disease progression. Neuroimaging features of CLN1, CLN2, CLN3, and CLN5 diseases are well-described, with sparse literature on other subtypes. We aimed to investigate and expand the MR imaging features of genetically proved neuronal ceroid lipofuscinoses subtypes at our institution and also to report the time interval between the age of disease onset and the diagnosis of neuronal ceroid lipofuscinoses. MATERIALS AND METHODS We investigated and analyzed the age of disease onset and neuroimaging findings (signal intensity in periventricular, deep, and subcortical white matter, thalami, basal ganglia, posterior limb of the internal capsule, insular/subinsular regions, and ventral pons; and the presence or absence of supratentorial and/or infratentorial atrophy) of patients with genetically proved neuronal ceroid lipofuscinoses at our institution. This group consisted of 24 patients who underwent 40 brain MR imaging investigations between 1993 and 2019, with a male preponderance (male/female ratio = 15:9). RESULTS The mean ages of disease onset, first brain MR imaging, and diagnosis of neuronal ceroid lipofuscinoses were 4.70 ± 3.48 years, 6.76 ± 4.49 years, and 7.27 ± 4.78 years, respectively. Findings on initial brain MR imaging included T2/FLAIR hypointensity in the thalami (n = 22); T2/FLAIR hyperintensity in the periventricular and deep white matter (n = 22), posterior limb of the internal capsule (n = 22), ventral pons (n = 19), and insular/subinsular region (n = 18); supratentorial (n = 21) and infratentorial atrophy (n = 20). Eight of 9 patients who had follow-up neuroimaging showed progressive changes. CONCLUSIONS We identified reported classic neuroimaging features in all except 1 patient with neuronal ceroid lipofuscinoses in our study. CLN2, CLN5, and CLN7 diseases showed predominant cerebellar-over-cerebral atrophy. We demonstrate that abnormal signal intensity in the deep white matter, posterior limb of the internal capsule, and ventral pons is more common than previously reported in the literature. We report abnormal signal intensity in the insular/subinsular region for the first time. The difference in the median time from disease onset and diagnosis was 1.5 years.
Collapse
Affiliation(s)
- A Biswas
- From the Department of Diagnostic Imaging (A.B., P.K., A.A., S.B., M.S.), The Hospital for Sick Children, Toronto, Canada asthik.biswas@sickkids
| | - P Krishnan
- From the Department of Diagnostic Imaging (A.B., P.K., A.A., S.B., M.S.), The Hospital for Sick Children, Toronto, Canada
| | - A Amirabadi
- From the Department of Diagnostic Imaging (A.B., P.K., A.A., S.B., M.S.), The Hospital for Sick Children, Toronto, Canada
| | - S Blaser
- From the Department of Diagnostic Imaging (A.B., P.K., A.A., S.B., M.S.), The Hospital for Sick Children, Toronto, Canada
| | - S Mercimek-Andrews
- Division of Clinical and Metabolic Genetics (S.M.-A.), Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - M Shroff
- From the Department of Diagnostic Imaging (A.B., P.K., A.A., S.B., M.S.), The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
13
|
Dozières-Puyravel B, Nasser H, Elmaleh-Bergès M, Lopez Hernandez E, Gelot A, Ilea A, Delanoë C, Puech JP, Caillaud C, Pichard S, Auvin S. Paediatric-onset neuronal ceroid lipofuscinosis: first symptoms and presentation at diagnosis. Dev Med Child Neurol 2020; 62:528-530. [PMID: 31489614 DOI: 10.1111/dmcn.14346] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/29/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are rare, progressive disorders. Through this series of 20 patients with NCL, we illustrate differences between subtypes in their presenting symptoms and clinical, imaging, and electrophysiological results to raise awareness of symptom diversity. Data were available on presenting symptoms, genetics, magnetic resonance imaging (MRI), electroencephalography (including with low-frequency intermittent photic stimulation), visual responses, and electron microscopy. Causal mutations were identified in 10 patients. Eleven patients had neuronal ceroid lipofuscinosis type 2 (CLN2) disease and their most common presenting symptom was seizures, although motor and language defects were also reported. Five patients with CLN2 disease showed abnormalities at initial MRI, but only three showed a photic response with low-frequency stimulation. Seizures were not as common a presenting symptom in other NCL subtypes. Patients with NCLs present with diverse symptoms, which may not be characteristic in early disease stages. These signs and symptoms should lead to rapid diagnostic confirmatory testing for NCLs. WHAT THIS PAPER ADDS: Disease presentation is not uniform for neuronal ceroid lipofuscinoses. Characteristic clinical test results may not be identified in early disease stages.
Collapse
Affiliation(s)
| | - Hala Nasser
- Robert Debré University Hospital, Paris, France
| | | | | | | | - Adina Ilea
- Robert Debré University Hospital, Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Johnson TB, Brudvig JJ, Lehtimäki KK, Cain JT, White KA, Bragge T, Rytkönen J, Huhtala T, Timm D, Vihma M, Puoliväli JT, Poutiainen P, Nurmi A, Weimer JM. A multimodal approach to identify clinically relevant biomarkers to comprehensively monitor disease progression in a mouse model of pediatric neurodegenerative disease. Prog Neurobiol 2020; 189:101789. [PMID: 32198061 DOI: 10.1016/j.pneurobio.2020.101789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/21/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
While research has accelerated the development of new treatments for pediatric neurodegenerative disorders, the ability to demonstrate the long-term efficacy of these therapies has been hindered by the lack of convincing, noninvasive methods for tracking disease progression both in animal models and in human clinical trials. Here, we unveil a new translational platform for tracking disease progression in an animal model of a pediatric neurodegenerative disorder, CLN6-Batten disease. Instead of looking at a handful of parameters or a single "needle in a haystack", we embrace the idea that disease progression, in mice and patients alike, is a diverse phenomenon best characterized by a combination of relevant biomarkers. Thus, we employed a multi-modal quantitative approach where 144 parameters were longitudinally monitored to allow for individual variability. We use a range of noninvasive neuroimaging modalities and kinematic gait analysis, all methods that parallel those commonly used in the clinic, followed by a powerful statistical platform to identify key progressive anatomical and metabolic changes that correlate strongly with the progression of pathological and behavioral deficits. This innovative, highly sensitive platform can be used as a powerful tool for preclinical studies on neurodegenerative diseases, and provides proof-of-principle for use as a potentially translatable tool for clinicians in the future.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Timo Bragge
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Jussi Rytkönen
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Tuulia Huhtala
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Derek Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maria Vihma
- Discovery Research Services, Charles River, Kuopio, Finland
| | | | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti Nurmi
- Discovery Research Services, Charles River, Kuopio, Finland.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
15
|
Siedlarska M, Jamsheer A, Ciaston M, Strzelecka J, Jozwiak S. Rapidly Progressing Brain Atrophy in a Child With Developmental Regression. Pediatr Neurol 2019; 94:80-81. [PMID: 30635150 DOI: 10.1016/j.pediatrneurol.2018.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - Michal Ciaston
- Department of Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Strzelecka
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
17
|
Mole SE, Anderson G, Band HA, Berkovic SF, Cooper JD, Kleine Holthaus SM, McKay TR, Medina DL, Rahim AA, Schulz A, Smith AJ. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol 2019; 18:107-116. [PMID: 30470609 DOI: 10.1016/s1474-4422(18)30368-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/24/2022]
Abstract
Treatment of the neuronal ceroid lipofuscinoses, also known as Batten disease, is at the start of a new era because of diagnostic and therapeutic advances relevant to this group of inherited neurodegenerative and life-limiting disorders that affect children. Diagnosis has improved with the use of comprehensive DNA-based tests that simultaneously screen for many genes. The identification of disease-causing mutations in 13 genes provides a basis for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, and for the development of targeted therapies. These targeted therapies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. Such therapeutic developments have the potential to enable earlier diagnosis and better targeted therapeutic management. The first approved treatment is an intracerebroventricularly administered enzyme for neuronal ceroid lipofuscinosis type 2 disease that delays symptom progression. Efforts are underway to make similar progress for other forms of the disorder.
Collapse
Affiliation(s)
- Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | | | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health & Northern Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan D Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | | | - Tristan R McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J Smith
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
18
|
Abstract
Lysosomal storage disorders are a heterogeneous group of genetic diseases characterized by defective function in one of the lysosomal enzymes. In this review paper, we describe neuroradiological findings and clinical characteristics of neuronopathic lysosomal disorders with a focus on differential diagnosis. New insights regarding pathogenesis and therapeutic perspectives are also briefly discussed.
Collapse
|
19
|
Mascalchi M, Mari F, Berti B, Bartolini E, Lenge M, Bianchi A, Antonucci L, Santorelli FM, Garavaglia B, Guerrini R. Fast Progression of Cerebellar Atrophy in PLA2G6-Associated Infantile Neuronal Axonal Dystrophy. THE CEREBELLUM 2017; 16:742-745. [DOI: 10.1007/s12311-017-0843-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|