1
|
Kelly BS, Mathur P, McGuinness G, Dillon H, Lee EH, Yeom KW, Lawlor A, Killeen RP. A Radiomic "Warning Sign" of Progression on Brain MRI in Individuals with MS. AJNR Am J Neuroradiol 2024; 45:236-243. [PMID: 38216299 DOI: 10.3174/ajnr.a8104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND PURPOSE MS is a chronic progressive, idiopathic, demyelinating disorder whose diagnosis is contingent on the interpretation of MR imaging. New MR imaging lesions are an early biomarker of disease progression. We aimed to evaluate a machine learning model based on radiomics features in predicting progression on MR imaging of the brain in individuals with MS. MATERIALS AND METHODS This retrospective cohort study with external validation on open-access data obtained full ethics approval. Longitudinal MR imaging data for patients with MS were collected and processed for machine learning. Radiomics features were extracted at the future location of a new lesion in the patients' prior MR imaging ("prelesion"). Additionally, "control" samples were obtained from the normal-appearing white matter for each participant. Machine learning models for binary classification were trained and tested and then evaluated the external data of the model. RESULTS The total number of participants was 167. Of the 147 in the training/test set, 102 were women and 45 were men. The average age was 42 (range, 21-74 years). The best-performing radiomics-based model was XGBoost, with accuracy, precision, recall, and F1-score of 0.91, 0.91, 0.91, and 0.91 on the test set, and 0.74, 0.74, 0.74, and 0.70 on the external validation set. The 5 most important radiomics features to the XGBoost model were associated with the overall heterogeneity and low gray-level emphasis of the segmented regions. Probability maps were produced to illustrate potential future clinical applications. CONCLUSIONS Our machine learning model based on radiomics features successfully differentiated prelesions from normal-appearing white matter. This outcome suggests that radiomics features from normal-appearing white matter could serve as an imaging biomarker for progression of MS on MR imaging.
Collapse
Affiliation(s)
- Brendan S Kelly
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
- Wellcome Trust and Health Research Board (B.S.K.), Irish Clinical Academic Training, Dublin, Ireland
- School of Medicine (B.S.K.), University College Dublin, Dublin, Ireland
| | - Prateek Mathur
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
| | - Gerard McGuinness
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| | - Henry Dillon
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| | - Edward H Lee
- Lucille Packard Children's Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California
| | - Kristen W Yeom
- Lucille Packard Children's Hospital at Stanford (E.H.L., K.W.Y.), Stanford, California
| | - Aonghus Lawlor
- Insight Centre for Data Analytics (B.S.K., P.M., A.L.), University College Dublin, Dublin, Ireland
| | - Ronan P Killeen
- From the Department of Radiology (B.S.K., G.M., H.D., R.P.K.), St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Kelly BS, Kirwan A, Quinn MS, Kelly AM, Mathur P, Lawlor A, Killeen RP. The ethical matrix as a method for involving people living with disease and the wider public (PPI) in near-term artificial intelligence research. Radiography (Lond) 2023; 29 Suppl 1:S103-S111. [PMID: 37062673 DOI: 10.1016/j.radi.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION The rapid pace of research in the field of Artificial Intelligence in medicine has associated risks for near-term AI. Ethical considerations of the use of AI in medicine remain a subject of much debate. Concurrently, the Involvement of People living with disease and the Public (PPI) in research is becoming mandatory in the EU and UK. The goal of this research was to elucidate the important values for our relevant stakeholders: People with MS, Radiologists, neurologists, Registered Healthcare Practitioners and Computer Scientists concerning AI in radiology and synthesize these in an ethical matrix. METHODS An ethical matrix workshop co-designed with a patient expert. The workshop yielded a survey which was disseminated to the professional societies of the relevant stakeholders. Quantitative data were analysed using the Pingouin 0.53 python package. Qualitative data were examined with word frequency analysis and analysed for themes with grounded theory with a patient expert. RESULTS 184 participants were recruited, (54, 60, 17, 12, 41 respectively). There were significant (p < 0.00001) differences in age, gender and ethnicity between groups. Key themes emerging from our results were the importance fast and accurate results, explanations over model performance and the significance of maintaining personal connections and choice. These themes were used to construct the ethical matrix. CONCLUSION The ethical matrix is a useful tool for PPI and stakeholder engagement with particular advantages for near-term AI in the pandemic era. IMPLICATIONS FOR PRACTICE We have produced an ethical matrix that allows for the inclusion of stakeholder opinion in medical AI research design.
Collapse
Affiliation(s)
- B S Kelly
- School of Medicine, UCD, Belfield, Dublin 4, Ireland; Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; School of Computer Science and Insight Centre, UCD Belfield, Dublin 4, Ireland.
| | - A Kirwan
- Multiple Sclerosis Ireland National Office, 80 Northumberland Road, Dublin 4, Ireland
| | - M S Quinn
- School of Computer Science and Insight Centre, UCD Belfield, Dublin 4, Ireland
| | - A M Kelly
- School of Education, Trinity College Dublin, Dublin 2, Ireland
| | - P Mathur
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland
| | - A Lawlor
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland
| | - R P Killeen
- School of Medicine, UCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Wang B, Chen C, Liu X, Zhou S, Xu T, Wu M. The effect of combining PD-1 agonist and low-dose Interleukin-2 on treating systemic lupus erythematosus. Front Immunol 2023; 14:1111005. [PMID: 36969198 PMCID: PMC10030866 DOI: 10.3389/fimmu.2023.1111005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple organs. It is often called "immortal cancer" due to the difficulties in disease treatment. As the cornerstone of immune regulation, the programmed cell death protein 1 (PD-1) has been extensively studied in the context of chronic inflammation due to its ability of regulating immune response and immunosuppression. Recently, more and more studies on rheumatic immune related complications have also focused on PD-1 and proposed that the use of PD-1 agonist could inhibit the activation of lymphocytes and alleviate SLE disease activity. In this review, we summarized the role of PD-1 in SLE, implicating its potential application as a biomarker to predict SLE disease activity; we also proposed that the combination of PD-1 agonist and low-dose IL-2 may have better therapeutic efficacy, shining light on a new direction for developing specific treatment approaches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xia Liu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shuang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- *Correspondence: Ting Xu, ; Min Wu,
| |
Collapse
|
4
|
Translocator Protein Ligand PIGA1138 Reduces Disease Symptoms and Severity in Experimental Autoimmune Encephalomyelitis Model of Primary Progressive Multiple Sclerosis. Mol Neurobiol 2022; 59:1744-1765. [PMID: 35018577 DOI: 10.1007/s12035-022-02737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system (CNS) caused by CNS infiltration of peripheral immune cells, immune-mediated attack of the myelin sheath, neuroinflammation, and/or axonal/neuronal dysfunctions. Some drugs are available to cope with relapsing-remitting MS (RRMS) but there is no therapy for the primary progressive MS (PPMS). Because growing evidence supports a regulatory role of the translocator protein (TSPO) in neuroinflammatory, demyelinating, and neurodegenerative processes, we investigated the therapeutic potential of phenylindolyilglyoxylamydes (PIGAs) TSPO ligands in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice mimicking the human PPMS. MOG-EAE C57Bl/6-mice were treated by TSPO ligands PIGA839, PIGA1138, or the vehicle. Several methods were combined to evaluate PIGAs-TSPO ligand effects on MOG-EAE symptoms, CNS infiltration by immune cells, demyelination, and axonal damages. PIGA1138 (15 mg/kg) drastically reduced MOG-EAE mice clinical scores, ameliorated motor dysfunctions assessed with the Catwalk device, and counteracted MOG-EAE-induced demyelination by preserving Myelin basic protein (MBP) expression in the CNS. Furthermore, PIGA1138-treatment prevented EAE-evoked decreased neurofilament-200 expression in spinal and cerebellar axons. Moreover, PIGA1138 inhibited peripheral immune-CD45 + cell infiltration in the CNS, suggesting that it may control inflammatory mechanisms involved in PPMS. Concordantly, PIGA1138 enhanced anti-inflammatory interleukin-10 serum level in MOG-EAE mice. PIGA1138-treatment, which increased neurosteroid allopregnanolone production, ameliorated all pathological biomarkers, while PIGA839, unable to activate neurosteroidogenesis in vivo, exerted only moderate/partial effects in MOG-EAE mice. Altogether, our results suggest that PIGA1138-based treatment may represent an interesting possibility to be explored for the innovation of effective therapies against PPMS.
Collapse
|
5
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|
6
|
|
7
|
Abstract
MRI is a commonly used diagnostic tool in neurology, and all neurologists should possess a working knowledge of imaging fundamentals. An overview of current and impending MRI techniques is presented to help the referring clinician communicate better with the imaging department, understand the utility and limitations of current and emerging technology, improve specificity and appropriateness when ordering MRI studies, and recognize key findings.
Collapse
Affiliation(s)
- Nandor K Pinter
- Dent Neurologic Institute, 3980A Sheridan Drive, Suite 101, Amherst, NY 14226, USA; Department of Neurosurgery, State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph V Fritz
- Dent Neurologic Institute, 3980 Sheridan Drive, Suite 501, Amherst, NY 14226, USA; NeuroNetPro, Amherst, NY, USA.
| |
Collapse
|
8
|
Zhao P, Wang P, Dong S, Zhou Z, Cao Y, Yagita H, He X, Zheng SG, Fisher SJ, Fujinami RS, Chen M. Depletion of PD-1-positive cells ameliorates autoimmune disease. Nat Biomed Eng 2019; 3:292-305. [PMID: 30952980 PMCID: PMC6452906 DOI: 10.1038/s41551-019-0360-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022]
Abstract
Targeted suppression of autoimmune diseases without collateral suppression of normal immunity remains an elusive yet clinically important goal. Targeted blockade of programmed-cell-death-protein-1 (PD-1)-an immune checkpoint factor expressed by activated T cells and B cells-is an efficacious therapy for potentiating immune activation against tumours. Here we show that an immunotoxin consisting of an anti-PD-1 single-chain variable fragment, an albumin-binding domain and Pseudomonas exotoxin targeting PD-1-expressing cells, selectively recognizes and induces the killing of the cells. Administration of the immunotoxin to mouse models of autoimmune diabetes delays disease onset, and its administration in mice paralysed by experimental autoimmune encephalomyelitis ameliorates symptoms. In all mouse models, the immunotoxin reduced the numbers of PD-1-expressing cells, of total T cells and of cells of an autoreactive T-cell clone found in inflamed organs, while maintaining active adaptive immunity, as evidenced by full-strength immune responses to vaccinations. The targeted depletion of PD-1-expressing cells contingent to the preservation of adaptive immunity might be effective in the treatment of a wide range of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Peng Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Shuyun Dong
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, The UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Leva G, Klein C, Benyounes J, Hallé F, Bihel F, Collongues N, De Seze J, Mensah-Nyagan AG, Patte-Mensah C. The translocator protein ligand XBD173 improves clinical symptoms and neuropathological markers in the SJL/J mouse model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3016-3027. [PMID: 28899788 DOI: 10.1016/j.bbadis.2017.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory, demyelinating and neurodegenerative components causing motor, sensory, visual and/or cognitive symptoms. The relapsing-remitting MS affecting 85% of patients is reliably mimicked by the proteolipid-protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) SJL/J-mouse model. Significant progress was made for MS treatment but the development of effective therapies devoid of severe side-effects remains a great challenge. Here, we combine clinical, behavioral, histopathological, biochemical and molecular approaches to demonstrate that low and well tolerated doses (10-20mg/kg) of TSPO ligand XBD173 (Emapunil) efficiently ameliorate clinical signs and neuropathology of PLP-EAE mice. In addition to the conventional clinical scoring of symptoms, we applied the robust behavioral Catwalk-method to confirm that XBD173 (10mg/kg) increases the maximum contact area parameter at EAE-disease peak, indicating an improvement/recovery of motor functions. Consistently, histopathological studies coupled with microscope-cellSens quantification and RT-qPCR analyzes showed that XBD173 prevented demyelination by restoring normal protein and mRNA levels of myelin basic protein that was significantly repressed in PLP-EAE mice spinal cord and brain. Interestingly, ELISA-based measurement revealed that XBD173 increased allopregnanolone concentrations in PLP-EAE mice spinal and brain tissues. Furthermore, flow cytometry assessment demonstrated that XBD173 therapy decreased serum level of pro-inflammatory cytokines, including interleukin-17A, Interleukin-6 and tumor-necrosis-factor alpha in PLP-EAE mice. As the optimal XBD173 dosing exerting the maximal beneficial action in EAE mice is the lower 10mg/kg dose, the paper opens interesting perspectives for the development of efficient and safe therapies against MS with slight or no side-effects.
Collapse
Affiliation(s)
- Géraldine Leva
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Jérémie Benyounes
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - François Hallé
- Laboratoire d'innovation thérapeutique (LIT) CNRS UMR 7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, CS 60024, 67401 Illkirch Cedex, France
| | - Frédéric Bihel
- Laboratoire d'innovation thérapeutique (LIT) CNRS UMR 7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, CS 60024, 67401 Illkirch Cedex, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Jérôme De Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|