1
|
Neukomm A, Claessens NHP, Bonthrone AF, Stegeman R, Feldmann M, Nijman M, Jansen NJG, Nijman J, Groenendaal F, de Vries LS, Benders MJNL, Breur JMPJ, Haas F, Bekker MN, Logeswaran T, Reich B, Kottke R, Dave H, Simpson J, Pushparajah K, Kelly CJ, Arulkumaran S, Rutherford MA, Counsell SJ, Chew A, Knirsch W, Sprong MCA, van Schooneveld MM, Hagmann C, Latal B. Perioperative Brain Injury in Relation to Early Neurodevelopment Among Children with Severe Congenital Heart Disease: Results from a European Collaboration. J Pediatr 2024; 266:113838. [PMID: 37995930 DOI: 10.1016/j.jpeds.2023.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). STUDY DESIGN One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. RESULTS Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, β = -0.50). SES was independently associated with cognitive outcome (P < .001, β = 0.26), and LOS with motor outcome (P < .001, β = -0.35). CONCLUSION Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.
Collapse
Affiliation(s)
- Astrid Neukomm
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nathalie H P Claessens
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raymond Stegeman
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria Feldmann
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maaike Nijman
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Joppe Nijman
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Utrecht Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Felix Haas
- Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Mireille N Bekker
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thushiha Logeswaran
- Pediatric Heart Center, University Hospital Giessen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bettina Reich
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Hitendu Dave
- Division of Congenital Cardiovascular Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - John Simpson
- Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Kuberan Pushparajah
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Pediatric Cardiology Department, Evelina Children's Hospital London, London, United Kingdom
| | - Christopher J Kelly
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Maaike C A Sprong
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique M van Schooneveld
- Department of Pediatric Psychology, Neuropsychology Section, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beatrice Latal
- Child Development Center, Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Song C, Zhu Z, Liu L, Liu S, Li Y, Xiao Y, Wu C, Nan Z. The efficacy and safety of Niaoduqing granules in the treatment of diabetic kidney disease: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1180751. [PMID: 37475716 PMCID: PMC10354524 DOI: 10.3389/fphar.2023.1180751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background: Diabetic nephropathy (DN) is the main cause of chronic kidney disease (CKD) and end-stage renal failure (ESRF), and the control of disease progression and adverse events during treatment needs to be improved. Objective: This study aimed to systematically evaluate the clinical efficacy and safety of Niaoduqing granules (NDQG) in the treatment of diabetic kidney disease (DKD). Method: Randomized controlled trials (RCTs) of NDQG for DKD from Chinese and English databases up to 31 August 2022 were included. The quality of the literature was assessed using the risk of bias tool of the Cochrane Handbook. At a 95% confidence interval (CI), relative risk (RR) and Cohen's d were used for the categorical and continuous variables, respectively, and Stata 16.0 software was used for statistical analysis. A funnel plot and Egger's tests were used to assess publication bias. Result: A total of 4,006 patients were included in 52 RCTs, including 1,987 cases in the control group and 2,019 cases in the treatment group. Compared with conventional treatment (CT), combined NDQG therapy is more effective in improving clinical efficiency [RR = 1.23, 95% confidence interval (1.17, 1.29), p < 0.001, I 2 = 53.17%], kidney function (urinary albumin excretion rate [SMD = -0.90, 95% CI (-1.14, -0.66), p < 0.001, I 2 = 78.19%], 24hUTP levels [SMD = -0.81, 95% CI (-1.08, -0.55), p < 0.001, I 2 = 87.08%], blood urea nitrogen [SMD = -0.54, 95% CI (-0.69, -0.39), p < 0.01, I 2 = 77.01%], SCr [SMD = -0.68, 95% CI (-0.90, -0.45), p < 0.001, I 2 = 89.97%], CCr [SMD = 0.76, 95% CI (0.10,1.42), p = 0.02, I 2 = 95.97%], and Cys-C [SMD = -1.32, 95% CI (-2.25, -0.40), p = 0.01, I 2 = 93.44%]), the level of glucose metabolism (fasting blood glucose [SMD = -0.18, 95% CI (-0.38, 0.03), p = 0.10, I 2 = 71.18%] and HbA1c [SMD = -0.42, 95% CI (-0.86, -0.02), p = 0.06, I 2 = 81.64%]), the level of lipid metabolism (total cholesterol [SMD = -0.70, 95% CI (-1.01, -0.39), p < 0.001, I 2 = 86.74%] and triglyceride [SMD = -0.61, 95% CI (-0.87,-0.36), p < 0.001, I 2 = 80.64%]), inflammatory factors (Hs-CRP [SMD = -1.00, 95% CI (-1.54, -0.46), p < 0.001, I 2 = 86.81%], IL-18 [SMD = -1.25, 95% CI (-1.58, -0.92), p < 0.001, I 2 = 0], and TNF-α [SMD = -1.28, 95% CI (-1.64, -0.91), p < 0.001, I 2 = 75.73%]), and indicators of oxidative stress (malondialdehyde [SMD = -0.88, 95% CI (-1.22, -0.54), p < 0.001, I 2 = 66.01%] and advanced oxidation protein products [SMD = -0.92, 95% CI (-1.85, 0.00), p < 0.001, I 2 = 90.68%]). In terms of improving uric acid [SMD = -1.59, 95% CI (-3.45, 0.27), p = 0.09, I 2 = 94.67%], 2hPG [SMD = -0.04, 95% CI (-0.61, 0.53), p = 0.89, I 2 = 84.33%], HDL-C [SMD = 0.71, 95% CI (0.02, 1.40), p = 0.04, I 2 = 87.43%], Hb [SMD = 0.11, 95% CI (-0.10, 0.32), p = 0.32, I 2 = 0.00]), and superoxide dismutase [SMD = 1.32, 95% CI (0.44, 2.20), p < 0.001, I 2 = 93.48%], the effect is not obvious. Adjuvant treatment with NDQG did not increase the incidence of adverse reactions in the control group [SMD = 0.98, 95% CI (0.71, 1.34), p = 0.89, I 2 = 1.59%]. Obvious publication bias was detected by funnel plot and Egger's test. Conclusion: Our meta-analysis showed that adjuvant treatment with NDQG has more advantages than conventional treatment alone in the DKD treatment, which could improve clinical efficiency, kidney function, the level of glucose metabolism, the level of lipid metabolism, inflammatory factors, and oxidative stress indicators. At the same time, it also showed that NDQG are relatively safe. However, more high-quality studies are needed to provide more reliable evidence for clinical use. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022373726, identifier CRD42022373726.
Collapse
Affiliation(s)
- Chaoqun Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhiyue Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Le Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Shilin Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuandong Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Yang Xiao
- Changchun University of Chinese Medicine, Changchun, China
| | - Chunwei Wu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zheng Nan
- Changchun University of Chinese Medicine, Changchun, China
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Li X, Ruan C, Zibrila AI, Musa M, Wu Y, Zhang Z, Liu H, Salimeen M. Children with autism spectrum disorder present glymphatic system dysfunction evidenced by diffusion tensor imaging along the perivascular space. Medicine (Baltimore) 2022; 101:e32061. [PMID: 36482590 PMCID: PMC9726346 DOI: 10.1097/md.0000000000032061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study used diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) to assess glymphatic system function in autism spectrum disorder (ASD) compared to healthy controls. Patients with ASD may have glymphatic system dysfunction, which is related to age. We retrospectively included 30 children with ASD and 25 healthy controls in this study. 3T magnetic resonance imaging scanner was used to perform DTI magnetic resonance imaging on all participants, and the DTI-ALPS index was calculated from the DTI data. Additionally, we evaluated how the DTI-ALPS index differed between the 2 groups. Moreover, we examined the relationships between the bilateral DTI-ALPS index and the age of the participants. The DTI-ALPS index considerably differed between groups. In the left index (1.02 ± 0.12 vs. 1.27 ± 0.25, P < .001) and in the right index (1.03 ± 0.12 vs. 1.32 ± 0.20, P < .001), the DTI-ALPS in ASD patients was significantly lower than that in healthy controls. Furthermore, the DTI-ALPS index was strongly and positively associated with age. In patients with ASD, there is a glymphatic system dysfunction. This is intimately correlated to age. Our findings suggest the importance of the DTI-ALPS approach in assessing the function of the glymphatic system in ASD.
Collapse
Affiliation(s)
- Xin Li
- Department of Anaesthesiology, School of Medicine, Yan’an University, Yanan, China
| | - Cailian Ruan
- Anatomy Department, School of Medicine, Yan’an University, Yanan City, China
| | - Abdoulaye Issotina Zibrila
- Laboratory of Experimental Pharmacology, Department of Animal Physiology, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Mazen Musa
- Department of Orthodontics, Al Tegana Dental Teaching Hospital, Faculty of Dentistry, University of Science and Technology, Omdurman, Sudan
| | - Yifan Wu
- MD Undergraduate Program, School of Medicine, Yan’an University, Yan’an City, China
| | - Zhengxiang Zhang
- Department of Pharmacology, School of Medicine, Yan’an University, Yan’an City, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi City, China
| | - Mustafa Salimeen
- Department of Radiology, Affiliated Hospital, School of Medicine, Yan’an University, Yan’an City, China
- Department of Radiology, Dongola Teaching Hospital Faculty of Medicine and Health Sciences, University of Dongola, Dongola, Republic of Sudan, Dongola, Sudan
- * Correspondence: Mustafa Salimeen, Radiology Department, Affiliated Hospital, School of Medicine, Yana’an University, Yan’an City, China (e-mail: )
| |
Collapse
|
4
|
Liu T, Wu J, Zhao Z, Li M, Lv Y, Li M, Gao F, You Y, Zhang H, Ji C, Wu D. Developmental pattern of association fibers and their interaction with associated cortical microstructures in 0-5-month-old infants. Neuroimage 2022; 261:119525. [PMID: 35908606 DOI: 10.1016/j.neuroimage.2022.119525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Association fibers connect the cortical regions and experience rapid development involving myelination and axonal growth during infancy. Yet, the spatiotemporal patterns of microstructural changes along these tracts, as well as the developmental interaction between the white matter (WM) tracts and the cortical gray matter (cGM) connected to them, are mostly unknown during infancy. In this study, we performed a diffusion MRI-based tractography and microstructure study in a cohort of 89 healthy preterm-born infants with gestational age at birth between 28.1∼36.4 weeks and postmenstrual age at scan between 39.9∼59.9 weeks. Results revealed that several C-shaped fibers, such as the arcuate fasciculus, cingulum, and uncinate fasciculus, demonstrated symmetrical along-tract profiles; and the horizontally oriented running fibers, including the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus, demonstrated an anterior-posterior developmental gradient. This study characterized the along-tract profiles using fixel-based analysis and revealed that the fiber cross-section (FC) of all five association fibers demonstrated a fluctuating increase with age, while the fiber density (FD) monotonically increase with age. NODDI was utilized to analyze the microstructural development of cGM and indicated cGM connected to the anterior end of the association fibers developed faster than that of the posterior end during 0-5 months. Notably, a mediation analysis was used to explore the relation between the development of WM and associated cGM, and demonstrated a partial mediation effect of FD in WM on the development of intracellular volume (ICV) in cGM and a full mediation effect of ICV on the growth of FD in most fibers, suggesting a predominant mediation of cGM on the WM development. Furthermore, for assessing whether those results were biased by prematurity, we compared preterm- and term-born neonates with matched scan age, gender, and multiple births from the developing human connectome project (dHCP) dataset to assess the effect of preterm-birth, and the results indicated a similar developmental pattern of the association fibers and their attached cGM. These findings presented a comprehensive picture of the major association fibers during early infancy and deciphered the developmental interaction between WM and cGM in this period.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jiani Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyan Li
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
5
|
Zhao X, Zhang C, Zhang B, Yan J, Wang K, Zhu Z, Zhang X. The Value of Diffusion Kurtosis Imaging in Detecting Delayed Brain Development of Premature Infants. Front Neurol 2021; 12:789254. [PMID: 34966352 PMCID: PMC8710729 DOI: 10.3389/fneur.2021.789254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Preterm infants are at high risk of the adverse neurodevelopmental outcomes. Our aim is to explore the value of diffusion kurtosis imaging (DKI) in diagnosing brain developmental disorders in premature infants. Materials and Methods: A total of 52 subjects were included in this study, including 26 premature infants as the preterm group, and 26 full-term infants as the control group. Routine MRI and DKI examinations were performed. Mean kurtosis (MK), radial kurtosis (RK), fractional anisotropy (FA), and mean diffusivity (MD) values were measured in the brain regions including posterior limbs of the internal capsule (PLIC), anterior limb of internal capsule (ALIC), parietal white matter (PWM), frontal white matter (FWM), thalamus (TH), caudate nucleus (CN), and genu of the corpus callosum (GCC). The chi-squared test, t-test, Spearman's correlation analysis, and receiver operating characteristic curve were used for data analyses. Results: In the premature infant group, the MK and RK values of PLIA, ALIC, and PWM were lower than those in the control group (p < 0.05). The FA values of PWM, FWM, and TH were also lower than those of the control group (p < 0.05). The area under curves of MK in PLIC and ALIC, MD in PWM, and FA in FWM were 0.813, 0.802, 0.842, and 0.867 (p < 0.05). In the thalamus and CN, the correlations between MK, RK values, and postmenstrual age (PMA) were higher than those between FA, MD values, and PMA. Conclusion: Diffusion kurtosis imaging can be used as an effective tool in detecting brain developmental disorders in premature infants.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiang Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Kaiyu Wang
- MRI Research, GE Healthcare, Beijing, China
| | | | - Xiaoan Zhang
- Department of Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Salimeen MSA, Liu C, Li X, Wang M, Singh M, Si S, Li M, Cheng Y, Wang X, Zhao H, Wu F, Zhang Y, Tafawa H, Pradhan A, Yang G, Yang J. Exploring Variances of White Matter Integrity and the Glymphatic System in Simple Febrile Seizures and Epilepsy. Front Neurol 2021; 12:595647. [PMID: 33967932 PMCID: PMC8097149 DOI: 10.3389/fneur.2021.595647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Simple febrile seizures (SFS) and epilepsy are common seizures in childhood. However, the mechanism underlying SFS is uncertain, and the presence of obvious variances in white matter (WM) integrity and glymphatic function between SFS and epilepsy remain unclear. Therefore, this study aimed to investigate the differences in WM integrity and glymphatic function between SFS and epilepsy. Material and Methods: We retrospectively included 26 children with SFS, 33 children with epilepsy, and 28 controls aged 6–60 months who underwent magnetic resonance imaging (MRI). Tract-based spatial statistics (TBSS) were used to compare the diffusion tensor imaging (DTI) metrics of WM among the above-mentioned groups. T2-weighted imaging (T2WI) was used to segment the visible Virchow-Robin space (VRS) through a custom-designed automated method. VRS counts and volume were quantified and compared among the SFS, epilepsy, and control groups. Correlations of the VRS metrics and seizure duration and VRS metrics and the time interval between seizure onset and MRI scan were also investigated. Results: In comparison with controls, children with SFS showed no significant changes in fractional anisotropy (FA), axial diffusivity (AD), or radial diffusivity (RD) in the WM (P > 0.05). Decreased FA, unchanged AD, and increased RD were observed in the epilepsy group in comparison with the SFS and control groups (P < 0.05). Meanwhile, VRS counts were higher in the SFS and epilepsy groups than in the control group (VRS_SFS, 442.42 ± 74.58, VRS_epilepsy, 629.94 ± 106.55, VRS_control, 354.14 ± 106.58; P < 0.001), and similar results were found for VRS volume (VRS_SFS, 6,228.18 ± 570.74 mm3, VRS_epilepsy, 9,684.84 ± 7,292.66mm3, VRS_control, 4,007.22 ± 118.86 mm3; P < 0.001). However, VRS metrics were lower in the SFS group than in the epilepsy group (P < 0.001). In both SFS and epilepsy, VRS metrics positively correlated with seizure duration and negatively correlated with the course after seizure onset. Conclusion: SFS may not be associated with WM microstructural disruption; however, epilepsy is related to WM alterations. Seizures are associated with glymphatic dysfunction in either SFS or epilepsy.
Collapse
Affiliation(s)
- Mustafa Salimeen Abdelkareem Salimeen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Radiology, Dongola Teaching Hospital, University of Dongola, Dongola, Sudan
| | - Congcong Liu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xianjun Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Martha Singh
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuqing Si
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yannan Cheng
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huifang Zhao
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Habib Tafawa
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Anuja Pradhan
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanyu Yang
- School of Electronic Engineering, Xidian University, Xi'an, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Zhong J, Wang Y, Li J, Xue X, Liu S, Wang M, Gao X, Wang Q, Yang J, Li X. Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development. Biomed Eng Online 2020; 19:4. [PMID: 31941515 PMCID: PMC6964111 DOI: 10.1186/s12938-020-0748-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Site-specific variations are challenges for pooling analyses in multi-center studies. This work aims to propose an inter-site harmonization method based on dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived metrics on neonatal brains. Results DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are obtained on age-matched neonates without magnetic resonance imaging (MRI) abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-site differences of FA can be observed. The proposed harmonization approach and three conventional methods (the global-wise scaling, the voxel-wise scaling, and the ComBat) are performed on DTI-derived metrics from two sites. During the tract-based spatial statistics, inter-site differences can be removed by the proposed dual GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the proposed method holds the lowest median values in absolute errors and root mean square errors. During the pooling analysis of two sites, Pearson correlation coefficients between FA and the postmenstrual age after harmonization are larger than those before harmonization. The effect sizes (Cohen’s d between males and females) are also maintained by the harmonization procedure. Conclusions The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites. Results in this study further suggest that the GANs-based harmonization is a feasible pre-processing method for pooling analyses in multi-center studies.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Ying Wang
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China.
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Xuetong Xue
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Simin Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinbo Gao
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Detection of occult abnormalities in the deep gray matter nuclei of neonates with punctate white matter lesions by magnetic resonance spectroscopy. Neuroradiology 2019; 61:1447-1456. [PMID: 31511919 DOI: 10.1007/s00234-019-02291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Punctate white matter lesions (PWML) are common in preterm neonates and have also been reported in the full term. While most studies focus on white matter abnormalities, gray matter (GM) alterations are generally ignored due to the lack of abnormalities on conventional MRI. This study aims to investigate whether magnetic resonance spectroscopy is a sensitive and practical method to detect occult alterations of deep GM nuclei in these neonates. METHODS Neonates with PWML and controls with no MRI abnormalities were retrospectively studied. Apparent diffusion coefficient values and metabolic ratios (Cho/Cr, NAA/Cho, and NAA/Cr) in the lenticular nucleus and the thalamus were compared between the PWML and control groups. RESULTS Forty-two neonates with PWML (grades I, II, and III contained 14, 21, and 7 subjects, respectively) and 50 controls were enrolled. Apparent diffusion coefficient values in the lenticular nucleus and the thalamus were not significantly different between the PWML and the control groups. The NAA/Cho ratio was significantly lower in the PWML group than in the control group in both regions, whereas a lower NAA/Cr ratio was only observed in the thalamus. Significantly lower ratios of NAA/Cho in both regions and NAA/Cr in the thalamus were detected in the grade II and III subgroup, whereas the thalamic NAA/Cho ratio was decreased in the grade I group compared with controls. CONCLUSIONS Magnetic resonance spectroscopy is a sensitive method for detecting the occult deep GM abnormalities for the study cohort of neonates with PWML when compared with subjects without PWML.
Collapse
|
9
|
Gao Y, Li J, Xu H, Wang M, Liu C, Cheng Y, Li M, Yang J, Li X. A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI. Magn Reson Imaging 2019; 63:70-79. [PMID: 31425808 DOI: 10.1016/j.mri.2019.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/12/2019] [Accepted: 08/15/2019] [Indexed: 11/26/2022]
Abstract
Skull stripping or brain extraction on magnetic resonance imaging is a crucial step for structure analyses. In spite of good performances of conventional methods on adult brains, the skull stripping for T1-weighted imaging (T1WI) images on the neonatal brain remains a challenge because of the low image contrast. Therefore, this paper proposes a multi-view pyramid skull stripping network (PSSNet) for neonatal T1WI. To achieve superior skull stripping performance, the conventional pyramid scene parsing network was modified through (1) adding the spatial information of raw feature maps by squeezing the channel information during the feature extraction; (2) increasing the receptive field and adding boundary repair block instead of direct up-sampling; (3) obtaining the final mask through a fusion module on multi-view 2D slices. The 3D skull stripping problem was decomposed into multi-view 2D segmentation tasks to improve the efficiency. We enrolled T1WI images of 70 neonates from the local hospital and 7 infants from the publicly available dataset NeuroBrainS12 (MICCAI 2012). Images of 51 and 26 subjects were used for model training and validation. We compared the proposed method with 7 commonly used methods by using the Dice ratio, sensitivity, specificity, and efficiency. The proposed multi-view PSSNet with the highest Dice ratio (95.44-97.33%) was superior to other methods. Meanwhile, the sensitivity (93.19-97.02%), specificity (97.52-99.68%), and efficiency (8.59-9.30 s per subject) of the proposed method were comparable with the state-of-the-art method. In conclusion, the proposed skull stripping network was robust on neonatal T1WI datasets and feasible in clinical applications.
Collapse
Affiliation(s)
- Yan Gao
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an 710071, China.
| | - Haojun Xu
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Miaomiao Wang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Congcong Liu
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yannan Cheng
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mengxuan Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xianjun Li
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
10
|
Wang M, Liu C, Li X, Liu H, Jin C, Tao X, Wang X, Zhao H, Cheng Y, Wu F, Zhang Y, Yang J. Isolated periventricular pseudocysts do not affect white matter microstructure development in neonatal stage: A retrospective case-control diffusion tensor imaging study. Eur J Radiol 2019; 116:152-159. [DOI: 10.1016/j.ejrad.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
|
11
|
Nguyen AL, Ding Y, Suffren S, Londono I, Luck D, Lodygensky GA. The brain's kryptonite: Overview of punctate white matter lesions in neonates. Int J Dev Neurosci 2019; 77:77-88. [DOI: 10.1016/j.ijdevneu.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Annie L.A. Nguyen
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Yang Ding
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Sabrina Suffren
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Irène Londono
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - David Luck
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- Department of Pharmacology and PhysiologyUniversity of MontrealMontrealH3T 1J4Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| |
Collapse
|
12
|
Wang M, Liu H, Liu C, Li X, Jin C, Sun Q, Liu Z, Zheng J, Yang J. Prediction of adverse motor outcome for neonates with punctate white matter lesions by MRI images using radiomics strategy: protocol for a prospective cohort multicentre study. BMJ Open 2019; 9:e023157. [PMID: 30948562 PMCID: PMC6500102 DOI: 10.1136/bmjopen-2018-023157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Punctate white matter lesions (PWML) are prevalent white matter disease in preterm neonates, and may cause motor disorders and even cerebral palsy. However, precise individual-based diagnosis of lesions that result in an adverse motor outcome remains unclear, and an effective method is urgently needed to guide clinical diagnosis and treatment. Advanced radiomics for multiple modalities data can provide a possible look for biomarkers and determine prognosis quantitatively. The study aims to develop and validate a model for prediction of adverse motor outcomes at a corrected age (CA) of 24 months in neonates with PWML. METHODS AND ANALYSIS A prospective cohort multicentre study will be conducted in 11 Chinese hospitals. A total of 394 neonates with PWML confirmed by MRI will undergo a clinical assessment (modified Neonatal Behavioural Assessment Scale). At a CA of 18 months, the motor function will be assessed by Bayley Scales of Infant and Toddler Development-III (Bayley-III). Mild-to-severe motor impairments will be confirmed using the Bayley-III and Gross Motor Function Classification System at a CA of 24 months. During the data collection, the perinatal and clinical information will also be recorded. According to the radiomics strategy, the extracted imaging features and clinical information will be combined for exploratory analysis. After using multiple-modelling methodology, the accuracy, sensitivity and specificity will be computed. Internal and external validations will be used to evaluate the performance of the radiomics model. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of The First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2015LSK-172). All parents of eligible participants will be provided with a detailed explanation of the study and written consent will be obtained. The results of this study will be published in peer-reviewed journals and presented at local, national and international conferences. TRIAL REGISTRATION NUMBER NCT02637817; Pre-results.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heng Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Congcong Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xianjun Li
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Jin
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qinli Sun
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhe Liu
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zheng
- Clinical Research Centre, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Liu C, Jin C, Jian Z, Wang M, Li X, Liu H, Sun Q, Zeng L, Yang J. Assessment of myelination progression in subcortical white matter of children aged 6–48 months using T2-weighted imaging. Neuroradiology 2018; 60:1343-1351. [DOI: 10.1007/s00234-018-2108-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
|