1
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
2
|
Gallina P, Porfirio B, Caini S, Lolli F, Scollato A. Aqueductal CSF stroke volume is associated with the burden of perivascular space enlargement in chronic adult hydrocephalus. Sci Rep 2024; 14:12966. [PMID: 38839864 PMCID: PMC11153584 DOI: 10.1038/s41598-024-63926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
The inflow of CSF into perivascular spaces (PVS) in the brain is crucial for clearing waste molecules. Inefficiency in PVS flow leads to neurodegeneration. Failure of PVS flushing is associated with CSF flow impairment in the intracranial hydrodynamic condition of CSF hypo-pulsatility. However, enlarged PVS (ePVS), a finding indicative of PVS flow dysfunction, is also present in patients with derangement of CSF dynamics characterized by CSF hyper-pulsatility, which increases CSF flow. Intriguingly, two opposite intracranial hydrodynamic conditions would lead to the same result of impairing the PVS flushing. To investigate this issue, we assessed the subsistence of a dysfunctional interplay between CSF and PVS flows and, if the case, the mechanisms preventing a hyper-pulsatile brain from providing an effective PVS flushing. We analyzed the association between phase contrast MRI aqueductal CSF stroke volume (aqSV), a proxy of CSF pulsatility, and the burden of ePVS in chronic adult hydrocephalus, a disease involving a broad spectrum of intracranial hydrodynamics disturbances. In the 147 (85 males, 62 females) patients, the age at diagnosis ranged between 28 and 88 years (median 73 years). Ninety-seven patients had tri-ventriculomegaly and 50 tetra-ventriculomegaly. According to the extent of ePVS, 113 patients had a high ePVS burden, while 34 had a low ePVS burden. aqSV, which ranged between 0 and 562 μL (median 86 μL), was increased with respect to healthy subjects. Patients presenting with less ePVS burden had higher aqSV (p < 0.002, corrected for the multiple comparisons) than those with higher ePVS burden. The present study confirmed the association between CSF dynamics and PVS flow disturbances and demonstrated this association in intracranial hyper-pulsatility. Further studies should investigate the association between PVS flow failure and CSF hypo- and hyper-pulsatility as responsible/co-responsible for glymphatic failure in other neurodegenerative diseases, particularly in diseases in which CSF disturbances can be corrected, as in chronic adult hydrocephalus.
Collapse
Affiliation(s)
- Pasquale Gallina
- Neurosurgery Unit, CTO Hospital, Careggi University Hospital, Largo P Palagi 1, 50139, Florence, Italy.
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| | - Berardino Porfirio
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention, and Clinical Network, Florence, Italy
| | - Francesco Lolli
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Neurophysiology Unit, Careggi University Hospital, Florence, Italy
| | - Antonio Scollato
- Neurosurgery Unit, "Cardinale Panico" Hospital, Tricase, Lecce, Italy
| |
Collapse
|
3
|
Martins T, de Almeida B, Wu M, Wilckens KA, Minhas D, Ibinson JW, Aizenstein HJ, Santini T, Ibrahim TS. Characterization of pulsations in the brain and cerebrospinal fluid using ultra-high field magnetic resonance imaging. Front Neurosci 2024; 18:1305939. [PMID: 38784099 PMCID: PMC11112101 DOI: 10.3389/fnins.2024.1305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
The development of innovative non-invasive neuroimaging methods and biomarkers is critical for studying brain disease. Imaging of cerebrospinal fluid (CSF) pulsatility may inform the brain fluid dynamics involved in clearance of cerebral metabolic waste. In this work, we developed a methodology to characterize the frequency and spatial localization of whole brain CSF pulsations in humans. Using 7 Tesla (T) human magnetic resonance imaging (MRI) and ultrafast echo-planar imaging (EPI), in-vivo images were obtained to capture pulsations of the CSF signal. Physiological data were simultaneously collected and compared with the 7 T MR data. The primary components of signal pulsations were identified using spectral analysis, with the most evident frequency bands identified around 0.3, 1.2, and 2.4 Hz. These pulsations were mapped spatially and temporally onto the MR image domain and temporally onto the physiological measures of electrocardiogram and respiration. We identified peaks in CSF pulsations that were distinct from peaks in grey matter and white matter regions. This methodology may provide novel in vivo biomarkers of disrupted brain fluid dynamics.
Collapse
Affiliation(s)
- Tiago Martins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bruno de Almeida
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kristine A. Wilckens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James W. Ibinson
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Li X, Wang Y, Xia B, Che H, Yan Z. Lumboperitoneal shunt and ventriculoperitoneal shunt for chronic hydrocephalus after aneurysmal subarachnoid hemorrhage: a comparison. Front Surg 2024; 11:1368493. [PMID: 38533091 PMCID: PMC10963422 DOI: 10.3389/fsurg.2024.1368493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Chronic hydrocephalus after aneurysmal subarachnoid hemorrhage (aSAH) results in poor neurological outcomes and cognitive deficits. Currently, the main treatments for chronic hydrocephalus include ventriculoperitoneal shunt (VPS) and lumboperitoneal shunt (LPS); however, the optimal treatment for chronic hydrocephalus after aSAH remains controversial. Method The records of 82 patients were retrospectively analyzed, and the patients were divided into VPS and LPS groups based on surgical methods. The efficacy, shunt successful rate and complications were compared. The assessments of treatment efficacy included the Evans index score (EIS), Keifer's hydrocephalus score (KHS), Mini-Mental State Examination (MMSE) score and functional independence measure (FIM). Patients were followed up for three months to observe the postoperative curative effects and complications. Results The rate of shunt obstruction was significantly higher in the LPS group than that in the VPS group (p < 0.05), and the shunt successful rate was significantly higher in the VPS group than that in the LPS group (p < 0.05). The total rate of complications was 24.4% for LPS and 39% for VPS. The improvements in EIS, KHS, MMSE, and FIM within each group after the shunt were significantly different compared to those before shunt (p < 0.05). Compared to those in the LPS group, the improvements in EIS, KHS, MMSE, and FIM were significantly different in the VPS group after shunt (p < 0.05). Conclusion Compared with LPS, VPS in the treatment for chronic hydrocephalus after aSAH had greater therapeutic efficacy, as indicated by improved radiological outcomes, improved shunt successful rate, improved clinical outcomes, and improved quality of life. Therefore, we believe that VPS is the preferred treatment option for chronic hydrocephalus after aSAH, while LPS should only be used as an alternative to VPS.
Collapse
Affiliation(s)
| | | | | | | | - Zhongnan Yan
- Department of Neurosurgery, Xi’an Gaoxin Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Martins T, Santini T, de Almeida B, Wu M, Wilckens KA, Minhas D, Ibinson JW, Aizenstein HJ, Ibrahim TS. Characterization of oscillations in the brain and cerebrospinal fluid using ultra-high field magnetic resonance imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299452. [PMID: 38105931 PMCID: PMC10723515 DOI: 10.1101/2023.12.05.23299452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Development of innovative non-invasive neuroimaging methods and biomarkers are critical for studying brain disease. In this work, we have developed a methodology to characterize the frequency responses and spatial localization of oscillations and movements of cerebrospinal fluid (CSF) flow in the human brain. Using 7 Tesla human MRI and ultrafast echo-planar imaging (EPI), in-vivo images were obtained to capture CSF oscillations and movements. Physiological data was simultaneously collected and correlated with the 7T MR data. The primary components of CSF oscillations were identified using spectral analysis (with frequency bands identified around 0.3Hz, 1.2Hz and 2.4Hz) and were mapped spatially and temporally onto the MR image domain and temporally onto the physiological domain. The developed methodology shows a good consistency and repeatability (standard deviation of 0.052 and 0.078 for 0.3Hz and 1.2Hz bands respectively) in-vivo for potential brain dynamics and CSF flow and clearance studies.
Collapse
Affiliation(s)
- Tiago Martins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bruno de Almeida
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kristine A. Wilckens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James W. Ibinson
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Ho CY, Sankar M, Persohn S, Kralik SF, Graner B, Territo PR. Quantitative assessment of cerebrospinal fluid flow and volume in enlargement of the subarachnoid spaces of infancy using MRI. Pediatr Radiol 2023; 53:1919-1926. [PMID: 37100991 DOI: 10.1007/s00247-023-05659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND The etiology of enlarged subarachnoid spaces of infancy is unknown; however, there is radiologic similarity with normal pressure hydrocephalus. Adults with normal pressure hydrocephalus have been shown to have altered cerebrospinal (CSF) flow through the cerebral aqueduct. OBJECTIVE To explore potential similarity between enlarged subarachnoid spaces of infancy and normal pressure hydrocephalus, we compared MRI-measured CSF flow through the cerebral aqueduct in infants with enlarged subarachnoid spaces of infancy to infants with normal brain MRIs. MATERIALS AND METHODS This was an IRB approved retrospective study. Clinical brain MRI examinations including axial T2 imaging and phase contrast through the aqueduct were reviewed for infants with enlarged subarachnoid spaces of infancy and for infants with a qualitatively normal brain MRI. The brain and CSF volumes were segmented using a semi-automatic technique (Analyze 12.0) and CSF flow parameters were measured (cvi42, 5.14). All data was assessed for significant differences while controlling for age and sex using analysis of covariance (ANCOVA). RESULTS Twenty-two patients with enlarged subarachnoid spaces (mean age 9.0 months, 19 males) and 15 patients with normal brain MRI (mean age 18.9 months, 8 females) were included. Volumes of the subarachnoid space (P < 0.001), lateral (P < 0.001), and third ventricles (P < 0.001) were significantly larger in infants with enlarged subarachnoid spaces of infancy. Aqueductal stroke volume significantly increased with age (P = 0.005), regardless of group. CONCLUSION CSF volumes were significantly larger in infants with enlarged subarachnoid spaces of infancy versus infants with a normal MRI; however, there was no significant difference in CSF flow parameters between the two groups.
Collapse
Affiliation(s)
- Chang Y Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Meghana Sankar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Scott Persohn
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Brian Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Sincomb S, Moral-Pulido F, Campos O, Martínez-Bazán C, Haughton V, Sánchez AL. An In-Vitro Experimental Investigation of Oscillatory Flow in the Cerebral Aqueduct. RESEARCH SQUARE 2023:rs.3.rs-2757861. [PMID: 37066335 PMCID: PMC10104269 DOI: 10.21203/rs.3.rs-2757861/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background The cerebrospinal fluid filling the ventricles of the brain moves with a cyclic velocity driven by the transmantle pressure, or instantaneous pressure difference between the lateral ventricles and the cerebral subarachnoid space. This dynamic phenomenon is of particular interest for understanding ventriculomegaly in cases of normal pressure hydrocephalus (NPH). The magnitude of the transmantle pressure is small, on the order of a few Pascals, thereby hindering direct in vivo measurements. To complement previous computational efforts, we perform here, for the first time, in vitro experiments involving an MRI-informed experimental model of the cerebral aqueduct flow. Methods Dimensional analysis is used in designing a scaled-up model of the aqueduct flow, with physical similarity maintained by adjusting the flow frequency and the properties of the working fluid. High-resolution MRI images are used to generate a 3D-printed anatomically correct aqueduct model. A programmable pump is used to generate a pulsatile flow rate signal measured from phase-contrast MRI. Extensive experiments are performed to investigate the relation between the cyclic fluctuations of the aqueduct flow rate and the transmantle pressure fluctuation over the range of flow conditions commonly encountered in healthy subjects. The time-dependent pressure measurements are validated through comparisons with predictions obtained with a previously derived computational model. Results Parametric dependences of the pressure-fluctuation amplitude and its phase lag relative to the flow rate are delineated. The results indicate, for example, that the phase lag is nearly independent on the stroke volume. A simple expression relating the mean amplitude of the interventricular pressure difference (between third and fourth ventricle) with the stroke volume of the oscillatory flow is established. Conclusions MRI-informed in-vitro experiments using an anatomically correct model of the cerebral aqueduct and a realistic flow rate have been used to characterize transmantle pressure. The quantitative results can be useful in enabling quick clinical assessments of transmantle pressure to be made from noninvasive phase contrast MRI measurements of aqueduct flow rates. The scaled-up experimental facility provides the ability to conduct future experiments specifically aimed at investigating altered CSF flow and associated transmantle pressure, as needed in connection with NPH studies.
Collapse
Affiliation(s)
- Stephanie Sincomb
- Department of Mechanical and Aerospace Engineering, University of California- San Diego, La Jolla, US
| | - Francisco Moral-Pulido
- Departamento de Ingeniería Mecánica y Minera, Universidad de Jaén, Jaén, Spain
- Andalusian Institute for Earth System Research, Universidad de Jaén, Jaén, Spain
| | - Obed Campos
- Department of Mechanical and Aerospace Engineering, University of California- San Diego, La Jolla, US
| | - Carlos Martínez-Bazán
- Departamento de Mecánica de Estructuras e Ingeniería Hidráulica, Universidad de Granada, Granada, Spain
- Andalusian Institute for Earth System Research, Universidad de Granada, Granada, Spain
| | - Victor Haughton
- School of Medicine and Public Health, University of Wisconsin, Madison, US
| | - Antonio L. Sánchez
- Department of Mechanical and Aerospace Engineering, University of California- San Diego, La Jolla, US
| |
Collapse
|
8
|
He WJ, Zhang XJ, Xu QZ, Bai RT, Chen JK, Zhou X, Xia J. Are preoperative phase-contrast CSF flow parameters ideal for predicting the outcome of shunt surgery in patients with idiopathic normal pressure hydrocephalus? Front Neurol 2022; 13:959450. [PMID: 36237632 PMCID: PMC9552837 DOI: 10.3389/fneur.2022.959450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Phase-contrast magnetic resonance (PC-MR) is widely used in patients with idiopathic normal pressure hydrocephalus (iNPH), but its role in predicting prognosis remains controversial. To evaluate the effectiveness of preoperative PC-MR CSF flow measurement in predicting the clinical response to shunt surgery in patients with iNPH. Methods Forty-six patients with definite iNPH were included between January 2018 and January 2022. PC-MR was used to evaluate CSF peak velocity (PV), average velocity, aqueductal stroke volume (ASV), net ASV, and net flow. The modified Rankin Scale (mRS), iNPH grading scale (iNPHGS), Mini-Mental State Examination (MMSE), and Timed 3-m Up and Go Test (TUG) were used for clinical assessment. The primary endpoint was the improvement in the mRS score 1 year after surgery, and the secondary endpoints were the iNPHGS, MMSE, and TUG scores at 1 year. Differences between shunt improvement and non-improvement groups, based on the clinical outcomes, were compared using the Mann-Whitney U-test, logistic regression models, and receiver operating characteristic curves. Correlations between CSF flow parameters and the baseline clinical outcomes were assessed using Spearman's correlation coefficient. Results No CSF parameters significantly differed between shunt improvement and non-improvement groups based on mRS and secondary outcomes. And all CSF parameters showed significant overlap in both shunt improvement and non-improvement groups based on mRS and secondary outcomes. Significant correlations between the mRS and iNPHGS scores, and PV, ASV, and net ASV were observed. Conclusion While some preoperative PC-MR CSF flow parameters reflected the symptom severity of iNPH to a certain extent, they alone might not be ideal markers of shunt responsiveness.
Collapse
Affiliation(s)
- Wen-Jie He
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Xie-jun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Qi-Zhong Xu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Run-tao Bai
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Jia-kuan Chen
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Xi Zhou
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Jun Xia
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
- *Correspondence: Jun Xia
| |
Collapse
|
9
|
Can preoperative brain imaging features predict shunt response in idiopathic normal pressure hydrocephalus? A PRISMA review. Neuroradiology 2022; 64:2119-2133. [DOI: 10.1007/s00234-022-03021-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
|
10
|
Stöcklein S, Brandlhuber M, Lause S, Pomschar A, Jahn K, Schniepp R, Alperin N, Ertl-Wagner B. Decreased Craniocervical CSF Flow in Patients with Normal Pressure Hydrocephalus: A Pilot Study. AJNR Am J Neuroradiol 2022; 43:230-237. [PMID: 34992125 PMCID: PMC8985674 DOI: 10.3174/ajnr.a7385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Normal pressure hydrocephalus is characterized by systolic peaks of raised intracranial pressure, possibly due to a reduced compliance of the spinal CSF spaces. This concept of a reduced spinal CSF buffer function may be reflected by a low cervical CSF outflow from the cranium. The aim of this study was to investigate craniospinal CSF flow rates by phase-contrast MR imaging in patients with normal pressure hydrocephalus. MATERIALS AND METHODS A total of 42 participants were included in this prospective study, consisting of 3 study groups: 1) 10 patients with normal pressure hydrocephalus (mean age, 74 [SD, 6] years, with proved normal pressure hydrocephalus according to current scientific criteria); 2) eighteen age-matched healthy controls (mean age, 71 [SD, 5] years); and 3) fourteen young healthy controls (mean age, 21 [SD, 2] years, for investigation of age-related effects). Axial phase-contrast MR imaging was performed, and the maximal systolic CSF and total arterial blood flow rates were measured at the level of the upper second cervical vertebra and compared among all study groups (2-sample unpaired t test). RESULTS The maximal systolic CSF flow rate was significantly decreased in patients with normal pressure hydrocephalus compared with age-matched and young healthy controls (53 [SD, 40] mL/m; 329 [SD, 175] mL/m; 472 [SD, 194] mL/m; each P < .01), whereas there were no significant differences with regard to maximal systolic arterial blood flow (1160 [SD, 404] mL/m; 1470 [SD, 381] mL/m; 1400 [SD, 254] mL/m; each P > .05). CONCLUSIONS The reduced maximal systolic craniospinal CSF flow rate in patients with normal pressure hydrocephalus may be reflective of a reduced compliance of the spinal CSF spaces and an ineffective spinal CSF buffer function. Systolic craniospinal CSF flow rates are an easily obtainable MR imaging-based measure that may support the diagnosis of normal pressure hydrocephalus.
Collapse
Affiliation(s)
| | | | - S.S. Lause
- Department of Dermatology (S.S.L.), Bethesda Hospital, Freudenberg, Germany
| | - A. Pomschar
- Radiological Office (A.P.), Centre for Radiology, Munich, Germany
| | - K. Jahn
- Neurology, and Friedrich-Baur-Institute (FBI) of the Department of Neurology (K.J.)
| | - R. Schniepp
- Neurology (R.S.), Ludwig-Maximilians-University Munich, Munich, Germany
| | - N. Alperin
- Department of Radiology (N.A.), University of Miami, Coral Gables, Florida
| | - B. Ertl-Wagner
- Department of Medical Imaging (B.E.-W.), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Carlsen JF, Backlund ADL, Mardal CA, Taudorf S, Holst AV, Munch TN, Hansen AE, Hasselbalch SG. Can Shunt Response in Patients with Idiopathic Normal Pressure Hydrocephalus Be Predicted from Preoperative Brain Imaging? A Retrospective Study of the Diagnostic Use of the Normal Pressure Hydrocephalus Radscale in 119 Patients. AJNR Am J Neuroradiol 2022; 43:223-229. [PMID: 34969666 PMCID: PMC8985670 DOI: 10.3174/ajnr.a7378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE The Normal Pressure Hydrocephalus Radscale is a combined scoring of 7 different structural imaging markers on preoperative brain CT or MR imaging in patients with idiopathic normal pressure hydrocephalus: callosal angle, Evans Index, Sylvian fissure dilation, apical sulcal narrowing, mean temporal horn diameter, periventricular WM lesions, and focal sulcal dilation. The purpose of this retrospective study was to assess the performance of the Normal Pressure Hydrocephalus Radscale in distinguishing idiopathic normal pressure hydrocephalus shunt responders from nonresponders. MATERIALS AND METHODS The preoperative MR imaging and CT scans of 119 patients with idiopathic normal pressure hydrocephalus were scored using the Normal Pressure Hydrocephalus Radscale. A summary shunt-response score assessed within 6 months from ventriculoperitoneal shunt surgery, combining the effect on cognition, gait, and urinary incontinence, was used as a reference. The difference between the mean Normal Pressure Hydrocephalus Radscale for responders and nonresponders was tested using the Student t test. The area under the curve was calculated for the Normal Pressure Hydrocephalus Radscale to assess shunt response. To ascertain reproducibility, we assessed the interobserver agreement between the 2 independent observers as intraclass correlation coefficients for the Normal Pressure Hydrocephalus Radscale for 74 MR imaging scans and 19 CT scans. RESULTS Ninety-four (79%) of 119 patients were shunt responders. The mean Normal Pressure Hydrocephalus Radscale score for shunt responders was 8.35 (SD, 1.53), and for nonresponders, 7.48 (SD, 1.53) (P = .02). The area under the curve for the Normal Pressure Hydrocephalus Radscale was 0.66 (range, 0.54-0.78). The intraclass correlation coefficient for the Normal Pressure Hydrocephalus Radscale was 0.86 for MR imaging and 0.82 for CT. CONCLUSIONS The Normal Pressure Hydrocephalus Radscale showed moderate discrimination for shunt response but cannot, on its own, be used for selecting patients with idiopathic normal pressure hydrocephalus for shunt surgery.
Collapse
Affiliation(s)
- J F Carlsen
- From the Department of Radiology (J.F.C., C.A.M., A.E.H.)
| | - A D L Backlund
- Department of Radiology (A.D.L.B.), Hospital of North Zealand, Hillerød, Denmark
| | - C A Mardal
- From the Department of Radiology (J.F.C., C.A.M., A.E.H.)
| | - S Taudorf
- Department of Neurology (S.T., S.G.H.)
| | - A V Holst
- Danish Dementia Research Centre, and Department of Neurosurgery (A.V.H., T.N.M.), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - T N Munch
- Danish Dementia Research Centre, and Department of Neurosurgery (A.V.H., T.N.M.), Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine (T.N.M., A.E.H.), University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research (T.N.M.), Statens Serum Institut, Copenhagen, Denmark
| | - A E Hansen
- From the Department of Radiology (J.F.C., C.A.M., A.E.H.)
- Department of Clinical Medicine (T.N.M., A.E.H.), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Xie D, Chen H, Guo X, Liu Y. Comparative study of lumboperitoneal shunt and ventriculoperitoneal shunt in the treatment of idiopathic normal pressure hydrocephalus. Am J Transl Res 2021; 13:11917-11924. [PMID: 34786122 PMCID: PMC8581892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study aimed to compare lumboperitoneal shunt (LPS) and ventriculoperitoneal shunt (VPS) in the treatment of idiopathic normal pressure hydrocephalus (iNPH). METHODS From September 2016 to November 2019, 76 iNPH patients who underwent shunt operation were recruited and assigned to a lumboperitoneal shunt group (LPS group, n=40) and a ventriculoperitoneal shunt (VPS group, n=36) according to different treatment methods. The right first time (RFT) and improvement in triad of the two groups were observed. Keifer's hydrocephalus score (KHS) was used to evaluate the improvement of clinical symptoms, Mini-Mental State Examination (MMSE) and National Institutes of Health Stroke Scale (NIHSS) were used to evaluate the improvement of cognitive function, and the Functional Independence Measure (FIM) to evaluate the postoperative living status of patients. The two groups of patients were followed up for 6 months to observe the postoperative curative effect and incidence of complications. RESULTS The RFT of LPS group was markedly higher than that of VPS group. There was no remarkable difference in the improvement of triad, KHS score, MMSE score, NIHSS score, and FIM score between the two groups after treatment, as well as overall response rate (ORR) after six months. The total incidence of complications in LPS group was considerably lower than that in VPS group. CONCLUSION LPS and VPS have similar curative effect in the treatment of iNPH, but LPS can avoid intraparenchymal hemorrhage (IPH) caused by ventricular puncture, and it increases the RFT.
Collapse
Affiliation(s)
- Dongcheng Xie
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University Chaoyang District, Beijing 100012, China
| | - Hongwei Chen
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University Chaoyang District, Beijing 100012, China
| | - Xiaochuan Guo
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University Chaoyang District, Beijing 100012, China
| | - Yiran Liu
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital of China Medical University Chaoyang District, Beijing 100012, China
| |
Collapse
|
13
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Using deep learning convolutional neural networks to automatically perform cerebral aqueduct CSF flow analysis. J Clin Neurosci 2021; 90:60-67. [PMID: 34275582 DOI: 10.1016/j.jocn.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Since the development of phase-contrast magnetic resonance imaging (PC-MRI), quantification of cerebrospinal fluid (CSF) flow across the cerebral aqueduct has been utilized for diagnosis of conditions such as normal pressure hydrocephalus (NPH). This study aims to develop an automated method of aqueduct CSF flow analysis using convolution neural networks (CNNs), which can replace the current standard involving manual segmentation of aqueduct region of interest (ROI). Retrospective analysis was performed on 333 patients who underwent PC-MRI, totaling 353 imaging studies. Aqueduct flow measurements using manual ROI placement was performed independently by two radiologists. Two types of CNNs, MultiResUNet and UNet, were trained using ROI data from the senior radiologist, with PC-MRI studies being randomly divided into training (80%) and validation (20%) datasets. Segmentation performance was assessed using Dice similarity coefficient (DSC), and CSF flow parameters were calculated from both manual and CNN-derived ROIs. MultiResUNet, UNet and second radiologist (Rater 2) had DSCs of 0.933, 0.928, and 0.867, respectively, with p < 0.001 between CNNs and Rater 2. Comparison of CSF flow parameters showed excellent intraclass correlation coefficients (ICCs) for MultiResUNet, with lowest correlation being 0.67. For UNet, lower ICCs of -0.01 to 0.56 were observed. Only 3/353 (0.8%) studies failed to have appropriate ROIs placed by MultiResUNet, compared to 12/353 (3.4%) failed cases for UNet. In conclusion, CNNs were able to measure aqueductal CSF flow with similar performance to a senior neuroradiologist. MultiResUNet demonstrated fewer cases of segmentation failure and more consistent flow measurements compared to the widely adopted UNet.
Collapse
|
15
|
Yamada S, Ishikawa M, Nozaki K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS 2021; 18:20. [PMID: 33874972 PMCID: PMC8056523 DOI: 10.1186/s12987-021-00243-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/13/2021] [Indexed: 11/15/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
16
|
Scollato A, Caini S, Angelini L, Lastrucci G, Di Lorenzo N, Porfirio B, Gallina P. Aqueductal CSF stroke volume measurements may drive management of shunted idiopathic normal pressure hydrocephalus patients. Sci Rep 2021; 11:7095. [PMID: 33782441 PMCID: PMC8007697 DOI: 10.1038/s41598-021-86350-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
CSF shunting with adjustable valve is the treatment of idiopathic normal pressure hydrocephalus. The opening pressure valve setting is left to the neurosurgeon’s experience. Aqueductal CSF stroke volume by phase-contrast magnetic resonance measures the CSF passing through the Sylvian aqueduct and it changes with intracranial hydrodynamics. We sought to identify a window of stroke volume differences associated with the best clinical outcome and lowest rate of complications.
The records of 69 patients were reviewed. At every clinical check, stroke volume, opening pressure valve, clinical outcome, and CSF overdrainage were analyzed. The correlation between stroke volume differences and negative outcome was also analyzed. The median follow-up was 2.3 years (range 0.3–10.4 years). The odds of negative outcome between two consecutive checks significantly increased by 16% (95%CI 4–28%, p = 0.006). Taking the lowest risk group as reference, the odds ratio of negative outcome was 1.16 (95%CI 0.51–2.63, p = 0.726) for SV differences less than − 37.6 µL, while it was 1.96 (95%CI 0.97–3.98, p = 0.062) for stroke volume changes above + 23.1 µL. Maintaining stroke volume values within a definite range might help maximize clinical benefit and avoid the risk of CSF overdrainage.
Collapse
Affiliation(s)
- Antonio Scollato
- Neurosurgical Unit, Cardinale Panico Hospital, Tricase, Lecce, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention, and Clinical Network (ISPRO), Florence, Italy
| | - Lucia Angelini
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Giancarlo Lastrucci
- Department of NEUROFARBA, University of Florence, Florence, Italy.,Florence School of Neurosurgery, University of Florence, Florence, Italy
| | | | - Berardino Porfirio
- Careggi University Hospital, Florence, Italy. .,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| | - Pasquale Gallina
- Department of NEUROFARBA, University of Florence, Florence, Italy.,Florence School of Neurosurgery, University of Florence, Florence, Italy.,Careggi University Hospital, Florence, Italy
| |
Collapse
|
17
|
Yamada S, Ishikawa M, Ito H, Yamamoto K, Yamaguchi M, Oshima M, Nozaki K. Cerebrospinal fluid dynamics in idiopathic normal pressure hydrocephalus on four-dimensional flow imaging. Eur Radiol 2020; 30:4454-4465. [PMID: 32246220 DOI: 10.1007/s00330-020-06825-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To evaluate complex CSF movements and shear stress in patients with idiopathic normal pressure hydrocephalus (iNPH) on four-dimensional (4D) flow MRI. METHODS Three-dimensional velocities and volumes of the reciprocating CSF movements through 12 ROIs from the foramen of Monro to the upper cervical spine were measured in 41 patients with iNPH, 23 patients with co-occurrence of iNPH and Alzheimer's disease (AD), and 9 age-matched controls, using 4D flow imaging and application. Stroke volume, reversed-flow rate, and shear stress were automatically calculated. Relationships between flow-related parameters and morphological measurements were also assessed. RESULTS Stroke volumes, reversed-flow rates, and shear stress at the cerebral aqueduct were significantly higher in patients with iNPH than in controls. Patients with pure iNPH had significantly higher shear stress at the ventral aspect of the cerebral aqueduct than those with co-occurrence of iNPH and AD. The stroke volume at the upper end of the cerebral aqueduct had the strongest association with the anteroposterior diameter of the lower end of the cerebral aqueduct (r = 0.52). The stroke volume at the foramen of Monro had significant associations with the indices specific to iNPH. The shear stress at the dorsal aspect of the cerebral aqueduct had the strongest association with the diameter of the foramen of Magendie (r = 0.52). CONCLUSIONS Stroke volumes, reversed-flow rates, and shear stress through the cerebral aqueduct on 4D flow MRI are useful parameters for iNPH diagnosis. These findings can aid in elucidating the mechanism of ventricular enlargement in iNPH. KEY POINTS • The CSF stroke volume and bimodal shear stress at the cerebral aqueduct were considerably higher in patients with iNPH. • The patients with pure iNPH had significantly higher shear stress at the ventral aspect of the cerebral aqueduct than those with co-occurrence of iNPH and AD. • The shear stress at the cerebral aqueduct was significantly associated with the diameter of the foramen of Magendie.
Collapse
Affiliation(s)
- Shigeki Yamada
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan. .,Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| | - Masatsune Ishikawa
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan.,Rakuwa Villa Ilios, Kyoto, Japan
| | - Hirotaka Ito
- Medical System Research & Development Center, FUJIFILM Corporation, Tokyo, Japan
| | - Kazuo Yamamoto
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Makoto Yamaguchi
- Department of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Marie Oshima
- Interfaculty Initiative in Information Studies/Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|