1
|
Wu G, Zhu C, Wang H, Fu D, Lu X, Cao C, Zhang X, Zhu J, Huang L, Mossa-Basha M, Xia S. Co-existing intracranial and extracranial carotid atherosclerosis predicts large-artery atherosclerosis stroke recurrence: a single-center prospective study utilizing combined head-and-neck vessel wall imaging. Eur Radiol 2023; 33:6970-6980. [PMID: 37081300 PMCID: PMC10527495 DOI: 10.1007/s00330-023-09654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVES Intracranial and extracranial plaque features on high-resolution vessel wall imaging (HR-VWI) are associated with large-artery atherosclerosis (LAA) stroke recurrence. However, most studies have focused on a single vascular bed, and the prognostic value of combined intracranial and extracranial plaque features has yet to be studied. This study aimed to investigate the roles of plaque features, plaque number, and co-existing atherosclerosis in predicting stroke recurrence, utilizing combined head-and-neck HR-VWI. METHODS From September 2016 to March 2020, participants with acute LAA ischemic strokes were prospectively enrolled and underwent combined head-and-neck HR-VWI. The participants were followed for stroke recurrence for at least 12 months or until a subsequent event occurred. The imaging features at baseline, including conventional and histogram plaque features, plaque number, and co-existing atherosclerosis, were evaluated. Univariable Cox regression analysis and the least absolute shrinkage and selection operator (lasso) method were used for variable screening. Multivariable Cox regression analyses were used to determine the independent risk factors of stroke recurrence. RESULTS A total of 97 participants (59 ± 12 years, 63 men) were followed for a median of 30.9 months, and 21 participants experienced recurrent strokes. Multivariable Cox analysis identified co-existing intracranial high signal on T1-weighted fat-suppressed images (HST1) and extracranial carotid atherosclerosis (HR, 6.12; 95% CI, 2.52-14.82; p = 0.001) as an independent imaging predictor of stroke recurrence. CONCLUSION Co-existing intracranial HST1 and extracranial carotid atherosclerosis independently predicted LAA stroke recurrence. Combined head-and-neck HR-VWI is a promising technique for atherosclerosis imaging. CLINICAL RELEVANCE STATEMENT This prospective study using combined head-and-neck HR-VWI highlighted the necessity of both intracranial culprit plaque evaluation and multi-vascular bed assessment, adding value to the prediction of stroke recurrence. KEY POINTS • This study highlighted the necessity of both intracranial culprit plaque evaluation and multi-vascular bed assessment, adding value to the prediction of stroke recurrence. • This prospective study using combined head-and-neck HR-VWI found co-existing intracranial HST1 and extracranial carotid atherosclerosis to be independent predictors of stroke recurrence.
Collapse
Affiliation(s)
- Gemuer Wu
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, 325 9Th Ave, Seattle, WA, 98104, USA
| | - Huiying Wang
- The School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dingwei Fu
- Department of Radiology, The Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, Jinghu District, Wuhu, 241000, China
| | - Xiudi Lu
- Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Chen Cao
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | | | - Jinxia Zhu
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Lixiang Huang
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, 325 9Th Ave, Seattle, WA, 98104, USA
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
7T MRI for Intracranial Vessel Wall Lesions and Its Associated Neurological Disorders: A Systematic Review. Brain Sci 2022; 12:brainsci12050528. [PMID: 35624915 PMCID: PMC9139315 DOI: 10.3390/brainsci12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Intracranial vessel wall lesions are involved in a variety of neurological diseases. The advanced technique 7T MRI provides greater efficacy in the diagnosis of the pathology changes in the vessel wall and helps to identify potential subtle lesions. The purpose of this literature review was to systematically describe and evaluate the existing literature focusing on the use of 7T MRI in the detection and characterization of intracranial vessel wall lesions and their associated neurological disorders, to highlight the current knowledge gaps, and to formulate a framework to guide future applications and investigations. We systematically reviewed the existing articles up to July 2021, seeking the studies that assessed intracranial vessel wall lesions and their associated neurological disorders using 7T MRI. The literature search provided 12 studies that met the inclusion criteria. The most common intracranial vessel wall lesions were changes related to intracranial atherosclerosis (n = 8) and aneurysms (n = 4), such as intracranial atherosclerosis burden and aneurysm wall enhancement. The associated neurological disorders included aneurysms, ischemic stroke or TIA, small vessel disease, cognitive decline, and extracranial atherosclerosis. No paper studied the use of 7T MRI for investigating vessel wall conditions such as moyamoya disease, small vessel disease, or neurological disorders related to central nervous vasculitis. In conclusion, the novel 7T MRI enables the identification of a wider spectrum of subtle changes and associations. Future research on cerebral vascular diseases other than intracranial atherosclerosis and aneurysms may also benefit from 7T MRI.
Collapse
|
3
|
Vachha B, Huang SY. MRI with ultrahigh field strength and high-performance gradients: challenges and opportunities for clinical neuroimaging at 7 T and beyond. Eur Radiol Exp 2021; 5:35. [PMID: 34435246 PMCID: PMC8387544 DOI: 10.1186/s41747-021-00216-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Research in ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology has provided enormous gains in sensitivity, resolution, and contrast for neuroimaging. This article provides an overview of the technical advantages and challenges of performing clinical neuroimaging studies at ultrahigh magnetic field strength combined with ultrahigh and ultrafast gradient technology. Emerging clinical applications of 7-T MRI and state-of-the-art gradient systems equipped with up to 300 mT/m gradient strength are reviewed, and the impact and benefits of such advances to anatomical, structural and functional MRI are discussed in a variety of neurological conditions. Finally, an outlook and future directions for ultrahigh field MRI combined with ultrahigh and ultrafast gradient technology in neuroimaging are examined.
Collapse
Affiliation(s)
- Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Room 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
4
|
Zwartbol MH, van der Kolk AG, Kuijf HJ, Witkamp TD, Ghaznawi R, Hendrikse J, Geerlings MI. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease: The SMART-MR study. J Cereb Blood Flow Metab 2021; 41:1219-1228. [PMID: 33023386 PMCID: PMC8138333 DOI: 10.1177/0271678x20958517] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The etiology of cerebral small vessel disease (CSVD) is the subject of ongoing research. Although intracranial atherosclerosis (ICAS) has been proposed as a possible cause, studies on their relationship remain sparse. We used 7 T vessel wall magnetic resonance imaging (MRI) to study the association between intracranial vessel wall lesions-a neuroimaging marker of ICAS-and MRI features of CSVD. Within the SMART-MR study, cross-sectional analyses were performed in 130 patients (68 ± 9 years; 88% male). ICAS burden-defined as the number of vessel wall lesions-was determined on 7 T vessel wall MRI. CSVD features were determined on 1.5 T and 7 T MRI. Associations between ICAS burden and CSVD features were estimated with linear or modified Poisson regression, adjusted for age, sex, vascular risk factors, and medication use. In 125 patients, ≥1 vessel wall lesions were found (mean 8.5 ± 5.7 lesions). ICAS burden (per + 1 SD) was associated with presence of large subcortical and/or cortical infarcts (RR = 1.65; 95%CI: 1.12-2.43), lacunes (RR = 1.45; 95% CI: 1.14-1.86), cortical microinfarcts (RR = 1.48; 95%CI: 1.13-1.94), and total white matter hyperintensity volume (b = 0.24; 95%CI: 0.02-0.46). Concluding, patients with a higher ICAS burden had more CSVD features, although no evidence of co-location was observed. Further longitudinal studies are required to determine if ICAS precedes development of CSVD.
Collapse
Affiliation(s)
- Maarten Ht Zwartbol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Anja G van der Kolk
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theo D Witkamp
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
5
|
Suo Y, Jing J, Pan Y, Chen W, Zhou H, Li H, Pu Y, Liu L, Zhao X, Wang Y, Meng X, Wang Y. Concurrent intracranial and extracranial artery stenosis and the prognosis of transient ischaemic symptoms or imaging-negative ischaemic stroke. Stroke Vasc Neurol 2020; 6:33-40. [PMID: 32792459 PMCID: PMC8005902 DOI: 10.1136/svn-2020-000377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient ischaemic attack (TIA), transient symptoms with infarction (TSI) and diffusion-weighted imaging (DWI)-negative acute ischaemic stroke (AIS) share similar aetiologies but are considered to have a rather benign prognosis. We intended to investigate the association between intracranial atherosclerotic stenosis (ICAS), extracranial atherosclerotic stenosis (ECAS) and the prognosis of patients with TIA, TSI and DWI-negative AIS. METHODS Clinical and imaging data of eligible participants were derived from the Chinese Intracranial Atherosclerosis study, according to symptom duration, acute infarction on DWI and discharge diagnosis. Based on the severity and location of arterial atherosclerosis, we categorised the study population into four groups: no or <50% ICAS and no ECAS; ≥50% ICAS but no ECAS; no or <50% ICAS with ECAS; and concurrent ≥50% ICAS and ECAS. Using multivariable Cox regression models, we analysed the relationship between the severity and distribution of large artery atherosclerosis and the prognosis of TIA, TSI and DWI-negative AIS. RESULTS A total of 806 patients were included, 67.3% of whom were male. The median age of the study participants was 63 years. Patients in the concurrent ≥50% ICAS and ECAS subgroup had both a significantly higher 1-year recurrence rate (adjusted HR 3.4 (95% CI 1.15 to 10.04), p=0.027) and a higher risk of composite vascular events (adjusted HR 3.82 (95% CI 1.50 to 9.72), p=0.005). CONCLUSIONS Concurrent ICAS and ECAS is associated with a higher possibility of 1-year recurrent stroke or composite vascular events. Large artery evaluation is necessary to assess patients with transient ischaemic symptoms or DWI-negative AIS. Progress in shortening the time interval between symptom onset and large vessel evaluation is needed.
Collapse
Affiliation(s)
- Yue Suo
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,Affiliated Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyu Zhou
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Beijing, China .,Affiliated Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
6
|
Zwartbol MHT, van der Kolk AG, Geerlings MI. Reply. AJNR Am J Neuroradiol 2020; 41:E32. [PMID: 32354711 DOI: 10.3174/ajnr.a6516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - M I Geerlings
- Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and UtrechtUniversityUtrecht, the Netherlands
| |
Collapse
|
7
|
Alexander MD, de Havenon A, Mossa-Basha M, McNally JS. How Far Can We Take Vessel Wall MRI for Intracranial Atherosclerosis? The Tissue is Still the Issue. AJNR Am J Neuroradiol 2020; 41:E30-E31. [PMID: 32354713 DOI: 10.3174/ajnr.a6501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M D Alexander
- Departments of Radiology and Imaging Sciences and Neurosurgery
| | - A de Havenon
- Department of NeurologyUniversity of UtahSalt Lake City, Utah
| | - M Mossa-Basha
- Department of RadiologyUniversity of WashingtonSeattle, Washington
| | - J S McNally
- Departments of Radiology and Imaging SciencesUniversity of UtahSalt Lake City, Utah
| |
Collapse
|
8
|
Chan LL. Intracranial and Extracranial Atherosclerosis: More Similar Than Different? AJNR Am J Neuroradiol 2019; 40:2023-2024. [PMID: 31780463 DOI: 10.3174/ajnr.a6349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- L L Chan
- Department of Diagnostic Radiology Singapore General Hospital Associate Professor Radiological Sciences, Neuroscience & Behavioural Disorders Duke-NUS Medical School Singapore
| |
Collapse
|