1
|
Chen LL, Lauwers I, Verduijn G, Philippens M, Gahrmann R, Capala ME, Petit S. MRI for Differentiation between HPV-Positive and HPV-Negative Oropharyngeal Squamous Cell Carcinoma: A Systematic Review. Cancers (Basel) 2024; 16:2105. [PMID: 38893224 PMCID: PMC11171338 DOI: 10.3390/cancers16112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Human papillomavirus (HPV) is an important risk factor for oropharyngeal squamous cell carcinoma (OPSCC). HPV-positive (HPV+) cases are associated with a different pathophysiology, microstructure, and prognosis compared to HPV-negative (HPV-) cases. This review aimed to investigate the potential of magnetic resonance imaging (MRI) to discriminate between HPV+ and HPV- tumours and predict HPV status in OPSCC patients. A systematic literature search was performed on 15 December 2022 on EMBASE, MEDLINE ALL, Web of Science, and Cochrane according to PRISMA guidelines. Twenty-eight studies (n = 2634 patients) were included. Five, nineteen, and seven studies investigated structural MRI (e.g., T1, T2-weighted), diffusion-weighted MRI, and other sequences, respectively. Three out of four studies found that HPV+ tumours were significantly smaller in size, and their lymph node metastases were more cystic in structure than HPV- ones. Eleven out of thirteen studies found that the mean apparent diffusion coefficient was significantly higher in HPV- than HPV+ primary tumours. Other sequences need further investigation. Fourteen studies used MRI to predict HPV status using clinical, radiological, and radiomics features. The reported areas under the curve (AUC) values ranged between 0.697 and 0.944. MRI can potentially be used to find differences between HPV+ and HPV- OPSCC patients and predict HPV status with reasonable accuracy. Larger studies with external model validation using independent datasets are needed before clinical implementation.
Collapse
Affiliation(s)
- Linda L. Chen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (G.V.); (M.E.C.)
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (G.V.); (M.E.C.)
| | - Gerda Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (G.V.); (M.E.C.)
| | - Marielle Philippens
- Department of Radiotherapy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (G.V.); (M.E.C.)
| | - Steven Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands (G.V.); (M.E.C.)
| |
Collapse
|
2
|
Bicci E, Calamandrei L, Di Finizio A, Pietragalla M, Paolucci S, Busoni S, Mungai F, Nardi C, Bonasera L, Miele V. Predicting Response to Exclusive Combined Radio-Chemotherapy in Naso-Oropharyngeal Cancer: The Role of Texture Analysis. Diagnostics (Basel) 2024; 14:1036. [PMID: 38786334 PMCID: PMC11120575 DOI: 10.3390/diagnostics14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this work is to identify MRI texture features able to predict the response to radio-chemotherapy (RT-CHT) in patients with naso-oropharyngeal carcinoma (NPC-OPC) before treatment in order to help clinical decision making. Textural features were derived from ADC maps and post-gadolinium T1-images on a single MRI machine for 37 patients with NPC-OPC. Patients were divided into two groups (responders/non-responders) according to results from MRI scans and 18F-FDG-PET/CT performed at follow-up 3-4 and 12 months after therapy and biopsy. Pre-RT-CHT lesions were segmented, and radiomic features were extracted. A non-parametric Mann-Whitney test was performed. A p-value < 0.05 was considered significant. Receiver operating characteristic curves and area-under-the-curve values were generated; a 95% confidence interval (CI) was reported. A radiomic model was constructed using the LASSO algorithm. After feature selection on MRI T1 post-contrast sequences, six features were statistically significant: gldm_DependenceEntropy and DependenceNonUniformity, glrlm_RunEntropy and RunLengthNonUniformity, and glszm_SizeZoneNonUniformity and ZoneEntropy, with significant cut-off values between responder and non-responder group. With the LASSO algorithm, the radiomic model showed an AUC of 0.89 and 95% CI: 0.78-0.99. In ADC, five features were selected with an AUC of 0.84 and 95% CI: 0.68-1. Texture analysis on post-gadolinium T1-images and ADC maps could potentially predict response to therapy in patients with NPC-OPC who will undergo exclusive treatment with RT-CHT, being, therefore, a useful tool in therapeutical-clinical decision making.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Leonardo Calamandrei
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Antonio Di Finizio
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Michele Pietragalla
- Department of Radiology, Ospedale San Jacopo, Via Ciliegiole 97, 51100 Pistoia, Italy;
| | - Sebastiano Paolucci
- Department of Health Physics, L.Go Brambilla, Careggi University Hospital, 50134 Florence, Italy; (S.P.); (S.B.)
| | - Simone Busoni
- Department of Health Physics, L.Go Brambilla, Careggi University Hospital, 50134 Florence, Italy; (S.P.); (S.B.)
| | - Francesco Mungai
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Luigi Bonasera
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| |
Collapse
|
3
|
Sim Y, Kim M, Kim J, Lee SK, Han K, Sohn B. Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques. Eur Radiol 2024; 34:3102-3112. [PMID: 37848774 DOI: 10.1007/s00330-023-10338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/08/2023] [Accepted: 08/20/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVES To develop and validate a multiparametric MRI-based radiomics model with optimal oversampling and machine learning techniques for predicting human papillomavirus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC). METHODS This retrospective, multicenter study included consecutive patients with newly diagnosed and pathologically confirmed OPSCC between January 2017 and December 2020 (110 patients in the training set, 44 patients in the external validation set). A total of 293 radiomics features were extracted from three sequences (T2-weighted images [T2WI], contrast-enhanced T1-weighted images [CE-T1WI], and ADC). Combinations of three feature selection, five oversampling, and 12 machine learning techniques were evaluated to optimize its diagnostic performance. The area under the receiver operating characteristic curve (AUC) of the top five models was validated in the external validation set. RESULTS A total of 154 patients (59.2 ± 9.1 years; 132 men [85.7%]) were included, and oversampling was employed to account for data imbalance between HPV-positive and HPV-negative OPSCC (86.4% [133/154] vs. 13.6% [21/154]). For the ADC radiomics model, the combination of random oversampling and ridge showed the highest diagnostic performance in the external validation set (AUC, 0.791; 95% CI, 0.775-0.808). The ADC radiomics model showed a higher trend in diagnostic performance compared to the radiomics model using CE-T1WI (AUC, 0.604; 95% CI, 0.590-0.618), T2WI (AUC, 0.695; 95% CI, 0.673-0.717), and a combination of both (AUC, 0.642; 95% CI, 0.626-0.657). CONCLUSIONS The ADC radiomics model using random oversampling and ridge showed the highest diagnostic performance in predicting the HPV status of OPSCC in the external validation set. CLINICAL RELEVANCE STATEMENT Among multiple sequences, the ADC radiomics model has a potential for generalizability and applicability in clinical practice. Exploring multiple oversampling and machine learning techniques was a valuable strategy for optimizing radiomics model performance. KEY POINTS • Previous radiomics studies using multiparametric MRI were conducted at single centers without external validation and had unresolved data imbalances. • Among the ADC, CE-T1WI, and T2WI radiomics models and the ADC histogram models, the ADC radiomics model was the best-performing model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma. • The ADC radiomics model with the combination of random oversampling and ridge showed the highest diagnostic performance.
Collapse
Affiliation(s)
- Yongsik Sim
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Minjae Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jinna Kim
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Beomseok Sohn
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Sijtsema ND, Lauwers I, Verduijn GM, Hoogeman MS, Poot DH, Hernandez-Tamames JA, van der Lugt A, Capala ME, Petit SF. Relating pre-treatment non-Gaussian intravoxel incoherent motion diffusion-weighted imaging to human papillomavirus status and response in oropharyngeal carcinoma. Phys Imaging Radiat Oncol 2024; 30:100574. [PMID: 38633282 PMCID: PMC11021835 DOI: 10.1016/j.phro.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Background and purpose Diffusion-weighted imaging (DWI) is a promising technique for response assessment in head-and-neck cancer. Recently, we optimized Non-Gaussian Intravoxel Incoherent Motion Imaging (NG-IVIM), an extension of the conventional apparent diffusion coefficient (ADC) model, for the head and neck. In the current study, we describe the first application in a group of patients with human papillomavirus (HPV)-positive and HPV-negative oropharyngeal squamous cell carcinoma. The aim of this study was to relate ADC and NG-IVIM DWI parameters to HPV status and clinical treatment response. Materials and methods Thirty-six patients (18 HPV-positive, 18 HPV-negative) were prospectively included. Presence of progressive disease was scored within one year. The mean pre-treatment ADC and NG-IVIM parameters in the gross tumor volume were compared between HPV-positive and HPV-negative patients. In HPV-negative patients, ADC and NG-IVIM parameters were compared between patients with and without progressive disease. Results ADC, the NG-IVIM diffusion coefficient D, and perfusion fraction f were significantly higher, while pseudo-diffusion coefficient D* and kurtosis K were significantly lower in the HPV-negative compared to HPV-positive patients. In the HPV-negative group, a significantly lower D was found for patients with progressive disease compared to complete responders. No relation with ADC was observed. Conclusion The results of our single-center study suggest that ADC is related to HPV status, but not an independent response predictor. The NG-IVIM parameter D, however, was independently associated to response in the HPV-negative group. Noteworthy in the opposite direction as previously thought based on ADC.
Collapse
Affiliation(s)
- Nienke D. Sijtsema
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerda M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mischa S. Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Medical Physics and Informatics, HollandPTC, Delft, the Netherlands
| | - Dirk H.J. Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Juan A. Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven F. Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Fan B, Fan B, Sun N, Zou H, Gu X. A radiomics model to predict γδ T-cell abundance and overall survival in head and neck squamous cell carcinoma. FASEB J 2024; 38:e23529. [PMID: 38441524 DOI: 10.1096/fj.202301353rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
γδ T cells are becoming increasingly popular because of their attractive potential for antitumor immunotherapy. However, the role and assessment of γδ T cells in head and neck squamous cell carcinoma (HNSCC) are not well understood. We aimed to explore the prognostic value of γδ T cell and predict its abundance using a radiomics model. Computer tomography images with corresponding gene expression data and clinicopathological data were obtained from online databases. After outlining the volumes of interest manually, the radiomic features were screened using maximum melevance minimum redundancy and recursive feature elimination algorithms. A radiomics model was developed to predict γδ T-cell abundance using gradient boosting machine. Kaplan-Meier survival curves and univariate and multivariate Cox regression analyses were used for the survival analysis. In this study, we confirmed that γδ T-cell abundance was an independent predictor of favorable overall survival (OS) in patients with HNSCC. Moreover, a radiomics model was built to predict the γδ T-cell abundance level (the areas under the operating characteristic curves of 0.847 and 0.798 in the training and validation sets, respectively). The calibration and decision curves analysis demonstrated the fitness of the model. The high radiomic score was an independent protective factor for OS. Our results indicated that γδ T-cell abundance was a promising prognostic predictor in HNSCC, and the radiomics model could discriminate its abundance levels and predict OS. The noninvasive radiomics model provided a potentially powerful prediction tool to aid clinical judgment and antitumor immunotherapy.
Collapse
Affiliation(s)
- Binna Fan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Binting Fan
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huawei Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Iima M, Yamamoto A. Editorial for "In Vivo Microstructure Imaging in Oropharyngeal Squamous Cell Carcinoma Using the Random Walk With Barriers Model". J Magn Reson Imaging 2024; 59:939-940. [PMID: 37452628 DOI: 10.1002/jmri.28893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for Medical Education and Internationalization, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Becker M, de Vito C, Dulguerov N, Zaidi H. PET/MR Imaging in Head and Neck Cancer. Magn Reson Imaging Clin N Am 2023; 31:539-564. [PMID: 37741640 DOI: 10.1016/j.mric.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) can either be examined with hybrid PET/MR imaging systems or sequentially, using PET/CT and MR imaging. Regardless of the acquisition technique, the superiority of MR imaging compared to CT lies in its potential to interrogate tumor and surrounding tissues with different sequences, including perfusion and diffusion. For this reason, PET/MR imaging is preferable for the detection and assessment of locoregional residual/recurrent HNSCC after therapy. In addition, MR imaging interpretation is facilitated when combined with PET. Nevertheless, distant metastases and distant second primary tumors are detected equally well with PET/MR imaging and PET/CT.
Collapse
Affiliation(s)
- Minerva Becker
- Diagnostic Department, Division of Radiology, Unit of Head and Neck and Maxillofacial Radiology, Geneva University Hospitals, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland.
| | - Claudio de Vito
- Diagnostic Department, Division of Clinical Pathology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland
| | - Nicolas Dulguerov
- Department of Clinical Neurosciences, Clinic of Otorhinolaryngology, Head and Neck Surgery, Unit of Cervicofacial Surgery, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland
| | - Habib Zaidi
- Diagnostic Department, Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 14 1211, Switzerland; Geneva University Neurocenter, University of Geneva, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
van der Hulst HJ, Jansen RW, Vens C, Bos P, Schats W, de Jong MC, Martens RM, Bodalal Z, Beets-Tan RGH, van den Brekel MWM, de Graaf P, Castelijns JA. The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5077. [PMID: 37894447 PMCID: PMC10605807 DOI: 10.3390/cancers15205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable, routine technique that provides morphological and functional imaging sequences. MRI can potentially capture tumor biology and allow for longitudinal evaluation of head and neck squamous cell carcinoma (HNSCC). This systematic review and meta-analysis evaluates the ability of MRI to predict tumor biology in primary HNSCC. Studies were screened, selected, and assessed for quality using appropriate tools according to the PRISMA criteria. Fifty-eight articles were analyzed, examining the relationship between (functional) MRI parameters and biological features and genetics. Most studies focused on HPV status associations, revealing that HPV-positive tumors consistently exhibited lower ADCmean (SMD: 0.82; p < 0.001) and ADCminimum (SMD: 0.56; p < 0.001) values. On average, lower ADCmean values are associated with high Ki-67 levels, linking this diffusion restriction to high cellularity. Several perfusion parameters of the vascular compartment were significantly associated with HIF-1α. Analysis of other biological factors (VEGF, EGFR, tumor cell count, p53, and MVD) yielded inconclusive results. Larger datasets with homogenous acquisition are required to develop and test radiomic-based prediction models capable of capturing different aspects of the underlying tumor biology. Overall, our study shows that rapid and non-invasive characterization of tumor biology via MRI is feasible and could enhance clinical outcome predictions and personalized patient management for HNSCC.
Collapse
Affiliation(s)
- Hedda J. van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Robin W. Jansen
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Conchita Vens
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- School of Cancer Science, University of Glasgow, Glasgow G61 1QH, UK
| | - Paula Bos
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marcus C. de Jong
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Roland M. Martens
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Regina G. H. Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Michiel W. M. van den Brekel
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Jonas A. Castelijns
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Bicci E, Calamandrei L, Mungai F, Granata V, Fusco R, De Muzio F, Bonasera L, Miele V. Imaging of human papilloma virus (HPV) related oropharynx tumour: what we know to date. Infect Agent Cancer 2023; 18:58. [PMID: 37814320 PMCID: PMC10563217 DOI: 10.1186/s13027-023-00530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
The tumours of head and neck district are around 3% of all malignancies and squamous cell carcinoma is the most frequent histotype, with rapid increase during the last two decades because of the increment of the infection due to human papilloma virus (HPV). Even if the gold standard for the diagnosis is histological examination, including the detection of viral DNA and transcription products, imaging plays a fundamental role in the detection and staging of HPV + tumours, in order to assess the primary tumour, to establish the extent of disease and for follow-up. The main diagnostic tools are Computed Tomography (CT), Positron Emission Tomography-Computed Tomography (PET-CT) and Magnetic Resonance Imaging (MRI), but also Ultrasound (US) and the use of innovative techniques such as Radiomics have an important role. Aim of our review is to illustrate the main imaging features of HPV + tumours of the oropharynx, in US, CT and MRI imaging. In particular, we will outline the main limitations and strengths of the various imaging techniques, the main uses in the diagnosis, staging and follow-up of disease and the fundamental differential diagnoses of this type of tumour. Finally, we will focus on the innovative technique of texture analysis, which is increasingly gaining importance as a diagnostic tool in aid of the radiologist.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy.
| | - Leonardo Calamandrei
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Francesco Mungai
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Naples, 80013, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, 20122, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Campobasso, 86100, Italy
| | - Luigi Bonasera
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| | - Vittorio Miele
- Department of Radiology, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Florence, 50134, Italy
| |
Collapse
|
10
|
Xie Y, Wang M, Xia H, Sun H, Yuan Y, Jia J, Chen L. Development and validation of a CECT-based radiomics model for predicting IL1B expression and prognosis of head and neck squamous cell carcinoma. Front Oncol 2023; 13:1121485. [PMID: 36969073 PMCID: PMC10036854 DOI: 10.3389/fonc.2023.1121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionIt is necessary to explore a noninvasive method to stratify head and neck squamous cell carcinoma (HNSCC)’s prognosis and to seek new indicators for individualized precision treatment. As a vital inflammatory cytokine, IL1B might drive a new tumor subtype that could be reflected in overall survival (OS) and predicted using the radiomics method.MethodsA total of 139 patients with RNA-Seq data from The Cancer Genome Atlas (TCGA) and matched CECT data from The Cancer Image Archive (TCIA) were included in the analysis. The prognostic value of IL1B expression in patients with HNSCC was analyzed using Kaplan-Meier analysis, Cox regression analysis and subgroup analysis. Furthermore, the molecular function of IL1B on HNSCC was explored using function enrichment and immunocytes infiltration analyses. Radiomic features were extracted with PyRadiomics and processed using max-relevance minredundancy, recursive feature elimination, and gradient boosting machine algorithm to construct aradiomics model for predicting IL1B expression. The area under the receiver operating characteristic curve (AUC), calibration curve, precision recall (PR) curve, and decision curve analysis (DCA) curve were used to examine the performance of the model.ResultsIncreased IL1B expression in patients with HNSCC indicated a poor prognosis (hazard ratio [HR] = 1.56, P = 0.003) and was harmful in patients who underwent radiotherapy (HR = 1.87, P = 0.007) or chemotherapy (HR = 2.514, P < 0.001). Shape_Sphericity, glszm_SmallAreaEmphasis, and firstorder_Kurtosis were included in the radiomics model (AUC: training cohort, 0.861; validation cohort, 0.703). The calibration curves, PR curves and DCA showed good diagnostic effect of the model. The rad-score was close related to IL1B (P = 4.490*10-9), and shared the same corelated trend to EMT-related genes with IL1B. A higher rad-score was associated with worse overall survival (P = 0.041).DiscussionThe CECT-based radiomics model provides preoperative IL1B expression predictionand offers non-invasive instructions for the prognosis and individualized treatment of patients withHNSCC.
Collapse
Affiliation(s)
- Yang Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Min Wang
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haibin Xia
- Hubei-MOST and KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huifang Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Yuan
- Department of Oral Radiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jun Jia
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Liangwen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine (Hubei-MOST and KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Liangwen Chen,
| |
Collapse
|