1
|
Xue JC, Yuan S, Meng H, Hou XT, Li J, Zhang HM, Chen LL, Zhang CH, Zhang QG. The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed Pharmacother 2023; 158:114086. [PMID: 36502751 DOI: 10.1016/j.biopha.2022.114086] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that presents clinically with abdominal pain, mucopurulent stools, and posterior urgency. The lesions of UC are mainly concentrated in the rectal and colonic mucosa and submucosa. For patients with mild to moderate UC, the best pharmacological treatment includes glucocorticoids, immunosuppressants, antibiotics, and biologics, but the long-term application can have serious toxic side effects. Currently, nearly 40% of UC patients are treated with herbal natural products in combination with traditional medications to reduce the incidence of toxic side effects. Flavonoid herbal natural products are the most widely distributed polyphenols in plants and fruits, which have certain antioxidant and anti-inflammatory activities. Flavonoid herbal natural products have achieved remarkable efficacy in the treatment of UC. The pharmacological mechanisms are related to anti-inflammation, promotion of mucosal healing, maintenance of intestinal immune homeostasis, and regulation of intestinal flora. In this paper, we summarize the flavonoid components of anti-ulcerative colitis and their mechanisms reported in the past 10 years, to provide a basis for rational clinical use and the development of new anti-ulcerative colitis drugs.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Li Chen
- Jinan People's Hospital, Jinan, Shandong Province 271100, China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Qing-Gao Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China.
| |
Collapse
|
2
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
3
|
Effect of short-time treatment with TNF-α on stem cell activity and barrier function in enteroids. Cytotechnology 2021; 73:669-682. [PMID: 34349355 DOI: 10.1007/s10616-021-00487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00487-y.
Collapse
|
4
|
Wu ZY, Sang LX, Chang B. Isoflavones and inflammatory bowel disease. World J Clin Cases 2020; 8:2081-2091. [PMID: 32548137 PMCID: PMC7281056 DOI: 10.12998/wjcc.v8.i11.2081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Isoflavones constitute a class of plant hormones including genistein, daidzein, glycitein, formononetin, biochanin A, and irilone, and the major source of human intake is soybeans. Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease including ulcerative colitis, Crohn’s disease, and indeterminate colitis, which seriously affects the quality of life of patients and has become a global health problem. Although the pathogenesis of IBD is not very clear, many factors are thought to be related to the occurrence and development of IBD such as genes, immunity, and intestinal flora. How to control IBD effectively for a long time is still a problem for gastroenterologists. Diet has an important effect on IBD. Patients with IBD should pay more attention to diet. To date, many studies have reported that isoflavones have both good and bad effects on IBD. Isoflavones have many activities such as regulating the inflammatory signal pathways and affecting intestinal barrier functions and gut flora. They can also act through estrogen receptors, as they have a similar structure to estrogen. Isoflavones are easy to get from diet for human. Whether they are valuable to be applied to the treatment of IBD is worth studying. This review summarizes the relationship between isoflavones and IBD.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
5
|
Soy isoflavones and cholecalciferol reduce inflammation, and gut permeability, without any effect on antioxidant capacity in irritable bowel syndrome: A randomized clinical trial. Clin Nutr ESPEN 2019; 34:50-54. [PMID: 31677711 DOI: 10.1016/j.clnesp.2019.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is more prevalent in women. Vitamin D deficiency and hormonal disorders are also prevalent in Iranian women, and may influence the severity of clinical outcomes mediated by microinflammation, oxidative stress and intestinal permeability pathways. Our objective was to investigate the effects of co-administration of soy and vitamin D on some inflammatory, antioxidant and gut permeability markers in women with IBS. METHODS In a randomized clinical trial, women (18-75 years of age) were randomly allocated into four groups to receive soy isoflavones (40 mg/day), cholecalciferol (50,000 IU/15 days), both soy isoflavones and cholecalciferol, or placebo for six weeks. The outcomes were plasma inflammatory markers, antioxidant status and fecal protease activity at week 0 and week 6. RESULTS After the intervention, plasma inflammatory markers and fecal protease activity were reduced significantly in all treatment groups compared to the placebo group; however, there was no significant effect on antioxidant status. CONCLUSION This study suggests combined supplementation of soy isoflavones and active vitamin D can improve some biochemical parameters regarding inflammation and intestinal permeability of IBS in women. TRIAL REGISTRATION Clinical.Trials.govNCT02026518.
Collapse
|
6
|
Mitani T, Nagano T, Harada K, Yamashita Y, Ashida H. Caffeine-Stimulated Intestinal Epithelial Cells Suppress Lipid Accumulation in Adipocytes. J Nutr Sci Vitaminol (Tokyo) 2018; 63:331-338. [PMID: 29225318 DOI: 10.3177/jnsv.63.331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Caffeine is a methylxanthine derived from plant foods such as coffee beans and tea leaves, and has multiple biological activities against physiological response and several diseases. Although there are some reports about the direct effect of caffeine against anti-lipid accumulation in vitro, the effect of caffeine on lipid accumulation in adipocytes through stimulating intestinal epithelial cells is unknown. Since direct treatment with caffeine to 3T3-L1 cells did not affect lipid accumulation, we determined whether caffeine-stimulated intestinal epithelial Caco-2 cells influence the lipid accumulation in 3T3-L1 adipocytes. Caco-2 cells were cultured on a transwell insert with or without caffeine for 24 h. Subsequently, the basolateral component of the Caco-2 cell culture on the transwell was collected and termed caffeine-conditioning medium (CCM). When 3T3-L1 adipocytes were incubated with CCM, CCM decreased lipid accumulation and suppressed gene expression of proliferator activated receptor (PPAR) γ and CCAAT/enhancer binding protein (C/EBP) α in 3T3-L1 adipocytes. Furthermore, CCM decreased the expression of C/EBPβ and C/EBPδ at the protein level, but not at the mRNA level. We observed that a proteasome inhibitor, MG132, inhibited CCM-caused down-expression of C/EBPβ and C/EBPδ proteins, and that CCM promoted the ubiquitination level of C/EBPβ and C/EBPδ proteins. Protein microarray analysis showed caffeine suppresses the secretion of inflammatory cytokines, interleukin-8 and plasminogen activator inhibitor-1 from Caco-2 cells. These results suggest that caffeine indirectly suppresses lipid accumulation in 3T3-L1 adipocytes through decreasing secretion of inflammatory cytokines from Caco-2 cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University.,Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Tomoya Nagano
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Kiyonari Harada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
7
|
Wang X, Zhao Y, Yao Y, Xu M, Du H, Zhang M, Tu Y. Anti-inflammatory activity of di-peptides derived from ovotransferrin by simulated peptide-cut in TNF-α-induced Caco-2 cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, Fitzpatrick LR, Nabavi SM, Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J Gastroenterol 2017; 23:5097-5114. [PMID: 28811706 PMCID: PMC5537178 DOI: 10.3748/wjg.v23.i28.5097] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
The inflammatory process plays a central role in the development and progression of numerous pathological situations, such as inflammatory bowel disease (IBD), autoimmune and neurodegenerative diseases, metabolic syndrome, and cardiovascular disorders. IBDs involve inflammation of the gastrointestinal area and mainly comprise Crohn’s disease (CD) and ulcerative colitis (UC). Both pathological situations usually involve recurring or bloody diarrhea, pain, fatigue and weight loss. There is at present no pharmacological cure for CD or UC. However, surgery may be curative for UC patients. The prescribed treatment aims to ameliorate the symptoms and prevent and/or delay new painful episodes. Flavonoid compounds are a large family of hydroxylated polyphenolic molecules abundant in plants, including vegetables and fruits which are the major dietary sources of these compounds for humans, together with wine and tea. Flavonoids are becoming very popular because they have many health-promoting and disease-preventive effects. Most interest has been directed towards the antioxidant activity of flavonoids, evidencing a remarkable free-radical scavenging capacity. However, accumulating evidence suggests that flavonoids have many other biological properties, including anti-inflammatory, antiviral, anticancer, and neuroprotective activities through different mechanisms of action. The present review analyzes the available data about the different types of flavonoids and their potential effectiveness as adjuvant therapy of IBDs.
Collapse
|
9
|
Satsu H. Molecular and cellular studies on the absorption, function, and safety of food components in intestinal epithelial cells. Biosci Biotechnol Biochem 2017; 81:419-425. [DOI: 10.1080/09168451.2016.1259552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
The intestinal tract comes into direct contact with the external environment despite being inside the body. Intestinal epithelial cells, which line the inner face of the intestinal tract, have various important functions, including absorption of food substances, immune functions such as cytokine secretion, and barrier function against xenobiotics by means of detoxification enzymes. It is likely that the functions of intestinal epithelial cells are regulated or modulated by these components because they are frequently exposed to food components at high concentrations. This review summarizes our research on the interaction between intestinal epithelial cells and food components at cellular and molecular levels. The influence of xenobiotic contamination in foods on the cellular function of intestinal epithelial cells is also described in this review.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Japan
| |
Collapse
|
10
|
Shimizu M. Multifunctions of dietary polyphenols in the regulation of intestinal inflammation. J Food Drug Anal 2017; 25:93-99. [PMID: 28911547 PMCID: PMC9333418 DOI: 10.1016/j.jfda.2016.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 01/12/2023] Open
Abstract
Food for specified health use is a type of functional food approved by the Japanese government, with more than 1250 products in 10 health-claim categories being approved as of April 2016. Polyphenols are currently used as functional ingredients in seven of the 10 categories. Although they have not yet been used for the food-for-specified-health-use category of “gut health promotion,” polyphenols are expected to contribute to the future development of gut-modulating food. Intestinal functions include digestion/absorption, acting as a barrier, recognition of external factors, and signal transduction. Owing to incessant exposure to external stress factors including food substances, bacteria, and environmental chemicals, intestines are always inflammatory to some extent, which may cause damage to and dysfunction of intestinal tissues depending on the situation. We identified food factors that could suppress immoderate inflammation in the intestines. In addition to certain amino acids and peptides, polyphenols such as chlorogenic acid and isoflavones were found to suppress inflammation in intestinal cells. Intestinal inflammation is caused by various factors in diverse mechanisms. Recent studies revealed that activation of pattern recognition receptors, such as Toll-like receptors and nucleotide-binding oligomerization domain proteins, in epithelial cells triggers intestinal inflammation. Intracellular receptors or signaling molecules controlling the intestinal detoxification system are also involved in the regulation of inflammation. Differentiation of regulatory T cells by activating a transcription factor Foxp-3 is known to suppress intestinal inflammation. A variety of phytochemicals including polyphenols modulate these receptors and signaling molecules, and are thus anti-inflammatory. Polyphenols affect epigenetic changes occurring in intestinal tissues by interacting with the enzymes responsible for DNA methylation and histone acetylation. New types of anti-inflammatory food factors may be discovered by examining dietary substances that interact with the abovementioned target molecules.
Collapse
Affiliation(s)
- Makoto Shimizu
- Corresponding author: Department of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan. E-mail address:
| |
Collapse
|
11
|
Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016; 8:nu8060361. [PMID: 27294954 PMCID: PMC4924202 DOI: 10.3390/nu8060361] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Bi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
12
|
Lin Q, Mathieu O, Tompkins TA, Buckley ND, Green-Johnson JM. Modulation of the TNFα-induced gene expression profile of intestinal epithelial cells by soy fermented with lactic acid bacteria. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M. Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 2014; 168:167-75. [PMID: 25172696 DOI: 10.1016/j.foodchem.2014.06.100] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/28/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022]
Abstract
Chlorogenic acid (CHA) is an antioxidant polyphenol prevalent in human diet, with coffee, fruits, and vegetables being its main source. Effects of CHA and CHA metabolites were evaluated on the IL-8 production in human intestinal Caco-2 cells induced by combined stimulation with tumour necrosis factor alpha (TNFα) and H2O2. CHA and caffeic acid (CA) inhibited TNFα- and H2O2-induced IL-8 production. We also examined the in vivo effects of CHA and CA using dextran sulphate sodium (DSS)-induced colitis in mice. CHA attenuated DSS-induced body weight loss, diarrhea, fecal blood, and shortening of colon and dramatically improved colitis histological scores. Furthermore, increases in the mRNA expression of colonic macrophage inflammatory protein 2 and IL-1β, which were induced by DSS, were significantly suppressed by CHA supplementation. These results suggest that dietary CHA use may aid in the prevention of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Hee Soon Shin
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Functional Materials Research Group, Division of Metabolism and Functionality Research, Korea Food Research Institute, Republic of Korea
| | - Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma, Japan.
| | - Min-Jung Bae
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Institute for Basic Science, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Zhaohui Zhao
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Haru Ogiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mamoru Totsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
14
|
Ahmed Nasef N, Mehta S, Ferguson LR. Dietary interactions with the bacterial sensing machinery in the intestine: the plant polyphenol case. Front Genet 2014; 5:64. [PMID: 24772116 PMCID: PMC3983525 DOI: 10.3389/fgene.2014.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/13/2014] [Indexed: 12/20/2022] Open
Abstract
There are millions of microbes that live in the human gut. These are important in digestion as well as defense. The host immune system needs to be able to distinguish between the harmless bacteria and pathogens. The initial interaction between bacteria and the host happen through the pattern recognition receptors (PRRs). As these receptors are in direct contact with the external environment, this makes them important candidates for regulation by dietary components and therefore potential targets for therapy. In this review, we introduce some of the main PRRs including a cellular process known as autophagy, and how they function. Additionally we review dietary phytochemicals from plants which are believed to be beneficial for humans. The purpose of this review was to give a better understanding of how these components work in order to create better awareness on how they could be explored in the future.
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Sunali Mehta
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Lynnette R Ferguson
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| |
Collapse
|
15
|
Song JL, Gao Y. Effects of methanolic extract form Fuzhuan brick-tea on hydrogen peroxide-induced oxidative stress in human intestinal epithelial adenocarcinoma Caco-2 cells. Mol Med Rep 2014; 9:1061-7. [PMID: 24399488 DOI: 10.3892/mmr.2014.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/17/2013] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effect of methanolic extract from Fuzhuan brick‑tea (FME) on hydrogen peroxide (H2O2)‑induced oxidative stress in the human intestinal epithelial adenocarcinoma cell line Caco‑2. Caco‑2 cells were pretreated with different concentrations (50, 100 and 200 µg/ml) of FME for 2 h and then exposed to H2O2 (1 mM) for 6 h. FME did not exhibit a significant cytotoxic effect and increased the cell viability following H2O2 treatment by decreasing lipid peroxidation in Caco‑2 cells. To investigate the protective effect of FME on H2O2‑induced oxidative stress in Caco‑2 cells, the levels of intracellular glutathione (GSH) and the activity of the endogenous antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‑px) and glutathione S‑transferase (GST), were determined. FME significantly increased the level of GSH and the activity of antioxidant enzymes. The results from the present study demonstrated that FME has a protective effect on H2O2‑induced oxidative damage in Caco‑2 cells through the inhibition of lipid peroxidation and the increase in the activity of antioxidant enzymes. In addition, FME reduced the H2O2‑induced expression of interleukin‑8 at both the mRNA and protein levels in Caco‑2 cells.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Republic of Korea
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital Affiliated to Yangzhou University (Clinical Medical College of Yangzhou University), Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
16
|
Abstract
Soybeans are rich in immuno-modulatory isoflavones such as genistein, daidzein, and glycitein. These isoflavones are well-known antioxidants, chemopreventive and anti-inflammatory agents. Several epidemiological studies suggest that consumption of traditional soy food containing isoflavones is associated with reduced prevalence of chronic health disorders. Isoflavones are considered to be phytoestrogens because of their ability to bind to estrogen receptors. The literature is extensive on the chemistry, bio-availability, and bio-activity of isoflavones. However, their effects on immune response are yet to be fully understood, but are beginning to be appreciated. We review the role of isoflavones in regulation of the immune response and their potential clinical applications in immune-dysfunction. Special emphasis will be made regarding in vivo studies including humans and animal model systems.
Collapse
Affiliation(s)
- Madhan Masilamani
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Anbg 17-40G, Mount Sinai School of Medicine, The Jaffe Food Allergy Institute, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|