1
|
Awaad A, Abdel Aziz HO. Iron biodistribution profile changes in the rat spleen after administration of high-fat diet or iron supplementation and the role of curcumin. J Mol Histol 2021; 52:751-766. [PMID: 34050395 DOI: 10.1007/s10735-021-09986-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Curcumin as active metal chelating and antioxidant agent has a potential role in metal reduction and free radicals' neutralization in tissues. Of note, long-term administration of high fat diet (HFD) is considered as a main factor of blood serum iron deficiency. This study aimed to investigate the biodistribution profiles of iron in the spleen after long-term administration of HFD along with iron supplementation. Furthermore, the ameliorative role of curcumin to reduce iron accumulation level and improve the histological abnormalities produced by iron in spleen will be evaluated in the rats. Treated albino rats of this experiment were divided into six groups. Group I was a control group where group II was treated with HFD. Group III and group IV were treated with combination of HFD and curcumin or HFD and iron supplement respectively. Additionally, group V and group VI were treated with combination of HFD, iron supplement and curcumin or curcumin only respectively. Mainly histological analysis was used to investigate iron biodistribution and induced abnormalities in spleen under light microscope. The histochemical specific staining of iron in the spleen showed different biodistribution profiles of iron in the spleen. Administration of the HFD or HFD and iron supplementation increased the iron accumulation in the spleen. Where, curcumin administration with HFD (Group III) or with HFD and iron supplementation (Group V) significantly reduced the iron levels in the spleen. The splenic tissue inflammation, cellular apoptosis and fibrosis produced by higher iron accumulation was ameliorated after administration of curcumin supplementation as shown in the animals treated with HFD/curcumin (Group III) or HFD/iron supplement/curcumin (Group V). This study recommended that, it is preferable to use iron supplementation along with curcumin supplement for less than 4 months to avoid additional iron accumulation in the healthy organs.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | | |
Collapse
|
2
|
Hori S, Satake M, Kohmoto O, Takagi R, Okada K, Fukiya S, Yokota A, Ishizuka S. Primary 12α-Hydroxylated Bile Acids Lower Hepatic Iron Concentration in Rats. J Nutr 2021; 151:523-530. [PMID: 33438034 DOI: 10.1093/jn/nxaa366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Primary 12α-hydroxylated bile acids (12αOH BAs) enhance intestinal iron uptake due to their ability ex vivo to chelate iron. However, no information is available on their role in vivo, especially in the liver. OBJECTIVES To investigate the effects and mechanisms of primary 12αOH BAs on hepatic iron concentration in vivo. METHODS Male Wistar King A Hokkaido male rats (WKAH/HkmSlc) rats aged 4-5 weeks were fed a control diet or a diet with cholic acid (CA; 0.5 g/kg diet), the primary 12αOH BA, for 2 weeks (Study 1) or 13 weeks (Study 2). In Study 3, rats fed the same diets were given drinking water either alone or containing vancomycin (200 mg/L) for 6 weeks. The variables measured included food intake (Studies 1-3), bile acid profiles (Studies 1 and 3), hepatic iron concentration (Studies 1-3), fecal iron excretion (Studies 1 and 2), iron-related liver gene expression (Studies 2 and 3), and plasma iron-related factors (Studies 2 and 3). RESULTS In Study 1, CA feed reduced the hepatic iron concentration (-16%; P = 0.005) without changing food intake or fecal iron excretion. In Study 2, we found a significant increase in the aortic plasma concentration of lipocalin 2 (LCN2; +65%; P < 0.001), an iron-trafficking protein. In Study 3, we observed no effect of vancomycin treatment on the CA-induced reduction of hepatic iron concentration (-32%; P < 0.001), accompanied by increased plasma LCN2 concentration (+72%; P = 0.003), in the CA-fed rats despite a drastic reduction in the secondary 12αOH BA concentration (-94%; P < 0.001) in the aortic plasma. CONCLUSIONS Primary 12αOH BAs reduced the hepatic iron concentration in rats. LCN2 may be responsible for the hepatic iron-lowering effect of primary 12αOH BAs by transporting iron out of the liver.
Collapse
Affiliation(s)
- Shota Hori
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minako Satake
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ohji Kohmoto
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Takagi
- Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kazufumi Okada
- Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Satoru Fukiya
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsushi Yokota
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Abdel Maksoud H, Elharrif MG, Mohammed RR, Omnia M, El Sayed NE. Biochemical changes associated with low and very low calorie diets on lipid metabolism, iron profile and kidney function in obese rats. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Savyuk M, Krivonosov M, Mishchenko T, Gazaryan I, Ivanchenko M, Khristichenko A, Poloznikov A, Hushpulian D, Nikulin S, Tonevitsky E, Abuzarova G, Mitroshina E, Vedunova M. Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model. Antioxidants (Basel) 2020; 9:E662. [PMID: 32722310 PMCID: PMC7463909 DOI: 10.3390/antiox9080662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μМ and 15 μМ neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μМ, but not for 1 μМ neuradapt. Network connectivity is better preserved with immediate treatment using 1 μМ neuradapt than with 15 μМ, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μМ and functional activity at 15 μМ. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells.
Collapse
Affiliation(s)
- Maria Savyuk
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Mikhail Krivonosov
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Tatiana Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Irina Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Chemical Enzymology Department, Chemistry Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Anna Khristichenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Dmitry Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Evgeny Tonevitsky
- Development Fund of the Innovation Science and Technology Center “Mendeleev Valley”, Moscow 125480, Russia;
| | - Guzal Abuzarova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| |
Collapse
|
5
|
Ren Z, Gu X, Fang J, Cai D, Zuo Z, Liang S, Cui H, Deng J, Ma X, Geng Y, Zhang M, Xie Y, Ye G, Gou L, Hu Y. Effect of intranasal instillation of Escherichia coli on apoptosis of spleen cells in diet-induced-obese mice. Sci Rep 2020; 10:5109. [PMID: 32198370 PMCID: PMC7083956 DOI: 10.1038/s41598-020-62044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Splenic immune function was enhanced in diet-induced-obese (DIO) mice caused by Escherichia coli. The changes in spleen function on apoptosis were still unknown. Two hundred mice in groups Lean-E. coli and DIO-E. coli were intranasal instillation of E. coli. And another two hundred mice in groups Lean-PBS and DIO-PBS were given phosphate-buffered saline (PBS). Subsequently, spleen histology was analyzed. Then the rates of spleen cell (SC) apoptosis, and expression of the genes and proteins of Bcl-2, Bax, caspase-3 and caspase-9 were quantified in each group at 0 h (uninfected), 12 h, 24 h, and 72 h postinfection. The SC apoptosis rates of the DIO-E. coli groups were lower than those of the DIO-PBS groups at 12, 24 and 72 h (p < 0.05). Anti-apoptotic Bcl-2 expression gene and protein of the DIO-E. coli groups were higher than those of the DIO-PBS groups (p < 0.05). Gene expressions of pro-apoptotic Bax, caspase-3 and caspase-9 of the DIO-E. coli groups were lower than those of DIO-PBS groups at 12, 24 and 72 h (p < 0.05). The SC apoptosis rates of the Lean-E. coli groups were higher than those of the Lean- PBS groups at 12 h and 24 h (p < 0.05). Interestingly, the SC apoptosis rates in the DIO-E. coli groups were lower than those of the Lean-E. coli groups at 12 h (p < 0.05). In conclusion, our results suggested that the DIO mice presented stronger anti-apoptotic abilities than Lean mice in non-fatal acute pneumonia induced by E. coli infection, which is more conducive to protecting the spleen and improving the immune defense ability of the body.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xuchu Gu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China.
| | - Shuang Liang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Gang Ye
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
6
|
Young JL, Yan X, Xu J, Yin X, Zhang X, Arteel GE, Barnes GN, States JC, Watson WH, Kong M, Cai L, Freedman JH. Cadmium and High-Fat Diet Disrupt Renal, Cardiac and Hepatic Essential Metals. Sci Rep 2019; 9:14675. [PMID: 31604971 PMCID: PMC6789035 DOI: 10.1038/s41598-019-50771-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Exposure to the environmental toxicant cadmium (Cd) contributes to the development of obesity-associated diseases. Obesity is a risk factor for a spectrum of unhealthy conditions including systemic metabolic dyshomeostasis. In the present study, the effects of whole-life exposure to environmentally-relevant concentrations of Cd on systemic essential metal distribution in adult mice fed a high-fat diet (HFD) were examined. For these studies, male and female mice were exposed to Cd-containing drinking water for >2 weeks before breeding. Pregnant mice and dams with offspring were exposed to Cd-containing drinking water. After weaning, offspring were continuously exposed to the same Cd concentration as their parents, and divided into HFD and normal (low) fat diet (LFD) groups. At 10 and 24 weeks, mice were sacrificed and blood, liver, kidney and heart harvested for metal analyses. There were significant concentration dependent increases in Cd levels in offspring with kidney > liver > heart. Sex significantly affected Cd levels in kidney and liver, with female animals accumulating more metal than males. Mice fed the HFD showed > 2-fold increase in Cd levels in the three organs compared to similarly treated LFD mice. Cadmium significantly affected essential metals levels in blood, kidney and liver. Additionally, HFD affected essential metal levels in these three organs. These findings suggest that Cd interacts with HFD to affect essential metal homeostasis, a phenomenon that may contribute to the underlying mechanism responsible for the development of obesity-associated pathologies.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
7
|
Increased adiposity by feeding growing rats a high-fat diet results in iron decompartmentalisation. Br J Nutr 2019; 123:1094-1108. [PMID: 32172712 DOI: 10.1017/s0007114519002320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study reports the effects of a high-fat (HF) diet of over 8 weeks on the Fe status of growing rats. Tissue Fe levels were analysed by atomic absorption spectrophotometry, and whole-body adiposity was measured by dual-energy X-ray absorptiometry. Histopathology and morphometry of adipose tissue were performed. Liver homogenates were used for measuring ferroportin-1 protein levels by immunoblotting, and transcript levels were used for Fe genes measured by real-time PCR. Tissue Fe pools were fit to a compartmental biokinetic model in which Fe was assessed using fourteen compartments and twenty-seven transfer constants (kj,i from tissue 'i' to tissue 'j') adapted from the International Commission on Radiological Protection (ICRP) 69. Ten kj,i were calculated from the experimental data using non-linear regression, and seventeen were estimated by allometry according to the formula ${k_{i,j}} = a \times {M^b}$. Validation of the model was carried out by comparing predicted and analysed Fe pool sizes in erythrocytes, the liver and the spleen. Body adiposity was negatively associated with serum Fe levels and positively associated with liver Fe stores. An inferred increase in Fe transfer from bone marrow to the liver paralleled higher hepatic Fe concentrations and ferritin heavy-chain mRNA levels in the HF diet-fed animals, suggesting that liver Fe accumulation occurred at least in part due to a favoured liver erythrocyte uptake. If this feeding condition was to be prolonged, impaired Fe decompartmentalisation may occur, ultimately resulting in dysmetabolic Fe overload.
Collapse
|
8
|
Mohammed A H, Adel Amin K. Alteration of Serum and Hepatic Trace Element Level in Non-alcoholic Fatty Liver Disease-induced by High-fat Sucrose Diet. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/ajsr.2019.323.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Yamano N, Omasa T. EGCG improves recombinant protein productivity in Chinese hamster ovary cell cultures via cell proliferation control. Cytotechnology 2018; 70:1697-1706. [PMID: 30069612 PMCID: PMC6269352 DOI: 10.1007/s10616-018-0243-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022] Open
Abstract
Chinese hamster ovary cell lines are good manufacturing practice-certified host cells and are widely used in the field of biotechnology to produce therapeutic antibodies. Recombinant protein productivity in cells is strongly associated with cell growth. To control cell proliferation, many approaches have previously been tested including: genetic engineering, chemical additives such as cell cycle inhibitors, and temperature shift of the culture. To be widely adopted in the biopharmaceutical industry, the culture methods should be simple, uniform and safe. To this end, we examined the use a natural compound to improve the production capacity. In this study, we focused on the antioxidants, catechin polyphenols, which are found in green tea, for cell proliferation control strategies. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin that induces G0/G1 cell cycle arrest, was investigated for its effect on recombinant protein production. Adding EGCG to the cell culture media resulted in slower cellular growth and longer cell longevity, which improved the specific productivity and total yield of recombinant IgG1 in batch cultures by almost 50% for an extra 2 or 3 days of culture. A lower L-glutamine consumption rate was observed in cells cultured in EGCG-containing media, which may be suggesting that there was less stress in the culture environment. Additionally, EGCG did not affect the N-glycan quality of IgG1. Our results indicated that adding EGCG only on the first day of the culture enhanced the specific productivity and total amount of recombinant protein production in batch cultures. This approach may prove to be useful for biopharmaceutical production.
Collapse
Affiliation(s)
- Noriko Yamano
- Manufacturing Technology Association of Biologics, 7-1-49, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Jiang S, Yan K, Sun B, Gao S, Yang X, Ni Y, Ma W, Zhao R. Long-Term High-Fat Diet Decreases Hepatic Iron Storage Associated with Suppressing TFR2 and ZIP14 Expression in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11612-11621. [PMID: 30350980 DOI: 10.1021/acs.jafc.8b02974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-fat diet-induced obesity is known to disturb hepatic iron metabolism in a time-dependent manner. The mechanism of decreased hepatic iron deposits induced by long-term high-fat diet needs to be further investigated. In this study, 24 6-week-old male Sprague-Dawley rats were given a 16-week high-fat diet and hepatic iron metabolism was examined. High-fat diet feeding considerably decreased hepatic iron contents, enhanced transferrin expression, and reduced the expression of ferritin heavy chain, ferritin light chain, and hepatic iron uptake-related proteins (transferrin receptor 2, TFR2, and ZRT/IRT-like protein 14, ZIP14) in rats. Impaired expression of hepatic TFR2 coincided with DNA hypermethylation on the promoter and repressed expression of transcription factor hepatocyte nuclear factor 4α (HNF4α). miR-181 family expression was markedly increased and verified to regulate Zip14 expression by the dual-luciferase reporter system. Taken together, long-term high-fat diet decreases hepatic iron storage, which is closely linked to inhibition of liver iron transport through the TFR2 and ZIP14-dependent pathway.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Kai Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Bo Sun
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Shixing Gao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yingdong Ni
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Wenqiang Ma
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
11
|
Bedhiafi T, Charradi K, Azaiz MB, Mahmoudi M, Msakni I, Jebari K, Bouziani A, Limam F, Aouani E. Supplementation of grape seed and skin extract to orlistat therapy prevents high-fat diet-induced murine spleen lipotoxicity. Appl Physiol Nutr Metab 2018; 43:782-794. [PMID: 29514007 DOI: 10.1139/apnm-2017-0743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Spleen is the largest lymphoid organ and obesity is related to an elevated risk of immunity dysfunction. The mechanism whereby fat adversely affects the spleen is poorly understood. This study was designed to assess the effectiveness of grape seed and skin extract (GSSE) and orlistat (Xenical, Xe) on high-fat diet (HFD)-induced spleen lipotoxicity. Obese rats were treated either with GSSE (4 g/kg body weight) or Xe (2 mg/kg body weight) or GSSE+Xe and monitored for weight loss for 3 months. Animals were then sacrificed and their spleen used for the evaluation of lipotoxicity-induced oxidative stress and inflammation as well as the putative protection afforded by GSSE and Xe treatment. HFD induced body weight gain and glycogen accumulation into the spleen; ectopic deposition of cholesterol and triglycerides and an oxidative stress characterized by increased lipoperoxidation and carbonylation; inhibition of antioxidant enzyme activities, such as catalase, glutathione peroxidase, and superoxide dismutase; depletion of zinc and copper; and a concomitant increase in calcium. HFD also increased plasma pro-inflammatory cytokines, such as interleukin (IL)-6, IL-17A, tumour necrosis factor alpha, and C-reactive protein, and decreased plasma IL-10 and adiponectin. Importantly, GSSE counteracted all the deleterious effects of HFD on spleen (i.e., lipotoxicity, oxidative stress, and inflammation) and the best protection was obtained when combining Xe+GSSE. Combining GSSE with Xe prevented against fat-induced spleen lipotoxicity, oxidative stress, and inflammation; this combination may be beneficial in other diseases related to the spleen.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Kamel Charradi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Mouna Ben Azaiz
- c Immunology Department, Military Hospital of Tunis, Tunis, 1008, Tunisia
| | - Mohamed Mahmoudi
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Issam Msakni
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Khawla Jebari
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ammar Bouziani
- d Anatomy and Cyto-Pathology Department, Military Hospital, Mont-Fleury, Tunis, 1008, Tunisia
| | - Ferid Limam
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| | - Ezzedine Aouani
- a Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- b Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria, BP 901, 2050 Hammam Lif, Tunisia
| |
Collapse
|
12
|
Capone D, Cataldi M, Vinciguerra M, Mosca T, Barretta S, Ragosta A, Sorrentino A, Vecchione A, Barretta L, Tarantino G. Reticulocyte Hemoglobin Content Helps Avoid Iron Overload in Hemodialysis Patients: A Retrospective Observational Study. ACTA ACUST UNITED AC 2018; 31:709-712. [PMID: 28652444 DOI: 10.21873/invivo.11118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Anemia in patients suffering from end-stage renal failure is currently treated with Erythropoiesis-Stimulating Agents (ESA). This treatment needs sufficient iron supplementation to avoid an inadequate dosage of ESA. Nowadays modern analytical instruments allow to accurately calculate the content of Hemoglobin (Hb) in reticulocytes (CHr), that can be used as a guide for prescribing patients with the appropriate amount of iron. PATIENTS AND METHODS Patients, undergoing hemodialysis, were retrospectively selected from the database and were divided in two groups: group A received intravenous (IV) iron and subcutaneously ESA, and their dosages were adjusted on the basis of the following parameters: Hb, Mean corpuscular haemoglobin (MCH), CHr with consequent MCH/CHr ratio and reticulocyte count determined by the ADVIA 120 Hematology System of Siemens; group B patients were administered IV iron and ESA monitoring iron storage, Hb and ferritin. The aforementioned parameters and the administered amount of iron and ESA were monitored at baseline, four and eight months from the begining of the study. RESULTS For ESA supplementation, no difference was observed between the groups at the various observed times. Despite similar Hb levels, the patients of group A needed significant lower doses of IV iron (-57.8%) avoiding risks of organ toxicity and obtaining consequent cost saving of nearly 1 €/patient/month. CONCLUSION The use of CHr and its related parameters allows the avoidance of overdosage of IV iron, which can potentially damage organs, and the reduction of health care direct and indirect costs.
Collapse
Affiliation(s)
- Domenico Capone
- Integrated Care Department of Clinical Neurosciences, Anestesiology and Drug-Use, Section of Clinical Pharmacology, "Federico II" University, Naples, Italy
| | - Mauro Cataldi
- Integrated Care Department of Clinical Neurosciences, Anestesiology and Drug-Use, Section of Clinical Pharmacology, "Federico II" University, Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, "Federico II" University of Naples, Naples, Italy
| | - Mauro Vinciguerra
- Section of Nephrology, Santa Maria Delle Grazie Hospital, Pozzuoli, Italy
| | - Teresa Mosca
- Integrated Care Department of Clinical Neurosciences, Anestesiology and Drug-Use, Section of Clinical Pharmacology, "Federico II" University, Naples, Italy
| | - Salvatore Barretta
- Outpatients Clinic of Hemodialysis Dial Center s.r.l. Pomigliano D'Arco, Naples, Italy
| | - Annalisa Ragosta
- Outpatients Clinic of Hemodialysis Dial Center s.r.l. Pomigliano D'Arco, Naples, Italy
| | | | | | - Luca Barretta
- Diagnostic Center Kappa SRL Pomigliano D'Arco, Naples, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, "Federico II" University, Naples, Italy
| |
Collapse
|