1
|
Abujrais S, Vallianatou T, Bergquist J. Untargeted Metabolomics and Quantitative Analysis of Tryptophan Metabolites in Myalgic Encephalomyelitis Patients and Healthy Volunteers: A Comparative Study Using High-Resolution Mass Spectrometry. ACS Chem Neurosci 2024; 15:3525-3534. [PMID: 39302151 PMCID: PMC11450765 DOI: 10.1021/acschemneuro.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide. To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry. We observed significant alterations in several metabolic pathways, including the vitamin B3, arginine-proline, and aspartate-asparagine pathways, in the untargeted analysis. The targeted analysis revealed changes in the levels of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, hypoxanthine, and phenylalanine in ME/CFS patients compared to the control group. These findings suggest potential alterations in immune system response and oxidative stress in ME/CFS patients.
Collapse
Affiliation(s)
- Sandy Abujrais
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | - Theodosia Vallianatou
- Spatial
Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Box
591, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Glass KA, Germain A, Huang YV, Hanson MR. Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients. Int J Mol Sci 2023; 24:3685. [PMID: 36835097 PMCID: PMC9958671 DOI: 10.3390/ijms24043685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with unknown etiology or effective treatments. Post-exertional malaise (PEM) is a key symptom that distinguishes ME/CFS patients. Investigating changes in the urine metabolome between ME/CFS patients and healthy subjects following exertion may help us understand PEM. The aim of this pilot study was to comprehensively characterize the urine metabolomes of eight female healthy sedentary control subjects and ten female ME/CFS patients in response to a maximal cardiopulmonary exercise test (CPET). Each subject provided urine samples at baseline and 24 h post-exercise. A total of 1403 metabolites were detected via LC-MS/MS by Metabolon® including amino acids, carbohydrates, lipids, nucleotides, cofactors and vitamins, xenobiotics, and unknown compounds. Using a linear mixed effects model, pathway enrichment analysis, topology analysis, and correlations between urine and plasma metabolite levels, significant differences were discovered between controls and ME/CFS patients in many lipid (steroids, acyl carnitines and acyl glycines) and amino acid subpathways (cysteine, methionine, SAM, and taurine; leucine, isoleucine, and valine; polyamine; tryptophan; and urea cycle, arginine and proline). Our most unanticipated discovery is the lack of changes in the urine metabolome of ME/CFS patients during recovery while significant changes are induced in controls after CPET, potentially demonstrating the lack of adaptation to a severe stress in ME/CFS patients.
Collapse
Affiliation(s)
| | | | | | - Maureen R. Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2021; 6:e149217. [PMID: 34423789 PMCID: PMC8409979 DOI: 10.1172/jci.insight.149217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls. Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses. In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.
Collapse
Affiliation(s)
| | - August Hoel
- Department of Biomedicine and.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,KJ Jebsen Centre for B-cell malignancies, University of Oslo, Oslo, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | - Christoph Schäfer
- Department of Rehabilitation Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristian Sommerfelt
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
6
|
Baklund IH, Dammen T, Moum TÅ, Kristiansen W, Duarte DS, Castro-Marrero J, Helland IB, Strand EB. Evaluating Routine Blood Tests According to Clinical Symptoms and Diagnostic Criteria in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med 2021; 10:jcm10143105. [PMID: 34300271 PMCID: PMC8307418 DOI: 10.3390/jcm10143105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
There is a lack of research regarding blood tests within individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and between patients and healthy controls. We aimed to compare results of routine blood tests between patients and healthy controls. Data from 149 patients diagnosed with ME/CFS based on clinical and psychiatric evaluation as well as on the DePaul Symptom Questionnaire, and data from 264 healthy controls recruited from blood donors were compared. One-way ANCOVA was conducted to examine differences between ME/CFS patients and healthy controls, adjusting for age and gender. Patients had higher sedimentation rate (mean difference: 1.38, 95% CI: 0.045 to 2.714), leukocytes (mean difference: 0.59, 95% CI: 0.248 to 0.932), lymphocytes (mean difference: 0.27, 95% CI: 0.145 to 0.395), neutrophils (mean difference: 0.34, 95% CI: 0.0 89 to 0.591), monocytes (mean difference: 0.34, 95% CI: 0.309 to 0.371), ferritin (mean difference: 28.13, 95% CI: −1.41 to 57.672), vitamin B12 (mean difference: 83.43, 95% CI: 62.89 to 124.211), calcium (mean difference: 0.02, 95% CI: −0.02 to 0.06), alanine transaminase (mean difference: 3.30, 95% CI: −1.37 to -7.971), low-density lipoproteins (mean difference: 0.45, 95% CI: 0.104 to 0.796), and total proteins (mean difference: 1.53, 95% CI: −0.945 to 4.005) than control subjects. The patients had lower potassium levels (mean difference: 0.11, 95% CI: 0.056 to 0.164), creatinine (mean difference: 2.60, 95% CI: 0.126 to 5.074) and creatine kinase (CK) (mean difference: 37.57, 95% CI: −0.282 to 75.422) compared to the healthy controls. Lower CK and creatinine levels may suggest muscle damage and metabolic abnormalities in ME/CFS patients.
Collapse
Affiliation(s)
- Ingrid H. Baklund
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (I.H.B.); (T.D.); (T.Å.M.)
| | - Toril Dammen
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (I.H.B.); (T.D.); (T.Å.M.)
| | - Torbjørn Åge Moum
- Department of Behavioural Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (I.H.B.); (T.D.); (T.Å.M.)
| | - Wenche Kristiansen
- CFS/ME Center, Division of Medicine, Oslo University Hospital, 0318 Oslo, Norway; (W.K.); (D.S.D.)
| | - Daysi Sosa Duarte
- CFS/ME Center, Division of Medicine, Oslo University Hospital, 0318 Oslo, Norway; (W.K.); (D.S.D.)
| | - Jesus Castro-Marrero
- CFS/ME Unit, Division of Rheumatology, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Ingrid Bergliot Helland
- National Advisory Unit for CFS/ME, Rikshospitalet, Oslo University Hospital, Rikshospitalet OUS, 0372 Oslo, Norway;
| | - Elin Bolle Strand
- National Advisory Unit for CFS/ME, Rikshospitalet, Oslo University Hospital, Rikshospitalet OUS, 0372 Oslo, Norway;
- Faculty of Health, VID Specialized University, 0370 Oslo, Norway
- Correspondence:
| |
Collapse
|
7
|
Brown AL, Sok P, Taylor O, Woodhouse JP, Bernhardt MB, Raghubar KP, Kahalley LS, Lupo PJ, Hockenberry MJ, Scheurer ME. Cerebrospinal Fluid Metabolomic Profiles Associated With Fatigue During Treatment for Pediatric Acute Lymphoblastic Leukemia. J Pain Symptom Manage 2021; 61:464-473. [PMID: 32889041 PMCID: PMC7914130 DOI: 10.1016/j.jpainsymman.2020.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Cancer-related fatigue (CRF) is one of the most distressing and persistent symptoms reported during pediatric acute lymphoblastic leukemia (ALL) therapy; however, information on the pathways underlying CRF severity is limited. OBJECTIVES We conducted global metabolomics profiling of cerebrospinal fluid (CSF) samples to provide insight into the underlying mechanisms of CRF. METHODS Fatigue in pediatric ALL patients (2012-2017) was assessed during postinduction therapy approximately six months after diagnosis. Postinduction CSF was collected from 171 participants, comprising discovery (n = 86) and replication (n = 85) cohorts. We also conducted secondary validation using diagnostic CSF from 48 replication cohort participants. CSF metabolomic profiling was performed using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS/MS. Kendall's rank correlation was used to evaluate associations between metabolite abundance and CRF. False discovery rate was used to account for multiple comparisons. RESULTS Participants were 56% males and 59% Hispanic with a mean age at diagnosis of 8.5 years. A total of 274 CSF-derived metabolites were common to the discovery and replication cohorts. Eight metabolites were significantly associated with fatigue in the discovery cohort (P < 0.05), of which three were significant in the replication cohort, including false discovery rate-corrected associations with gamma-glutamylglutamine (Pcombined = 6.2E-6) and asparagine (Pcombined = 3.5E-4). Notably, the abundance of gamma-glutamylglutamine in diagnostic CSF samples was also significantly associated with fatigue (P = 0.0062). CONCLUSION The metabolites identified in our assessment have been implicated in neurotransmitter transportation and glutathione recycling, suggesting that glutamatergic pathways or oxidative stress may contribute to ALL-associated CRF. This information could inform targeted therapies for reducing CRF in at-risk individuals.
Collapse
Affiliation(s)
- Austin L Brown
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
| | - Pagna Sok
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Olga Taylor
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - John P Woodhouse
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - M Brooke Bernhardt
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lisa S Kahalley
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Michael E Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. Diagnostics (Basel) 2019; 9:diagnostics9030079. [PMID: 31331036 PMCID: PMC6787626 DOI: 10.3390/diagnostics9030079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Biomarker discovery applied to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disabling disease of inconclusive aetiology, has identified several cytokines to potentially fulfil a role as a quantitative blood/serum marker for laboratory diagnosis, with activin B a recent addition. We explored further the potential of serum activin B as a ME/CFS biomarker, alone and in combination with a range of routine test results obtained from pathology laboratories. Previous pilot study results showed that activin B was significantly elevated for the ME/CFS participants compared to healthy (control) participants. All the participants were recruited via CFS Discovery and assessed via the Canadian/International Consensus Criteria. A significant difference for serum activin B was also detected for ME/CFS and control cohorts recruited for this study, but median levels were significantly lower for the ME/CFS cohort. Random Forest (RF) modelling identified five routine pathology blood test markers that collectively predicted ME/CFS at ≥62% when compared via weighted standing time (WST) severity classes. A closer analysis revealed that the inclusion of activin B to the panel of pathology markers improved the prediction of mild to moderate ME/CFS cases. Applying correct WST class prediction from RFA modelling, new reference intervals were calculated for activin B and associated pathology markers, where 24-h urinary creatinine clearance, serum urea and serum activin B showed the best potential as diagnostic markers. While the serum activin B results remained statistically significant for the new participant cohorts, activin B was found to also have utility in enhancing the prediction of symptom severity, as represented by WST class.
Collapse
|
9
|
Xu J, Potter M, Tomas C, Elson JL, Morten KJ, Poulton J, Wang N, Jin H, Hou Z, Huang WE. A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman micro-spectroscopy. Analyst 2019; 144:913-920. [DOI: 10.1039/c8an01437j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Single-cell Raman microspectroscopy to detect phenylalanine as a potential biomarker for mitochondrial dysfunction and chronic fatigue syndrome.
Collapse
|
10
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
11
|
Plasma profile and urine excretion of amino acids in children with celiac disease on gluten-free diet after oligofructose-enriched inulin intervention: results of a randomised placebo-controlled pilot study. Amino Acids 2018; 50:1451-1460. [PMID: 30043079 PMCID: PMC6153951 DOI: 10.1007/s00726-018-2622-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
The circulating amino acid (AAs) concentrations are indicators of dietary protein intake and metabolic status. In celiac disease (CD), the AA imbalance is frequently observed. Prebiotics are found to alleviate nutrient deficiencies. Therefore, the aim of this study was to analyse the impact of oligrofructose-enriched inulin (Synergy 1), administered for 3 months as a gluten-free diet (GFD) supplement to children with CD, on the plasma and urine concentrations of AAs. CD children (N = 34) were randomised into two groups, receiving Synergy 1 (10 g/day) or placebo (maltodextrin) for 3 months. The AA profile and concentration was determined in plasma and urine before and after the dietary intervention by gas chromatography. 22 and 28 AAs were determined in plasma and urine samples, respectively. After the intervention, the plasma concentrations of several AAs (Ala, Pro, Asn, Glu, Tyr, Lys, His, Orn) increased significantly in both experimental groups, while Gln increased only in the Synergy 1 group. The urinary excretion of Asn, Lys and Aaa increased significantly in the Synergy 1 group, and the excretion of Asp and Met decreased (p < 0.05) in the placebo group. The Gln:Glu ratio in urine increased in both groups after the intervention. An increased urinary excretion of AAs observed in Synergy 1 group with a simultaneous increase in the content of circulating AAs could be attributed to higher absorption or intensified metabolism of AAs, and on the other hand further healing of the intestinal mucosa being the result of continuous treatment with GFD. Moreover, the observed changes in Glu concentration suggest that oligofructose-enriched inulin could improve the intestinal condition and permeability. To conclude, a prebiotic-supplemented GFD influences beneficially the overall AAs metabolism in CD children; however, further prospective cohort studies are needed to confirm the results obtained.
Collapse
|
12
|
Richardson AM, Lewis DP, Kita B, Ludlow H, Groome NP, Hedger MP, de Kretser DM, Lidbury BA. Weighting of orthostatic intolerance time measurements with standing difficulty score stratifies ME/CFS symptom severity and analyte detection. J Transl Med 2018; 16:97. [PMID: 29650052 PMCID: PMC5898049 DOI: 10.1186/s12967-018-1473-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/05/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is clinically defined and characterised by persistent disabling tiredness and exertional malaise, leading to functional impairment. METHODS This study introduces the weighted standing time (WST) as a proxy for ME/CFS severity, and investigates its behaviour in an Australian cohort. WST was calculated from standing time and subjective standing difficulty data, collected via orthostatic intolerance assessments. The distribution of WST for healthy controls and ME/CFS patients was correlated with the clinical criteria, as well as pathology and cytokine markers. Included in the WST cytokine analyses were activins A and B, cytokines causally linked to inflammation, and previously demonstrated to separate ME/CFS from healthy controls. Forty-five ME/CFS patients were recruited from the CFS Discovery Clinic (Victoria) between 2011 and 2013. Seventeen healthy controls were recruited concurrently and identically assessed. RESULTS WST distribution was significantly different between ME/CFS participants and controls, with six diagnostic criteria, five analytes and one cytokine also significantly different when comparing severity via WST. On direct comparison of ME/CFS to study controls, only serum activin B was significantly elevated, with no significant variation observed for a broad range of serum and urine markers, or other serum cytokines. CONCLUSIONS The enhanced understanding of standing test behaviour to reflect orthostatic intolerance as a ME/CFS symptom, and the subsequent calculation of WST, will encourage the greater implementation of this simple test as a measure of ME/CFS diagnosis, and symptom severity, to the benefit of improved diagnosis and guidance for potential treatments.
Collapse
Affiliation(s)
- Alice M. Richardson
- National Centre for Epidemiology and Public Health, Research School of Population Health, ANU, Acton, ACT 2601 Australia
| | - Don P. Lewis
- CFS Discovery, Donvale Medical Specialist Centre, Donvale, VIC 3111 Australia
| | - Badia Kita
- Paranta Biosciences Limited, Melbourne, VIC 3004 Australia
| | - Helen Ludlow
- School of Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP UK
| | - Nigel P. Groome
- School of Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP UK
| | - Mark P. Hedger
- The Hudson Medical Research Institute, Monash University, Clayton, VIC 3168 Australia
| | - David M. de Kretser
- The Hudson Medical Research Institute, Monash University, Clayton, VIC 3168 Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168 Australia
| | - Brett A. Lidbury
- National Centre for Epidemiology and Public Health, Research School of Population Health, ANU, Acton, ACT 2601 Australia
| |
Collapse
|
13
|
Germain A, Ruppert D, Levine SM, Hanson MR. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism. MOLECULAR BIOSYSTEMS 2017; 13:371-379. [PMID: 28059425 DOI: 10.1039/c6mb00600k] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remains a continuum spectrum disease without biomarkers or simple objective tests, and therefore relies on a diagnosis from a set of symptoms to link the assortment of brain and body disorders to ME/CFS. Although recent studies show various affected pathways, the underlying basis of ME/CFS has yet to be established. In this pilot study, we compare plasma metabolic signatures in a discovery cohort, 17 patients and 15 matched controls, and explore potential metabolic perturbations as the aftermath of the complex interactions between genes, transcripts and proteins. This approach to examine the complex array of symptoms and underlying foundation of ME/CFS revealed 74 differentially accumulating metabolites, out of 361 (P < 0.05), and 35 significantly altered after statistical correction (Q < 0.15). The latter list includes several essential energy-related compounds which could theoretically be linked to the general lack of energy observed in ME/CFS patients. Pathway analysis points to a few pathways with high impact and therefore potential disturbances in patients, mainly taurine metabolism and glycerophospholipid metabolism, combined with primary bile acid metabolism, as well as glyoxylate and dicarboxylate metabolism and a few other pathways, all involved broadly in fatty acid metabolism. Purines, including ADP and ATP, pyrimidines and several amino acid metabolic pathways were found to be significantly disturbed. Finally, glucose and oxaloacetate were two main metabolites affected that have a major effect on sugar and energy levels. Our work provides a prospective path for diagnosis and understanding of the underlying mechanisms of ME/CFS.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - David Ruppert
- Department of Statistical Science and School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan M Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Dunstan RH, Sparkes DL, Macdonald MM, De Jonge XJ, Dascombe BJ, Gottfries J, Gottfries CG, Roberts TK. Diverse characteristics of the urinary excretion of amino acids in humans and the use of amino acid supplementation to reduce fatigue and sub-health in adults. Nutr J 2017; 16:19. [PMID: 28330481 PMCID: PMC5363000 DOI: 10.1186/s12937-017-0240-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 12/04/2022] Open
Abstract
Background The excretion of amino acids in urine represents an important avenue for the loss of key nutrients. Some amino acids such as glycine and histidine are lost in higher abundance than others. These two amino acids perform important physiological functions and are required for the synthesis of key proteins such as haemoglobin and collagen. Methods Stage 1 of this study involved healthy subjects (n = 151) who provided first of the morning urine samples and completed symptom questionnaires. Urine was analysed for amino acid composition by gas chromatography. Stage 2 involved a subset of the initial cohort (n = 37) who completed a 30 day trial of an amino acid supplement and subsequent symptom profile evaluation. Results Analyses of urinary amino acid profiles revealed that three groups could be objectively defined from the 151 participants using k-means clustering. The amino acid profiles were significantly different between each of the clusters (Wilks’ Lambda = 0.13, p < 0.0001). Cluster 1 had the highest loss of amino acids with histidine being the most abundant component. Cluster 2 had glycine present as the most abundant urinary amino acid and cluster 3 had equivalent abundances of glycine and histidine. Strong associations were observed between urinary proline concentrations and fatigue/pain scores (r = .56 to .83) for females in cluster 1, with several other differential sets of associations observed for the other clusters. Conclusions Different phenotypic subsets exist in the population based on amino acid excretion characteristics found in urine. Provision of the supplement resulted in significant improvements in reported fatigue and sleep for 81% of the trial cohort with all females reporting improvements in fatigue. Trial registration The study was registered on the 18th April 2011 with the Australian New Zealand Clinical Trials Registry (ACTRN12611000403932).
Collapse
Affiliation(s)
- R H Dunstan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | - D L Sparkes
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - M M Macdonald
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - X Janse De Jonge
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, Australia
| | | | - J Gottfries
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - C-G Gottfries
- Department of Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - T K Roberts
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
15
|
Fluge Ø, Mella O, Bruland O, Risa K, Dyrstad SE, Alme K, Rekeland IG, Sapkota D, Røsland GV, Fosså A, Ktoridou-Valen I, Lunde S, Sørland K, Lien K, Herder I, Thürmer H, Gotaas ME, Baranowska KA, Bohnen LM, Schäfer C, McCann A, Sommerfelt K, Helgeland L, Ueland PM, Dahl O, Tronstad KJ. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight 2016; 1:e89376. [PMID: 28018972 DOI: 10.1172/jci.insight.89376] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.
Collapse
Affiliation(s)
- Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Irini Ktoridou-Valen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Lunde
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanne Thürmer
- Telemark Hospital, Department of Medicine, Notodden, Norway
| | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | | | - Louis Mlj Bohnen
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | - Christoph Schäfer
- Division of Rehabilitation Services, University Hospital of Northern Norway, Tromsø, Norway
| | | | | | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Bevital AS, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Kim J, Ku B, Kim KH. Validation of the qi blood yin yang deficiency questionnaire on chronic fatigue. Chin Med 2016; 11:24. [PMID: 27141228 PMCID: PMC4852426 DOI: 10.1186/s13020-016-0092-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/18/2016] [Indexed: 11/23/2022] Open
Abstract
Background Chronic fatigue (CF) reflects an imbalance of inter-organ functions or of the four essential physiological components qi, blood (xue), yin, and yang. CF can be subdivided into different patterns. However, there are no diagnostic methods for CF. This study aimed to clinically validate a pattern identification method by identifying correlations between CF and responses to the qi blood yin yang deficiency questionnaire (QBYY-Q). Methods Participants were recruited between May and June 2014 through the Kyung Hee University Korean Medicine hospital website and via posters and comprised 129 CF patients diagnosed with the United States Centers for Disease Control and Prevention (1994) criteria. Participants who had organic diseases that explained the CF were excluded. A total of 159 participants were asked to complete the QBYY-Q, the fatigue severity scale, and the Chalder fatigue scale. The latter two questionnaires were used to assess convergent validity with the QBYY-Q. Among the 129 CF participants, 70 and 59 had chronic fatigue syndrome and idiopathic chronic fatigue, respectively. Two Korean medical doctors independently assessed participants’ qi, blood, yin, and yang deficiency patterns using QBYY deficiency pattern identification guidelines. Based on the results of a preliminary study of the QBYY-Q, we selected 32 reliable items for symptoms corresponding to each deficiency pattern. The items were used to estimate internal consistency and construct validity. Multinomial logistic regression analysis was performed for scores on each deficiency pattern. Results The data were means and standard deviations or numbers of participants and proportions for continuous and categorical variables, respectively. A statistical significance level of P < 0.05 was assumed. The QBYY-Q showed satisfactory internal consistency. Explanatory factor analysis extracted two factors for each deficiency pattern. The percentages of explained variance for qi, blood, yin, and yang deficiency were 45.1, 58.0, 52.2, and 63.4 %, respectively. Each QBYY-Q deficiency score was positively associated with each corresponding deficiency pattern. Qi deficiency was used as a reference category. Odds ratios of blood, yin, and yang deficiency were 10.97, 10.69, and 14.64, respectively. Conclusion The QBYY-Q was suitable for estimating the influences of qi, blood, yin, and yang deficiencies in CF. Trial registration This trial was registered with the Korean Clinical Trial Register (KCT0001199) Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0092-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jihye Kim
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Boncho Ku
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054 Republic of Korea
| | - Keun Ho Kim
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054 Republic of Korea
| |
Collapse
|
17
|
Harvey JM, Broderick G, Bowie A, Barnes ZM, Katz BZ, O'Gorman MRG, Vernon SD, Fletcher MA, Klimas NG, Taylor R. Tracking post-infectious fatigue in clinic using routine Lab tests. BMC Pediatr 2016; 16:54. [PMID: 27118537 PMCID: PMC4847210 DOI: 10.1186/s12887-016-0596-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/21/2016] [Indexed: 12/25/2022] Open
Abstract
Background While biomarkers for chronic fatigue syndrome (CFS) are beginning to emerge they typically require a highly specialized clinical laboratory. We hypothesized that subsets of commonly measured laboratory markers used in combination could support the diagnosis of post-infectious CFS (PI-CFS) in adolescents following infectious mononucleosis (IM) and help determine who might develop persistence of symptoms. Methods Routine clinical laboratory markers were collected prospectively in 301 mono-spot positive adolescents, 4 % of whom developed CFS (n = 13). At 6, 12, and 24 months post-diagnosis with IM, 59 standard tests were performed including metabolic profiling, liver enzyme panel, hormone profiles, complete blood count (CBC), differential white blood count (WBC), salivary cortisol, and urinalysis. Classification models separating PI-CFS from controls were constructed at each time point using stepwise subset selection. Results Lower ACTH levels at 6 months post-IM diagnosis were highly predictive of CFS (AUC p = 0.02). ACTH levels in CFS overlapped with healthy controls at 12 months, but again showed a trend towards a deficiency at 24 months. Conversely, estradiol levels depart significantly from normal at 12 months only to recover at 24 months (AUC p = 0.02). Finally, relative neutrophil count showed a significant departure from normal at 24 months in CFS (AUC p = 0.01). Expression of these markers evolved differently over time between groups. Conclusions Preliminary results suggest that serial assessment of stress and sex hormones as well as the relative proportion of innate immune cells measured using standard clinical laboratory tests may support the diagnosis of PI-CFS in adolescents with IM. Electronic supplementary material The online version of this article (doi:10.1186/s12887-016-0596-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Gordon Broderick
- Department of Medicine, University of Miami, Miami, FL, USA. .,Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA. .,University of Alberta, Edmonton, AB, Canada.
| | | | | | - Ben Z Katz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | - Mary Ann Fletcher
- Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA
| | - Nancy G Klimas
- Institute for Neuro Immune Medicine, Nova Southeastern University, University Park Plaza, 3440 South University, Fort Lauderdale, 33328, FL, USA
| | - Renee Taylor
- University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Dunstan R, Sparkes D, Dascombe B, Evans C, Macdonald M, Crompton M, Franks J, Murphy G, Gottfries J, Carlton B, Roberts T. Sweat facilitated losses of amino acids in Standardbred horses and the application of supplementation strategies to maintain condition during training. COMPARATIVE EXERCISE PHYSIOLOGY 2015. [DOI: 10.3920/cep150027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the amino acid composition of horse sweat, but significant fluid losses can occur during exercise with the potential to facilitate substantial nutrient losses. Sweat and plasma amino acid compositions for Standardbred horses were assessed to determine losses during a standardised training regime. Two cohorts of horses 2013 (n=5) and 2014 (n=6) were assessed to determine baseline levels of plasma and sweat amino acids. An amino acid supplement designed to counter losses in sweat during exercise was provided after morning exercise daily for 5 weeks (2013, n=5; 2014, n=4). After the supplementation period, blood and sweat samples were collected to assess amino acid composition changes. From baseline assessments of sweat in both cohorts, it was found that serine, glutamic acid, histidine and phenylalanine were present at up to 9 times the corresponding plasma concentrations and aspartic acid at 0-2.2 μmol/l in plasma was measured at 154-262 μmol/l in sweat. In contrast, glutamine, asparagine, methionine and cystine were conserved in the plasma by having lower concentrations in the sweat. The predominant plasma amino acids were glycine, glutamine, alanine, valine, serine, lysine and leucine. As the sweat amino acid profile did not simply reflect plasma composition, it was proposed that mechanisms exist to generate high concentrations of certain amino acids in sweat whilst selectively preventing the loss of others. The estimated amino acid load in 16 l of circulating plasma was 3.8-4.3 g and the calculated loss via sweat during high intensity exercise was 1.6-3.0 g. Following supplementation, total plasma amino acid levels from both cohorts increased from initial levels of 2,293 and 2,044 µmol/l to post-supplementation levels of 2,674 and 2,663 µmol/l respectively (P<0.05). It was concluded that the strategy of providing free amino acids immediately after exercise resulted in raising resting plasma amino acid levels.
Collapse
Affiliation(s)
- R.H. Dunstan
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - D.L. Sparkes
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - B.J. Dascombe
- University of Newcastle, School of Environmental and Life Sciences, 10 Chittaway Road, Ourimbah, NSW 2258, Australia
| | - C.A. Evans
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - M.M. Macdonald
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - M. Crompton
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - J. Franks
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - G. Murphy
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - J. Gottfries
- Department of Chemistry, University of Gothenburg, P.O. Box 100, 405 30 Gothenburg, Sweden
| | - B. Carlton
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - T.K. Roberts
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Jason LA, Zinn ML, Zinn MA. Myalgic Encephalomyelitis: Symptoms and Biomarkers. Curr Neuropharmacol 2015; 13:701-34. [PMID: 26411464 PMCID: PMC4761639 DOI: 10.2174/1570159x13666150928105725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/09/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) continues to cause significant morbidity worldwide with an estimated one million cases in the United States. Hurdles to establishing consensus to achieve accurate evaluation of patients with ME continue, fueled by poor agreement about case definitions, slow progress in development of standardized diagnostic approaches, and issues surrounding research priorities. Because there are other medical problems, such as early MS and Parkinson's Disease, which have some similar clinical presentations, it is critical to accurately diagnose ME to make a differential diagnosis. In this article, we explore and summarize advances in the physiological and neurological approaches to understanding, diagnosing, and treating ME. We identify key areas and approaches to elucidate the core and secondary symptom clusters in ME so as to provide some practical suggestions in evaluation of ME for clinicians and researchers. This review, therefore, represents a synthesis of key discussions in the literature, and has important implications for a better understanding of ME, its biological markers, and diagnostic criteria. There is a clear need for more longitudinal studies in this area with larger data sets, which correct for multiple testing.
Collapse
Affiliation(s)
- Leonard A. Jason
- Department of Psychology, Center for Community Research, DePaul University, Chicago, Illinois, United States
| | | | | |
Collapse
|
20
|
Abstract
Chronic fatigue syndrome (CFS) is a poorly understood condition that presents as long-term physical and mental fatigue with associated symptoms of pain and sensitivity across a broad range of systems in the body. The poor understanding of the disorder comes from the varying clinical diagnostic definitions as well as the broad array of body systems from which its symptoms present. Studies on metabolism and CFS suggest irregularities in energy metabolism, amino acid metabolism, nucleotide metabolism, nitrogen metabolism, hormone metabolism, and oxidative stress metabolism. The overwhelming body of evidence suggests an oxidative environment with the minimal utilization of mitochondria for efficient energy production. This is coupled with a reduced excretion of amino acids and nitrogen in general. Metabolomics is a developing field that studies metabolism within a living system under varying conditions of stimuli. Through its development, there has been the optimisation of techniques to do large-scale hypothesis-generating untargeted studies as well as hypothesis-testing targeted studies. These techniques are introduced and show an important future direction for research into complex illnesses such as CFS.
Collapse
|
21
|
Color distribution differences in the tongue in sleep disorder. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:323645. [PMID: 24868237 PMCID: PMC4020389 DOI: 10.1155/2014/323645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
Introduction. According to traditional East Asian medicine (TEAM) theory, the tongue represents conditions of qi and blood. In the present study, the relationship between the tongue and the qi and blood in conditions with no apparent disease was investigated. Methods. A total of 454 elderly people with no apparent disease were recruited. Two Korean oriental medicine doctors classified subjects into a normal group (n = 402) and a sleep disorder group (n = 52). Three to five weeks after the experiment, 153 subjects were rerecruited for a second experiment. Two-dimensional color histograms, whose seven variables represent the color distribution in Commission Internationale de l'Éclairage 1976 (L∗, a∗, b∗) color space, were produced from tongue images. Results. The color of the tongue body in the sleep disorder group appeared paler than that in the normal group, and the tongue coating in the normal group was less widely distributed compared with that in the sleep disorder group. The differences in tongue color between the normal at first experiment and sleep disorder at second experiment conditions were similar to the differences between the normal and the sleep disorder groups. Conclusions. The tongue states in the sleep disorder group indicate a qi and blood deficiency according to TEAM theory.
Collapse
|
22
|
Dunstan RH, Sparkes DL, Roberts TK, Crompton MJ, Gottfries J, Dascombe BJ. Development of a complex amino acid supplement, Fatigue Reviva™, for oral ingestion: initial evaluations of product concept and impact on symptoms of sub-health in a group of males. Nutr J 2013; 12:115. [PMID: 23927677 PMCID: PMC3751078 DOI: 10.1186/1475-2891-12-115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
Background A new dietary supplement, Fatigue Reviva™, has been recently developed to address issues related to amino acid depletion following illness or in conditions of sub-health where altered amino acid homeostasis has been associated with fatigue. Complex formulations of amino acids present significant challenges due to solubility and taste constraints. This initial study sets out to provide an initial appraisal of product palatability and to gather pilot evidence for efficacy. Methods Males reporting symptoms of sub-health were recruited on the basis of being free from any significant medical or psychological condition. Each participant took an amino acid based dietary supplement (Fatigue Reviva™) daily for 30 days. Comparisons were then made between pre- and post-supplement general health symptoms and urinary amino acid profiles. Results Seventeen men took part in the study. Following amino acid supplementation the total Chalder fatigue score improved significantly (mean ± SEM, 12.5 ± 0.9 versus 10.0 ± 1.0, P<0.03). When asked whether they thought that the supplement had improved their health, 65% of participants responded positively. A subgroup of participants reported gastrointestinal symptoms which were attributed to the supplement and which were believed to result from the component fructooligosaccharide. Analysis of urinary amino acids revealed significant alterations in the relative abundances of a number of amino acids after supplementation including an increase in valine, isoleucine and glutamic acid and reduced levels of glutamine and ornithine. Discriminant function analysis of the urinary amino acid data revealed significant differences between the pre- and post-supplement urine excretion profiles. Conclusions The results indicated that Fatigue Reviva™ was palatable and that 65% of the study group reported that they felt the product had improved their health. The product could provide an effective tool for the management of unexplained fatigue and symptoms of sub-health. Further product development may yield additional options for those patients susceptible to fructooligosaccharide.
Collapse
Affiliation(s)
- R Hugh Dunstan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Bing XH, Yang WJ, Chen YF. Effect of point sticking therapy on biochemical markers and rating of perceived exertion in athletes with exercise-induced fatigue. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2012. [DOI: 10.1007/s11726-012-0618-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Blankfield A. A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). Int J Tryptophan Res 2012; 5:27-32. [PMID: 23032646 PMCID: PMC3460668 DOI: 10.4137/ijtr.s10085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Last century there was a short burst of interest in the tryptophan related disorders of pellagra and related abnormalities that are usually presented in infancy.1,2 Nutritional physiologists recognized that a severe human dietary deficiency of either tryptophan or the B group vitamins could result in central nervous system (CNS) sequelae such as ataxia, cognitive dysfunction and dysphoria, accompanied by skin hyperpigmentation.3,4 The current paper will focus on the emerging role of tryptophan in chronic fatigue syndrome (CFS) and fibromyalgia (FM).
Collapse
|
25
|
Armstrong CW, McGregor NR, Sheedy JR, Buttfield I, Butt HL, Gooley PR. NMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndrome. Clin Chim Acta 2012; 413:1525-31. [PMID: 22728138 DOI: 10.1016/j.cca.2012.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/12/2022]
Abstract
Chronic fatigue syndrome (CFS) is a debilitating multisystem disorder characterised by long-term fatigue with a variety of other symptoms including cognitive dysfunction, unrefreshing sleep, muscle pain, and post-exertional malaise. It is a poorly understood condition that occurs in ~5 in every 1000 individuals. We present here a preliminary study on the analysis of blood samples from 11 CFS and 10 control subjects through NMR metabolic profiling. Identified metabolites that were found to be significantly altered between the groups were subjected to correlation analysis to potentially elucidate disturbed metabolic pathways. Our results showed a significant reduction of glutamine (P=0.002) and ornithine (P<0.05) in the blood of the CFS samples. Correlation analysis of glutamine and ornithine with other metabolites in the CFS sera showed relationships with glucogenic amino acids and metabolites that participate in the urea cycle. This indicates a possible disturbance to amino acid and nitrogen metabolism. It would be beneficial to identify any potential biomarkers of CFS for accurate diagnosis of the disorder.
Collapse
Affiliation(s)
- Christopher W Armstrong
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Hugh Dunstan R, Sparkes DL, Macdonald MM, Roberts TK, Wratten C, Kumar MB, Baines S, Denham JW, Gallagher SA, Rothkirch T. Altered amino acid homeostasis and the development of fatigue by breast cancer radiotherapy patients: A pilot study. Clin Biochem 2010; 44:208-15. [PMID: 20950596 DOI: 10.1016/j.clinbiochem.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/21/2010] [Accepted: 10/04/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To examine altered amino acid homeostasis as a predisposing factor of fatigue in female radiotherapy breast cancer patients. DESIGN AND METHODS Participants underwent breast-conserving surgery and adjuvant breast irradiation and were free from significant fatigue pre-radiotherapy. The Functional Assessment of Cancer Therapy fatigue subscale was used to assess fatigue pre- and post-radiotherapy. Blood biochemistry factors and urinary and plasma amino acid levels were measured. RESULTS One third of 27 patients developed fatigue and were designated as the fatigued cohort. It was possible to differentiate between fatigued subjects pre- and post-radiotherapy based upon their urinary amino acid profiles. Univariate analysis supported altered amino acid homeostasis within the fatigued cohort. Urinary levels of histidine and alanine were increased pre-radiotherapy whilst threonine, methionine, alanine, serine, asparagine and glutamine levels were higher after 5weeks of radiotherapy for the fatigued cohort. CONCLUSIONS Fatigue was accompanied by altered amino acid homeostasis with increased amino acid excretion suggestive of a catabolic response.
Collapse
Affiliation(s)
- R Hugh Dunstan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Brenu EW, Staines DR, Baskurt OK, Ashton KJ, Ramos SB, Christy RM, Marshall-Gradisnik SM. Immune and hemorheological changes in chronic fatigue syndrome. J Transl Med 2010; 8:1. [PMID: 20064266 PMCID: PMC2829521 DOI: 10.1186/1479-5876-8-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/11/2010] [Indexed: 11/29/2022] Open
Abstract
Background Chronic Fatigue Syndrome (CFS) is a multifactorial disorder that affects various physiological systems including immune and neurological systems. The immune system has been substantially examined in CFS with equivocal results, however, little is known about the role of neutrophils and natural killer (NK) phenotypes in the pathomechanism of this disorder. Additionally the role of erythrocyte rheological characteristics in CFS has not been fully expounded. The objective of this present study was to determine deficiencies in lymphocyte function and erythrocyte rheology in CFS patients. Methods Flow cytometric measurements were performed for neutrophil function, lymphocyte numbers, NK phenotypes (CD56dimCD16+ and CD56brightCD16-) and NK cytotoxic activity. Erythrocyte aggregation, deformability and fibrinogen levels were also assessed. Results CFS patients (n = 10) had significant decreases in neutrophil respiratory burst, NK cytotoxic activity and CD56brightCD16- NK phenotypes in comparison to healthy controls (n = 10). However, hemorheological characteristic, aggregation, deformability, fibrinogen, lymphocyte numbers and CD56dimCD16+ NK cells were similar between the two groups. Conclusion These results indicate immune dysfunction as potential contributors to the mechanism of CFS, as indicated by decreases in neutrophil respiratory burst, NK cell activity and NK phenotypes. Thus, immune cell function and phenotypes may be important diagnostic markers for CFS. The absence of rheological changes may indicate no abnormalities in erythrocytes of CFS patients.
Collapse
Affiliation(s)
- Ekua W Brenu
- Faculty of Health Science and Medicine, Population Health and Neuroimmunology Unit, Bond University, Robina, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sepúlveda E, Rojas IG, Brethauer U, Maulén NP, Muñoz M, Kirsten L, Oñate A, Fernández E, Le Fort P, Rojas J. Effect of white cell counts on the presence of human herpes simplex virus type-1 in saliva of pediatric oncology patients. ACTA ACUST UNITED AC 2008; 105:583-8. [DOI: 10.1016/j.tripleo.2007.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 12/19/2007] [Accepted: 12/25/2007] [Indexed: 11/29/2022]
|
29
|
Dröge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661-78. [PMID: 18162053 DOI: 10.1089/ars.2007.1953] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms leading to the increase in free radical-derived oxidative stress in "normal aging" remains obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The decrease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic protein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione levels is likely to facilitate certain "secondary" disease-related mechanisms of oxidative stress. Studies on cysteine supplementation show therapeutic promise.
Collapse
Affiliation(s)
- Wulf Dröge
- Department of Research and Development, Immunotec Inc, Vaudreuil, Québec, Canada.
| | | |
Collapse
|