1
|
Wang X, Yamaguchi N. Cause or effect: Probing the roles of epigenetics in plant development and environmental responses. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102569. [PMID: 38833828 DOI: 10.1016/j.pbi.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Epigenetic modifications are inheritable, reversible changes that control gene expression without altering the DNA sequence itself. Recent advances in epigenetic and sequencing technologies have revealed key regulatory regions in genes with multiple epigenetic changes. However, causal associations between epigenetic changes and physiological events have rarely been examined. Epigenome editing enables alterations to the epigenome without changing the underlying DNA sequence. Modifying epigenetic information in plants has important implications for causality assessment of the epigenome. Here, we briefly review tools for selectively interrogating the epigenome. We highlight promising research on site-specific DNA methylation and histone modifications and propose future research directions to more deeply investigate epigenetic regulation, including cause-and-effect relationships between epigenetic modifications and the development/environmental responses of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xuejing Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
2
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
3
|
Chiapperino L, Panese F. Engram Studies: A Call for Historical, Philosophical, and Sociological Approaches. ADVANCES IN NEUROBIOLOGY 2024; 38:259-272. [PMID: 39008020 DOI: 10.1007/978-3-031-62983-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this chapter, we identify three distinct avenues of research on the philosophical, historical, and sociopolitical dimensions of engram research. First, we single out the need to refine philosophical understandings of memory within neuroscientific research on the engram. Specifically, we question the place of constructivist and preservationist philosophical claims on memory in the formulation of the engram concept and its operationalization in contemporary neuroscience research. Second, we delve into the received historiography of the engram claiming its disappearance after Richard Semon's (1859-1918) coinage of the concept. Differently from this view, we underline that Semon's legacy is still largely undocumented: Unknown are the ways the engram circulated within studies of organic memory as well as the role Semon's ideas had in specific national contexts of research in neurosciences. Finally, another research gap on the engram concerns a socio-anthropological documentation of the factual and normative resources this research offers to think about memory in healthcare and society. Representations of memory in this research, experimental strategies of intervention into the engram, as well as their translational potential for neurodegenerative (e.g., Alzheimer's disease) and psychiatric (e.g., post-traumatic stress disorder) conditions have not yet received scrutiny notwithstanding their obvious social and political relevance.All these knowledge gaps combined call for a strong commitment towards interdisciplinarity to align the ambitions of a foundational neuroscience of the engram with a socially responsible circulation of this knowledge. What role can the facts, metaphors, and interventional strategies of engram research play in the wider society? With what implications for philosophical questions at the foundation of memory, which have accompanied its study from antiquity? And what can neuro- and social scientists do jointly to shape the social and political framings of engram research?
Collapse
Affiliation(s)
- Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Francesco Panese
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 2022; 27:687-709. [PMID: 34079067 PMCID: PMC8636523 DOI: 10.1038/s41380-021-01163-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain's reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.
Collapse
|
5
|
Ozyerli-Goknar E, Bagci-Onder T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers (Basel) 2021; 13:3210. [PMID: 34199020 PMCID: PMC8267644 DOI: 10.3390/cancers13133210] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells possess the ability to evade apoptosis. Genetic alterations through mutations in key genes of the apoptotic signaling pathway represent a major adaptive mechanism of apoptosis evasion. In parallel, epigenetic changes via aberrant modifications of DNA and histones to regulate the expression of pro- and antiapoptotic signal mediators represent a major complementary mechanism in apoptosis regulation and therapy response. Most epigenetic changes are governed by the activity of chromatin modifying enzymes that add, remove, or recognize different marks on histones and DNA. Here, we discuss how apoptosis signaling components are deregulated at epigenetic levels, particularly focusing on the roles of chromatin-modifying enzymes in this process. We also review the advances in cancer therapies with epigenetic drugs such as DNMT, HMT, HDAC, and BET inhibitors, as well as their effects on apoptosis modulation in cancer cells. Rewiring the epigenome by drug interventions can provide therapeutic advantage for various cancers by reverting therapy resistance and leading cancer cells to undergo apoptotic cell death.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
6
|
Russell AE, Cavendish JZ, Rai A, Vannoy M, Dakhlallah AH, Hu H, Ren X, Amer A, Brown CM, Marsh CB, Simpkins JW, Dakhlallah D. Intermittent Lipopolysaccharide Exposure Significantly Increases Cortical Infarct Size and Impairs Autophagy. ASN Neuro 2021; 13:1759091421991769. [PMID: 33626880 PMCID: PMC8020222 DOI: 10.1177/1759091421991769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Globally, stroke is a leading cause of death and disability. Traditional risk factors like hypertension, diabetes, and obesity do not fully account for all stroke cases. Recent infection is regarded as changes in systemic immune signaling, which can increase thrombosis formation and other stroke risk factors. We have previously shown that administration of lipopolysaccharide (LPS) 30-minutes prior to stroke increases in infarct volume. In the current study, we found that animals intermittently exposed to LPS have larger cortical infarcts when compared to saline controls. To elucidate the mechanism behind this phenomenon, several avenues were investigated. We observed significant upregulation of tumor necrosis factor-alpha (TNF-α) mRNA, especially in the ipsilateral hemisphere of both saline and LPS exposed groups compared to sham surgery animals. We also observed significant reductions in expression of genes involved in autophagy in the ipsilateral hemisphere of LPS stroke animals. In addition, we assessed DNA methylation of autophagy genes and observed a significant increase in the ipsilateral hemisphere of LPS stroke animals. Intermittent exposure to LPS increases cortical infarct volume, downregulates autophagy genes, and induces hypermethylation of the corresponding CpG islands. These data suggest that intermittent immune activation may deregulate epigenetic mechanisms and promote neuropathological outcomes after stroke.
Collapse
Affiliation(s)
- Ashley E Russell
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, Pennsylvania, United States
| | - John Z Cavendish
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States
| | - Ali Rai
- Department of Biomedical Engineering, West Virginia University School of Medicine, Morgantown, United States
| | - Mya Vannoy
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, United States
| | - Ahmad H Dakhlallah
- Department of Biology, West Virginia University School of Medicine, Morgantown, United States
| | - Heng Hu
- Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, United States
| | - Xuefang Ren
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States
| | - Amal Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, Ohio State University, Columbus, United States
| | - Candice M Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States
| | - Clay B Marsh
- Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, United States
| | - James W Simpkins
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, United States.,Rockerfeller Center for Neuroscience, West Virginia University School of Medicine, Morgantown, United States
| | - Duaa Dakhlallah
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, United States.,School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| |
Collapse
|
7
|
|
8
|
Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019; 55:10192-10213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Light is unsurpassed in its ability to modulate biological interactions. Since their discovery, chemists have been fascinated by photosensitive molecules capable of switching between isomeric forms, known as photoswitches. Photoswitchable peptides have been recognized for many years; however, their functional implementation in biological systems has only recently been achieved. Peptides are now acknowledged as excellent protein-protein interaction modulators and have been important in the emergence of photopharmacology. In this review, we briefly explain the different classes of photoswitches and summarize structural studies when they are incorporated into peptides. Importantly, we provide a detailed overview of the rapidly increasing number of examples, where biological modulation is driven by the structural changes. Furthermore, we discuss some of the remaining challenges faced in this field. These exciting proof-of-principle studies highlight the tremendous potential of photocontrollable peptides as optochemical tools for chemical biology and biomedicine.
Collapse
Affiliation(s)
- Lea Albert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | |
Collapse
|
9
|
Abstract
This review addresses novel approaches for influencing the transcriptome, the
epigenome, the microbiome, the proteome, and the energy metabolome. These innovations
help develop psychotropic medications which will directly reach the molecular
targets, leading to beneficial effects, and which will be individually adapted to
provide more efficacy and less toxicity. The series of advances described here show
that these once utopian goals for psychiatric treatment are now real themes of
research, indicating that the future path for psychopharmacology might not be as
narrow and grim as considered during the last few decades.
Collapse
Affiliation(s)
- Pierre Schulz
- Private practice as psychiatrist; Head of the Unit of Clinical Psychopharmacology (retired), Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Schulz P. Opportunities and challenges in psychopharmacology
. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:119-130. [PMID: 31636486 PMCID: PMC6787536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
This review addresses novel approaches for influencing the transcriptome, the epigenome, the microbiome, the proteome, and the energy metabolome. These innovations help develop psychotropic medications which will directly reach the molecular targets, leading to beneficial effects, and which will be individually adapted to provide more efficacy and less toxicity. The series of advances described here show that these once utopian goals for psychiatric treatment are now real themes of research, indicating that the future path for psychopharmacology might not be as narrow and grim as considered during the last few decades.
.
Collapse
Affiliation(s)
- Pierre Schulz
- Private practice as psychiatrist; Head of the Unit of Clinical Psychopharmacology (retired), Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Hughes RM. A compendium of chemical and genetic approaches to light-regulated gene transcription. Crit Rev Biochem Mol Biol 2018; 53:453-474. [PMID: 30040498 DOI: 10.1080/10409238.2018.1487382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
Collapse
Affiliation(s)
- Robert M Hughes
- a Department of Chemistry , East Carolina University , Greenville , NC , USA
| |
Collapse
|
12
|
Roth TL. Epigenetic Advances in Behavioral and Brain Sciences have Relevance for Public Policy. ACTA ACUST UNITED AC 2017; 4:202-209. [PMID: 29202007 DOI: 10.1177/2372732217719091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nature and nurture work together to drive development, behavior, and health. Behavioral epigenetics research has uncovered the underlying mechanisms for how this happens. Children's early years in development may offer the greatest opportunity for environmental and experiential factors to influence epigenome (chemical compounds telling our genes what to do), but evidence suggests it is never too late. The policy implications of this research are vast, including relevance for child development, health, and disease intervention and prevention.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark DE
| |
Collapse
|
13
|
Savell KE, Day JJ. Applications of CRISPR/Cas9 in the Mammalian Central Nervous System. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:567-581. [PMID: 29259522 PMCID: PMC5733858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases.
Collapse
Affiliation(s)
- Katherine E. Savell
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy J. Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
14
|
Malankhanova TB, Malakhova AA, Medvedev SP, Zakian SM. Modern Genome Editing Technologies in Huntington's Disease Research. J Huntingtons Dis 2017; 6:19-31. [PMID: 28128770 PMCID: PMC5389024 DOI: 10.3233/jhd-160222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of new revolutionary technologies for directed gene editing has made it possible to thoroughly model and study NgAgo human diseases at the cellular and molecular levels. Gene editing tools like ZFN, TALEN, CRISPR-based systems, NgAgo and SGN can introduce different modifications. In gene sequences and regulate gene expression in different types of cells including induced pluripotent stem cells (iPSCs). These tools can be successfully used for Huntington's disease (HD) modeling, for example, to generate isogenic cell lines bearing different numbers of CAG repeats or to correct the mutation causing the disease. This review presents common genome editing technologies and summarizes the progress made in using them in HD and other hereditary diseases. Furthermore, we will discuss prospects and limitations of genome editing in understanding HD pathology.
Collapse
Affiliation(s)
- Tuyana B Malankhanova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia.,State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia A Malakhova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey P Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia.,State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Suren M Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia.,State Research Institute of Circulation Pathology, Ministry of Healthcare of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
15
|
Boyle M, Mann J. WITHDRAWN: Epigenetics in Chronic Liver Disease. J Hepatol 2017:S0168-8278(17)32255-9. [PMID: 28855099 DOI: 10.1016/j.jhep.2017.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/04/2022]
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Marie Boyle
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4(th) Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
16
|
Eleftheriou C, Cesca F, Maragliano L, Benfenati F, Maya-Vetencourt JF. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. J Exp Neurosci 2017; 11:1179069517703354. [PMID: 28579827 PMCID: PMC5415353 DOI: 10.1177/1179069517703354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.
Collapse
Affiliation(s)
- Cyril Eleftheriou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | | |
Collapse
|
17
|
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60:67-75. [PMID: 28187949 DOI: 10.1016/j.alcohol.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.
Collapse
|
18
|
Abstract
Genome targeting has quickly developed as one of the most promising fields in science. By using programmable DNA-binding platforms and nucleases, scientists are now able to accurately edit the genome. These DNA-binding tools have recently also been applied to engineer the epigenome for gene expression modulation. Such epigenetic editing constructs have firmly demonstrated the causal role of epigenetics in instructing gene expression. Another focus of epigenome engineering is to understand the order of events of chromatin remodeling in gene expression regulation. Groundbreaking approaches in this field are beginning to yield novel insights into the function of individual chromatin marks in the context of maintaining cellular phenotype and regulating transient gene expression changes. This review focuses on recent advances in the field of epigenetic editing and highlights its promise for sustained gene expression reprogramming.
Collapse
|
19
|
Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2016; 357:84-93. [DOI: 10.1124/jpet.115.231670] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
20
|
Wefel JS, Noll KR, Scheurer ME. Neurocognitive functioning and genetic variation in patients with primary brain tumours. Lancet Oncol 2016; 17:e97-e108. [PMID: 26972863 PMCID: PMC5215729 DOI: 10.1016/s1470-2045(15)00380-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023]
Abstract
Impairment of neurocognitive functioning is a common result of cerebral neoplasms and treatment, although there is substantial heterogeneity in the pattern and severity of neurocognitive dysfunction across individuals and tumour types. The effects of many clinical and patient characteristics on neurocognitive functioning have been documented, but little research has been devoted to understanding the effect of genetic variation on neurocognitive outcomes in patients with brain tumours. This Review highlights preliminary evidence that suggests an association between various genes and risk of adverse neurocognitive outcomes in patients with brain tumours. Studies include genes specific to neuronal function, and those associated with more systemic cellular regulation. Related scientific literature in other disease populations is briefly discussed to indicate additional candidate genes. We consider methodological issues central to the study of neurocognitive functioning and genetic associations for patients with brain tumours, and emphasise the need for future research integrating novel investigative techniques.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Aberrations in the epigenetic landscape have previously been associated with human diseases such as cancer and schizophrenia, and drugs that target epigenetic processes are currently used as therapeutic agents. This article will review the evidence obtained from animal studies indicating that epigenetic processes might regulate long-term pain states and then discuss the possibility that targeting epigenetic mechanisms might be useful for the management of chronic pain. RECENT FINDINGS Recent animal studies have reported injury-induced changes in epigenetic processes in the central nervous system. The picture that has emerged is that of very complex epigenetic programs that depend on the injury. However, some studies have reported the successful use of nonspecific epigenetic tools to improve the hypersensitivity that develops in animal models of long-term pain states. SUMMARY The field of epigenetics and pain is rapidly emerging but further investigation is needed to fully comprehend the contribution of epigenetic processes to chronic pain states. Although therapeutic approaches targeting these mechanisms might seem worthwhile, we cannot assert that currently available global tools such as histone deacetylase inhibitors can be used successfully for the long-term treatment of chronic pain states.
Collapse
|