1
|
Dekhil N, Skhairia MA, Mhenni B, Ben Fradj S, Warren R, Mardassi H. Automated IS6110-based fingerprinting of Mycobacterium tuberculosis: Reaching unprecedented discriminatory power and versatility. PLoS One 2018; 13:e0197913. [PMID: 29856789 PMCID: PMC5983439 DOI: 10.1371/journal.pone.0197913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several technical hurdles and limitations have restricted the use of IS6110 restriction fragment length polymorphism (IS6110 RFLP), the most effective typing method for detecting recent tuberculosis (TB) transmission events. This has prompted us to conceive an alternative modality, IS6110-5'3'FP, a plasmid-based cloning approach coupled to a single PCR amplification of differentially labeled 5' and 3' IS6110 polymorphic ends and their automated fractionation on a capillary sequencer. The potential of IS6110-5'3'FP to be used as an alternative to IS6110 RFLP has been previously demonstrated, yet further technical improvements are still required for optimal discriminatory power and versatility. OBJECTIVES Here we introduced critical amendments to the original IS6110-5'3'FP protocol and compared its performance to that of 24-loci multiple interspersed repetitive unit-variable number tandem repeats (MIRU-VNTR), the current standard method for TB transmission analyses. METHODS IS6110-5'3'FP protocol modifications involved: (i) the generation of smaller-sized polymorphic fragments for efficient cloning and PCR amplification, (ii) omission of the plasmid amplification step in E. coli for shorter turnaround times, (iii) the use of more stable fluorophores for increased sensitivity, (iv) automated subtraction of background fluorescent signals, and (v) the automated conversion of fluorescent peaks into binary data. RESULTS In doing so, the overall turnaround time of IS6110-5'3'FP was reduced to 4 hours. The new protocol allowed detecting almost all 5' and 3' IS6110 polymorphic fragments of any given strain, including IS6110 high-copy number Beijing strains. IS6110-5'3'FP proved much more discriminative than 24-loci MIRU-VNTR, particularly with strains of the M. tuberculosis lineage 4. CONCLUSIONS The IS6110-5'3'FP protocol described herein reached the optimal discriminatory potential of IS6110 fingerprinting and proved more accurate than 24-loci MIRU-VNTR in estimating recent TB transmission. The method, which is highly cost-effective, was rendered versatile enough to prompt its evaluation as an automatized solution for a TB integrated molecular surveillance.
Collapse
Affiliation(s)
- Naira Dekhil
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Amine Skhairia
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Besma Mhenni
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Saloua Ben Fradj
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmi Mardassi
- Unit of Typing & Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
3
|
Typing Method for the QUB11a Locus of Mycobacterium tuberculosis: IS 6110 Insertions and Tandem Repeat Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5216530. [PMID: 27812529 PMCID: PMC5080463 DOI: 10.1155/2016/5216530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022]
Abstract
QUB11a is used as a locus for variable number of tandem repeats (VNTR) analysis of Mycobacterium tuberculosis Beijing lineage. However, amplification of QUB11a occasionally produces large fragments (>1,400 bp) that are not easily measured by capillary electrophoresis because of a lack of the typical stutter peak patterns that are used for counting repeat numbers. IS6110 insertion may complicate VNTR analysis of large QUB11a fragments in M. tuberculosis. We established a method for determining both tandem repeat numbers and IS6110 insertion in the QUB11a locus of M. tuberculosis using capillary electrophoresis analysis and BsmBI digestion. All 29 large QUB11a fragments (>1,200 bp) investigated contained IS6110 insertions and varied in the number of repeats (18 patterns) and location of IS6110 insertions. This method allows VNTR analysis with high discrimination.
Collapse
|
4
|
Casali N, Broda A, Harris SR, Parkhill J, Brown T, Drobniewski F. Whole Genome Sequence Analysis of a Large Isoniazid-Resistant Tuberculosis Outbreak in London: A Retrospective Observational Study. PLoS Med 2016; 13:e1002137. [PMID: 27701423 PMCID: PMC5049847 DOI: 10.1371/journal.pmed.1002137] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A large isoniazid-resistant tuberculosis outbreak centred on London, United Kingdom, has been ongoing since 1995. The aim of this study was to investigate the power and value of whole genome sequencing (WGS) to resolve the transmission network compared to current molecular strain typing approaches, including analysis of intra-host diversity within a specimen, across body sites, and over time, with identification of genetic factors underlying the epidemiological success of this cluster. METHODS AND FINDINGS We sequenced 344 outbreak isolates from individual patients collected over 14 y (2 February 1998-22 June 2012). This demonstrated that 96 (27.9%) were indistinguishable, and only one differed from this major clone by more than five single nucleotide polymorphisms (SNPs). The maximum number of SNPs between any pair of isolates was nine SNPs, and the modal distance between isolates was two SNPs. WGS was able to reveal the direction of transmission of tuberculosis in 16 cases within the outbreak (4.7%), including within a multidrug-resistant cluster that carried a rare rpoB mutation associated with rifampicin resistance. Eleven longitudinal pairs of patient pulmonary isolates collected up to 48 mo apart differed from each other by between zero and four SNPs. Extrapulmonary dissemination resulted in acquisition of a SNP in two of five cases. WGS analysis of 27 individual colonies cultured from a single patient specimen revealed ten loci differed amongst them, with a maximum distance between any pair of six SNPs. A limitation of this study, as in previous studies, is that indels and SNPs in repetitive regions were not assessed due to the difficulty in reliably determining this variation. CONCLUSIONS Our study suggests that (1) certain paradigms need to be revised, such as the 12 SNP distance as the gold standard upper threshold to identify plausible transmissions; (2) WGS technology is helpful to rule out the possibility of direct transmission when isolates are separated by a substantial number of SNPs; (3) the concept of a transmission chain or network may not be useful in institutional or household settings; (4) the practice of isolating single colonies prior to sequencing is likely to lead to an overestimation of the number of SNPs between cases resulting from direct transmission; and (5) despite appreciable genomic diversity within a host, transmission of tuberculosis rarely results in minority variants becoming dominant. Thus, whilst WGS provided some increased resolution over variable number tandem repeat (VNTR)-based clustering, it was insufficient for inferring transmission in the majority of cases.
Collapse
Affiliation(s)
- Nicola Casali
- Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
- Centre for Immunology and Infectious Disease, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Simon R. Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Timothy Brown
- Public Health England National Mycobacterium Reference Laboratory, London, United Kingdom
| | - Francis Drobniewski
- Department of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
- Public Health England National Mycobacterium Reference Laboratory, London, United Kingdom
- Departments of Microbiology and Respiratory Medicine, Barts Health NHS Trust, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Nikolayevskyy V, Trovato A, Broda A, Borroni E, Cirillo D, Drobniewski F. MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Using QIAxcel Technology: A Multicentre Evaluation Study. PLoS One 2016; 11:e0149435. [PMID: 26939051 PMCID: PMC4777483 DOI: 10.1371/journal.pone.0149435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/30/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Molecular genotyping of M.tuberculosis is an important laboratory tool in the context of emerging drug resistant TB. The standard 24-loci MIRU-VNTR typing includes PCR amplification followed by the detection and sizing of PCR fragments using capillary electrophoresis on automated sequencers or using agarose gels. The QIAxcel Advanced system might offer a cost-effective medium-throughput alternative. METHODS Performance characteristics of the QIAxcel Advanced platform for the standard 24 VNTR loci panel was evaluated at two centres on a total of 140 DNA specimens using automated capillary electrophoresis as a reference method. Additionally 4 hypervariable MIRU-VNTR loci were evaluated on 53 crude DNA extracts. The sizing accuracy, interlaboratory reproducibility and overall instrument's performance were assessed during the study. RESULTS An overall concordance with the reference method was high reaching 98.5% and 97.6% for diluted genomic and crude DNA extracts respectively. 91.4% of all discrepancies were observed in fragments longer than 700bp. The concordance for hypervariable loci was lower except for locus 4120 (96.2%). The interlaboratory reproducibility agreement rates were 98.9% and 91.3% for standard and hypervariable loci, respectively. Overall performance of the QIAxcel platform for M.tuberculosis genotyping using a panel of standard loci is comparable to that of established methods for PCR fragments up to 700bp. Inaccuracies in sizing of longer fragments could be resolved through using in-house size markers or introduction of offset values. To conclude, the QiaXcel system could be considered an effective alternative to existing methods in smaller reference and regional laboratories offering good performance and shorter turnaround times.
Collapse
Affiliation(s)
| | - Alberto Trovato
- Division of Infectious Disease, Immunology and Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Agnieszka Broda
- Infectious Diseases, Imperial College London, London, United Kingdom
| | - Emanuele Borroni
- Division of Infectious Disease, Immunology and Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Cirillo
- Division of Infectious Disease, Immunology and Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
6
|
Navarro Y, Romero B, Bouza E, Domínguez L, Juan LD, García-de-Viedma D. Detailed chronological analysis of microevolution events in herds infected persistently by Mycobacterium bovis. Vet Microbiol 2016; 183:97-102. [DOI: 10.1016/j.vetmic.2015.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
|
7
|
Beijing clades of Mycobacterium tuberculosis are associated with differential survival in HIV-negative Russian patients. INFECTION GENETICS AND EVOLUTION 2015; 36:517-523. [PMID: 26319998 DOI: 10.1016/j.meegid.2015.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/01/2015] [Accepted: 08/23/2015] [Indexed: 11/24/2022]
Abstract
We conducted a prospective study to establish factors associated with survival in tuberculosis patients in Russia including social, clinical and pathogen-related genetic parameters. Specifically we wished to determine whether different strains/clades of the Beijing lineage exerted a differential effect of survival. HIV-negative culture-confirmed cases were recruited during 2008-2010 across Samara Oblast and censored in December 2011. Molecular characterization was performed by a combination of spoligotyping, multilocus VNTR typing and whole genome sequencing (WGS). We analyzed 2602 strains and detected a high prevalence of Beijing family (n=1933; 74%) represented largely by two highly homogenous dominant clades A (n=794) and B (n=402) and non-A/non-B (n=737). Multivariable analysis of 1366 patients with full clinical and genotyping data showed that multi- and extensive drug resistance (HR=1.86; 95%CI: 1.52, 2.28 and HR=2.19; 95%CI: 1.55, 3.11) had the largest impact on survival. In addition older age, extensive lung damage, shortness of breath, treatment in the past and alcohol abuse reduced survival time. After adjustment for clinical and demographic predictors there was evidence that clades A and B combined were associated with poorer survival than other Beijing strains (HR=0.48; 95%CI 0.34, 0.67). All other pathogen-related factors (polymorphisms in genes plcA, plcB, plcC, lipR, dosT and pks15/1) had no effect on survival. In conclusion, drug resistance exerted the greatest effect on survival of TB patients. Nevertheless we provide evidence for the independent biological effect on survival of different Beijing family strains even within the same defined geographical population. Better understanding of the role of different strain factors in active disease and their influence on outcome is essential.
Collapse
|
8
|
Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 2014; 97 Suppl:S30-43. [DOI: 10.1016/j.rvsc.2014.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
|
9
|
Luo T, Yang C, Pang Y, Zhao Y, Mei J, Gao Q. Development of a hierarchical variable-number tandem repeat typing scheme for Mycobacterium tuberculosis in China. PLoS One 2014; 9:e89726. [PMID: 24586989 PMCID: PMC3934936 DOI: 10.1371/journal.pone.0089726] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/23/2014] [Indexed: 12/02/2022] Open
Abstract
Molecular typing based on variable-number tandem repeats (VNTR) analysis is a promising tool for identifying transmission of Mycobacterium tuberculosis. However, the currently proposed 15- and 24-locus VNTR sets (VNTR-15/24) only have limited resolution and contain too many loci for large-scale typing in high burden countries. To develop an optimal typing scheme in China, we evaluated the resolution and robustness of 25 VNTR loci, using population-based collections of 1362 clinical isolates from six provinces across the country. The resolution of most loci showed considerable variations among regions. By calculating the average resolution of all possible combinations of 20 robust loci, we identified an optimal locus set with a minimum of 9 loci (VNTR-9) that could achieve comparable resolution of the standard VNTR-15. The VNTR-9 had consistently high resolutions in all six regions, and it was highly concordant with VNTR-15 for defining both clustered and unique genotypes. Furthermore, VNTR-9 was phylogenetically informative for classifying lineages/sublineages of M. tuberculosis. Three hypervariable loci (HV-3), VNTR 3232, VNTR 3820 and VNTR 4120, were proved important for further differentiating unrelated clustered strains based on VNTR-9. We propose the optimized VNTR-9 as first-line method and the HV-3 as second-line method for molecular typing of M. tuberculosis in China and surrounding countries. The development of hierarchical VNTR typing methods that can achieve high resolution with a small number of loci could be suitable for molecular epidemiology study in other high burden countries.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jian Mei
- Department of TB Control, Shanghai Municipal Centers for Disease Control and Prevention, Shanghai, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol 2013; 52:164-72. [PMID: 24172154 DOI: 10.1128/jcm.02519-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Collapse
|
11
|
Iwamoto T, Grandjean L, Arikawa K, Nakanishi N, Caviedes L, Coronel J, Sheen P, Wada T, Taype CA, Shaw MA, Moore DAJ, Gilman RH. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 2012; 7:e49651. [PMID: 23185395 PMCID: PMC3504116 DOI: 10.1371/journal.pone.0049651] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/11/2012] [Indexed: 01/28/2023] Open
Abstract
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kontsevaya I, Mironova S, Nikolayevskyy V, Balabanova Y, Mitchell S, Drobniewski F. Evaluation of two molecular assays for rapid detection of mycobacterium tuberculosis resistance to fluoroquinolones in high-tuberculosis and -multidrug-resistance Settings. J Clin Microbiol 2011; 49:2832-7. [PMID: 21632897 PMCID: PMC3147752 DOI: 10.1128/jcm.01889-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/19/2011] [Indexed: 01/13/2023] Open
Abstract
The Russian Federation is a high-tuberculosis (TB)-burden country with high rates of drug resistance, including multidrug and extensive drug resistance to TB (M/XDRTB). Rapid diagnosis of resistance to fluoroquinolones (FQs) using molecular assays is essential for the implementation of appropriate drug regimens and prevention of the transmission of XDR strains. A total of 51 individual MDRTB strains were tested by pyrosequencing of the quinolone resistance determining region of the gyrA gene and the GenoType MTBDRsl assay (Hain Lifescience, GmbH, Nehren, Germany), and the results were evaluated against those obtained by phenotypic drug susceptibility testing (DST). Mutations were detected in 25 (78.1%) FQ-resistant strains, with the majority of mutations (n = 19 [73.0%]) found in codon 94 of the gyrA gene; the novel mutation 1457 C→Τ was found in the gyrB gene. Three mixed allelic variants were detected, which is a well-known phenomenon in areas with high TB and drug-resistant TB rates. The sensitivity and specificity of pyrosequencing (86.2 and 100%, respectively) and MTBDRsl (86.2 and 100%, respectively) were high; however, the results for 5.9% of the analyzed strains were unreadable when MTBDRsl was used. The MTBDRsl and pyrosequencing assays offer a rapid and accurate means for diagnosing resistance to FQs in high-TB-burden areas.
Collapse
Affiliation(s)
- I. Kontsevaya
- Samara Oblast Tuberculosis Dispensary, Samara, Russian Federation
| | - S. Mironova
- Samara Oblast Tuberculosis Dispensary, Samara, Russian Federation
| | - V. Nikolayevskyy
- Health Protection Agency National Mycobacterium Reference Laboratory Clinical TB and HIV Group, Institute for Cell and Molecular Sciences, Barts and the London Medical School, Queen Mary, University of London, London, United Kingdom
| | - Y. Balabanova
- Samara Oblast Tuberculosis Dispensary, Samara, Russian Federation
- Health Protection Agency National Mycobacterium Reference Laboratory Clinical TB and HIV Group, Institute for Cell and Molecular Sciences, Barts and the London Medical School, Queen Mary, University of London, London, United Kingdom
| | - S. Mitchell
- Health Protection Agency National Mycobacterium Reference Laboratory Clinical TB and HIV Group, Institute for Cell and Molecular Sciences, Barts and the London Medical School, Queen Mary, University of London, London, United Kingdom
| | - F. Drobniewski
- Health Protection Agency National Mycobacterium Reference Laboratory Clinical TB and HIV Group, Institute for Cell and Molecular Sciences, Barts and the London Medical School, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
13
|
Limitations of spoligotyping and variable-number tandem-repeat typing for molecular tracing of Mycobacterium bovis in a high-diversity setting. J Clin Microbiol 2011; 49:3361-4. [PMID: 21752973 DOI: 10.1128/jcm.00301-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the attempt to trace the first Mycobacterium bovis outbreak in alpacas (Lama pacos) in Spain by spoligotyping and variable-number tandem-repeat (VNTR) analysis. Due to high genotype diversity, no matching source was identified, but local expansion of a clonal group was found and its significance for molecular tracing is discussed.
Collapse
|
14
|
Balabanova Y, Nikolayevskyy V, Ignatyeva O, Kontsevaya I, Rutterford CM, Shakhmistova A, Malomanova N, Chinkova Y, Mironova S, Fedorin I, Drobniewski FA. Survival of civilian and prisoner drug-sensitive, multi- and extensive drug- resistant tuberculosis cohorts prospectively followed in Russia. PLoS One 2011; 6:e20531. [PMID: 21695213 PMCID: PMC3112205 DOI: 10.1371/journal.pone.0020531] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/04/2011] [Indexed: 11/18/2022] Open
Abstract
Objective and Methods A long-term observational study was conducted in Samara, Russia to assess the survival and risk factors for death of a cohort of non-multidrug resistant tuberculosis (non-MDRTB) and multidrug resistant tuberculosis (MDRTB) civilian and prison patients and a civilian extensive drug-resistant tuberculosis (XDRTB) cohort. Results MDRTB and XDRTB rates of 54.8% and 11.1% were identified in the region. Half (50%) of MDRTB patients and the majority of non-MDRTB patients (71%) were still alive at 5 years. Over half (58%) of the patients died within two years of establishing a diagnosis of XDRTB. In the multivariate analysis, retreatment (HR = 1.61, 95%CI 1.04, 2.49) and MDRTB (HR = 1.67, 95%CI 1.17, 2.39) were significantly associated with death within the non-MDR/MDRTB cohort. The effect of age on survival was relatively small (HR = 1.01, 95%CI 1.00, 1.02). No specific factor affected survival of XDRTB patients although median survival time for HIV-infected versus HIV-negative patients from this group was shorter (185 versus 496 days). The majority of MDRTB and XDRTB strains (84% and 92% respectively) strains belonged to the Beijing family. Mutations in the rpoB (codon 531 in 81/92; 88.8%), katG (mutation S315T in 91/92, 98.9%) and inhA genes accounted for most rifampin and isoniazid resistance respectively, mutations in the QRDR region of gyrA for most fluroquinolone resistance (68/92; 73.5%). Conclusions Alarmingly high rates of XDRTB exist. Previous TB treatment cycles and MDR were significant risk factors for mortality. XDRTB patients' survival is short especially for HIV-infected patients. Beijing family strains comprise the majority of drug-resistant strains.
Collapse
Affiliation(s)
- Yanina Balabanova
- Queen Mary College, Barts and the London School of Medicine, University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol 2011; 6:203-16. [PMID: 21366420 DOI: 10.2217/fmb.10.165] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genotyping is used to track specific isolates of Mycobacterium tuberculosis in a community. It has been successfully used in epidemiologic research (termed 'molecular epidemiology') to study the transmission dynamics of TB. In this article, we review the genetic markers used in molecular epidemiologic studies including the use of whole-genome sequencing technology. We also review the public health application of molecular epidemiologic tools.
Collapse
Affiliation(s)
- Midori Kato-Maeda
- University of California, San Francisco, Francis J Curry National Tuberculosis Center, Division of Pulmonary & Critical Care Medicine, San Francisco General Hospital, 1001 Potrero Avenue, Building 100, Room 109, Mail box 0841, San Francisco, CA 94110-0111, USA
| | | | | |
Collapse
|
16
|
Kontsevaya IS, Nikolayevsky VV, Balabanova YM. Molecular epidemiology of tuberculosis: Objectives, methods, and prospects. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2011. [DOI: 10.3103/s0891416811010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cardoso Oelemann M, Gomes HM, Willery E, Possuelo L, Batista Lima KV, Allix-Béguec C, Locht C, Goguet de la Salmonière YOL, Gutierrez MC, Suffys P, Supply P. The forest behind the tree: phylogenetic exploration of a dominant Mycobacterium tuberculosis strain lineage from a high tuberculosis burden country. PLoS One 2011; 6:e18256. [PMID: 21464915 PMCID: PMC3064675 DOI: 10.1371/journal.pone.0018256] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/01/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. METHODOLOGY/PRINCIPAL FINDINGS We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. CONCLUSIONS/SIGNIFICANCE Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications.
Collapse
Affiliation(s)
- Maranibia Cardoso Oelemann
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Harrison M. Gomes
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Eve Willery
- INSERM U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Lia Possuelo
- Center of Scientific and Technological Development, Fundação Estadual de Produção e Pesquisa em Saúde, Porto Alegre, Brazil
| | | | - Caroline Allix-Béguec
- INSERM U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- INSERM U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
| | | | - Maria Cristina Gutierrez
- INSERM U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Philip Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Philip Supply
- INSERM U1019, Lille, France
- CNRS UMR 8204, Lille, France
- Univ Lille Nord de France, Lille, France
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
18
|
Investigating transmission of Mycobacterium bovis in the United Kingdom in 2005 to 2008. J Clin Microbiol 2011; 49:1943-50. [PMID: 21430093 DOI: 10.1128/jcm.02299-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to an increase in bovine tuberculosis in cattle in the United Kingdom, we investigated the characteristics of Mycobacterium bovis infection in humans and assessed whether extensive transmission of M. bovis between humans has occurred. A cross-sectional study linking demographic, clinical, and DNA fingerprinting (using 15-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat [MIRU-VNTR] typing) data on cases reported between 2005 and 2008 was undertaken. A total of 129 cases of M. bovis infection in humans were reported over the period, with a decrease in annual incidence from 0.065 to 0.047 cases per 100,000 persons. Most patients were born pre-1960, before widespread pasteurization was introduced (73%), were of white ethnicity (83%), and were born in the United Kingdom (76%). A total of 102 patients (79%) had MIRU-VNTR typing data. A total of 31 of 69 complete MIRU-VNTR profiles formed eight distinct clusters. The overall clustering proportion determined using the n - 1 method was 33%. The largest cluster, comprising 12 cases, was indistinguishable from a previously reported West Midlands outbreak strain cluster and included those cases. This cluster was heterogeneous, having characteristics supporting recent zoonotic and human-to-human transmission as well as reactivation of latent disease. Seven other, smaller clusters identified had demographics supporting recrudescence rather than recent infection. A total of 33 patients had incomplete MIRU-VNTR profiles, of which 11 may have yielded 2 to 6 further small clusters if typed to completion. The incidence of M. bovis in humans in the United Kingdom remains low, and the epidemiology is predominantly that of reactivated disease.
Collapse
|
19
|
García de Viedma D, Mokrousov I, Rastogi N. Innovations in the molecular epidemiology of tuberculosis. Enferm Infecc Microbiol Clin 2011; 29 Suppl 1:8-13. [DOI: 10.1016/s0213-005x(11)70012-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Brown T, Nikolayevskyy V, Velji P, Drobniewski F. Associations between Mycobacterium tuberculosis strains and phenotypes. Emerg Infect Dis 2010; 16:272-80. [PMID: 20113558 PMCID: PMC2958017 DOI: 10.3201/eid1602.091032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This population-based study was used to investigate strong associations between phenotypes and genotypes. To inform development of tuberculosis (TB) control strategies, we characterized a total of 2,261 Mycobacterium tuberculosis complex isolates by using multiple phenotypic and molecular markers, including polymorphisms in repetitive sequences (spoligotyping and variable-number tandem repeats [VNTRs]) and large sequence and single-nucleotide polymorphisms. The Beijing family was strongly associated with multidrug resistance (p = 0.0001), and VNTR allelic variants showed strong associations with spoligotyping families: >5 copies at exact tandem repeat (ETR) A, >2 at mycobacterial interspersed repetitive unit 24, and >3 at ETR-B associated with the East African–Indian and M. bovis strains. All M. tuberculosis isolates were differentiated into 4 major lineages, and a maximum parsimony tree was constructed suggesting a more complex phylogeny for M. africanum. These findings can be used as a model of pathogen global diversity.
Collapse
|