1
|
Currie BJ, Meumann EM, Kaestli M. The Expanding Global Footprint of Burkholderia pseudomallei and Melioidosis. Am J Trop Med Hyg 2023; 108:1081-1083. [PMID: 37160279 PMCID: PMC10540122 DOI: 10.4269/ajtmh.23-0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Affiliation(s)
- Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, Australia
| | - Ella M. Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, Australia
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Ghazali AK, Firdaus-Raih M, Uthaya Kumar A, Lee WK, Hoh CC, Nathan S. Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Microbiol Spectr 2023; 11:e0383522. [PMID: 36856434 PMCID: PMC10100664 DOI: 10.1128/spectrum.03835-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Asqwin Uthaya Kumar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Birnie E, Biemond JJ, Wiersinga WJ. Drivers of melioidosis endemicity: epidemiological transition, zoonosis, and climate change. Curr Opin Infect Dis 2022; 35:196-204. [PMID: 35665713 PMCID: PMC10128909 DOI: 10.1097/qco.0000000000000827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Melioidosis, caused by the soil-dwelling bacterium Burkholderia pseudomallei, is a tropical infection associated with high morbidity and mortality. This review summarizes current insights into melioidosis' endemicity, focusing on epidemiological transitions, zoonosis, and climate change. RECENT FINDINGS Estimates of the global burden of melioidosis affirm the significance of hot-spots in Australia and Thailand. However, it also highlights the paucity of systematic data from South Asia, The Americas, and Africa. Globally, the growing incidence of diabetes, chronic renal and (alcoholic) liver diseases further increase the susceptibility of individuals to B. pseudomallei infection. Recent outbreaks in nonendemic regions have further exposed the hazard from the trade of animals and products as potential reservoirs for B. pseudomallei. Lastly, global warming will increase precipitation, severe weather events, soil salinity and anthrosol, all associated with the occurrence of B. pseudomallei. SUMMARY Epidemiological transitions, zoonotic hazards, and climate change are all contributing to the emergence of novel melioidosis-endemic areas. The adoption of the One Health approach involving multidisciplinary collaboration is important in unraveling the real incidence of B. pseudomallei, as well as reducing the spread and associated mortality.
Collapse
Affiliation(s)
- Emma Birnie
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
- Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, Netherlands
| | - Jason J. Biemond
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
| | - W. Joost Wiersinga
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine
- Amsterdam UMC location University of Amsterdam, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
4
|
Zheng H, Qin J, Chen H, Hu H, Zhang X, Yang C, Wu Y, Li Y, Li S, Kuang H, Zhou H, Shen D, Song K, Song Y, Zhao T, Yang R, Tan Y, Cui Y. Genetic diversity and transmission patterns of Burkholderia pseudomallei on Hainan island, China, revealed by a population genomics analysis. Microb Genom 2021; 7. [PMID: 34762026 PMCID: PMC8743561 DOI: 10.1099/mgen.0.000659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative soil-dwelling bacillus that causes melioidosis, a frequently fatal infectious disease, in tropical and subtropical regions. Previous studies have identified the overall genetic and evolutionary characteristics of B. pseudomallei on a global scale, including its origin and transmission routes. However, beyond its known hyperendemicity foci in northern Australia and Southeast Asia, the distribution and genetic characteristics of B. pseudomallei in most tropical regions remain poorly understood, including in southern China. Here, we sequenced the genomes of 122 B. pseudomallei strains collected from Hainan, an island in southern China, in 2002–2018, to investigate the population structure, relationships with global strains, local epidemiology, and virulence and antimicrobial-resistance factors. A phylogenetic analysis and hierarchical clustering divided the Hainan strains into nine phylogenic groups (PGs), 80 % of which were concentrated within five major groups (group 1: corresponding to minor sequence types [STs], 12.3 %; group 3: ST46 and ST50, 31.1 %; group 9: ST58, 13.1 %; group 11: ST55, 8.2 %; group 15: mainly ST658, 15.6%). A phylogenetic analysis that included global strains suggested that B. pseudomallei in Hainan originated from Southeast Asian countries, transmitted in multiple historical importation events. We also identified several mutual transmission events between Hainan and Southeast Asian countries in recent years, including three importation events from Thailand and Singapore to Hainan and three exportation events from Hainan to Singapore, Malaysia, and Taiwan island. A statistical analysis of the temporal distribution showed that the Hainan strains of groups 3, 9, and 15 have dominated the disease epidemic locally in the last 5 years. The spatial distribution of the Hainan strains demonstrated that some PGs are distributed in different cities on Hainan island, and by combining phylogenic and geographic distribution information, we detected 21 between-city transmission events, indicating its frequent local transmission. The detection of virulence factor genes showed that 56 % of the Hainan strains in group 1 encode a B. pseudomallei-specific adherence factor, boaB, confirming the specific pathogenic characteristics of the Hainan strains in group 1. An analysis of the antimicrobial-resistance potential of B. pseudomallei showed that various kinds of alterations were identified in clinically relevant antibiotic resistance factors, such as AmrR, PenA and PBP3, etc. Our results clarify the population structure, local epidemiology, and pathogenic characteristics of B. pseudomallei in Hainan, providing further insight into its regional and global transmission networks and improving our knowledge of its global phylogeography.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Jingliang Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai Chen
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yuanli Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Sha Li
- Department of Clinical Laboratory, Sanya People's Hospital, Sanya, Hainan Province, 572000, PR China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Hanwang Zhou
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Dingxia Shen
- Department of Laboratory Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, 572000, PR China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, PR China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| |
Collapse
|
5
|
Meumann EM, Kaestli M, Mayo M, Ward L, Rachlin A, Webb JR, Kleinecke M, Price EP, Currie BJ. Emergence of Burkholderia pseudomallei Sequence Type 562, Northern Australia. Emerg Infect Dis 2021; 27:1057-1067. [PMID: 33754984 PMCID: PMC8007296 DOI: 10.3201/eid2704.202716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since 2005, the range of Burkholderia pseudomallei sequence type 562 (ST562) has expanded in northern Australia. During 2005–2019, ST562 caused melioidosis in 61 humans and 3 animals. Cases initially occurred in suburbs surrounding a creek before spreading across urban Darwin, Australia and a nearby island community. In urban Darwin, ST562 caused 12% (53/440) of melioidosis cases, a proportion that increased during the study period. We analyzed 2 clusters of cases with epidemiologic links and used genomic analysis to identify previously unassociated cases. We found that ST562 isolates from Hainan Province, China, and Pingtung County, Taiwan, were distantly related to ST562 strains from Australia. Temporal genomic analysis suggested a single ST562 introduction into the Darwin region in ≈1988. The origin and transmission mode of ST562 into Australia remain uncertain.
Collapse
|
6
|
Tang X, Shen M, Zhang Y, Zhu D, Wang H, Zhao Y, Kang Y. The changes in antibiotic resistance genes during 86 years of the soil ripening process without anthropogenic activities. CHEMOSPHERE 2021; 266:128985. [PMID: 33228990 DOI: 10.1016/j.chemosphere.2020.128985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the baseline of natural variations in antibiotic resistance genes (ARGs) in soil without anthropogenic activities over the decades. Nine soil samples with different time of soil formation were taken from the Yancheng Wetland National Nature Reserve, China. ARGs and mobile genetic elements (MGEs) were characterized using metagenomic analysis. A total of 196 and 192 subtypes of ARGs were detected in bulk soil and rhizosphere, respectively. The diversity and abundance of ARGs were stable during 69 years probably due to the alkaline pH soil environment but not due to antibiotics. Increases in ARGs after 86 years were probably attributed to more migrant birds inhabited compared with other sampling sites. Multidrug was the most abundant type, and largely shared by soil samples. It was further shown that soil samples could not be clearly distinguished, suggesting a slow process of succession of ARGs in the mudflat. The variation partitioning analysis revealed that the ARG profile was driven by the comprehensive effects exhibited by the bacterial community, MGEs, and environmental factors. Besides, pathogenic bacteria containing ARGs mediated by migrant birds in the area with 86 years of soil formation history nearing human settlements needed special attention. This study revealed the slow variations in ARGs in the soil ripening process without anthropogenic activities over decades, and it provided information for assessing the effect of human activities on the occurrence and dissemination of ARGs.
Collapse
Affiliation(s)
- Xingyao Tang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Min Shen
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yanzhou Zhang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Dewei Zhu
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Huanli Wang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yongqiang Zhao
- Yancheng National Nature Reserve for Rare Birds, Yancheng, Jiangsu, PR China
| | - Yijun Kang
- Yancheng Bioengineering Research Center for 'Binhai Bai-shou-wu', Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
7
|
Using Land Runoff to Survey the Distribution and Genetic Diversity of Burkholderia pseudomallei in Vientiane, Laos. Appl Environ Microbiol 2021; 87:AEM.02112-20. [PMID: 33257313 PMCID: PMC7851688 DOI: 10.1128/aem.02112-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melioidosis is a disease of significant public health importance that is being increasingly recognized globally. The majority of cases arise through direct percutaneous exposure to its etiological agent, Burkholderia pseudomallei In the Lao People's Democratic Republic (Laos), the presence and environmental distribution of B. pseudomallei are not well characterized, though recent epidemiological surveys of the bacterium have indicated that B. pseudomallei is widespread throughout the environment in the center and south of the country and that rivers can act as carriers and potential sentinels for the bacterium. The spatial and genetic distribution of B. pseudomallei within Vientiane Capital, from where the majority of cases diagnosed to date have originated, remains an important knowledge gap. We sampled surface runoff from drain catchment areas throughout urban Vientiane to determine the presence and local population structure of the bacterium. B. pseudomallei was detected in drainage areas throughout the capital, indicating it is widespread in the environment and that exposure rates in urban Vientiane are likely more frequent than previously thought. Whole-genome comparative analysis demonstrated that Lao B. pseudomallei isolates are highly genetically diverse, suggesting the bacterium is well-established and not a recent introduction. Despite the wide genome diversity, one environmental survey isolate was highly genetically related to a Lao melioidosis patient isolate collected 13 years prior to the study. Knowledge gained from this study will augment understanding of B. pseudomallei phylogeography in Asia and enhance public health awareness and future implementation of infection control measures within Laos.IMPORTANCE The environmental bacterium B. pseudomallei is the etiological agent of melioidosis, a tropical disease with one model estimating a global annual incidence of 165,000 cases and 89,000 deaths. In the Lao People's Democratic Republic (Laos), the environmental distribution and population structure of B. pseudomallei remain relatively undefined, particularly in Vientiane Capital from where most diagnosed cases have originated. We used surface runoff as a proxy for B. pseudomallei dispersal in the environment and performed whole-genome sequencing (WGS) to examine the local population structure. Our data confirmed that B. pseudomallei is widespread throughout Vientiane and that surface runoff might be useful for future environmental monitoring of the bacterium. B. pseudomallei isolates were also highly genetically diverse, suggesting the bacterium is well-established and endemic in Laos. These findings can be used to improve awareness of B. pseudomallei in the Lao environment and demonstrates the epidemiological and phylogeographical insights that can be gained from WGS.
Collapse
|
8
|
Webb JR, Win MM, Zin KN, Win KKN, Wah TT, Ashley EA, Smithuis F, Swe MMM, Mayo M, Currie BJ, Dance DAB. Myanmar Burkholderia pseudomallei strains are genetically diverse and originate from Asia with phylogenetic evidence of reintroductions from neighbouring countries. Sci Rep 2020; 10:16260. [PMID: 33004984 PMCID: PMC7530998 DOI: 10.1038/s41598-020-73545-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Melioidosis was first identified in Myanmar in 1911 but for the last century it has remained largely unreported there. Burkholderia pseudomallei was first isolated from the environment of Myanmar in 2016, confirming continuing endemicity. Recent genomic studies showed that B. pseudomallei originated in Australia and spread to Asia, with phylogenetic evidence of repeated reintroduction of B. pseudomallei across countries bordered by the Mekong River and the Malay Peninsula. We present the first whole-genome sequences of B. pseudomallei isolates from Myanmar: nine clinical and seven environmental isolates. We used large-scale comparative genomics to assess the genetic diversity, phylogeography and potential origins of B. pseudomallei in Myanmar. Global phylogenetics demonstrated that Myanmar isolates group in two distantly related clades that reside in a more ancestral Asian clade with high amounts of genetic diversity. The diversity of B. pseudomallei from Myanmar and divergence within our global phylogeny suggest that the original introduction of B. pseudomallei to Myanmar was not a recent event. Our study provides new insights into global patterns of B. pseudomallei dissemination, most notably the dynamic nature of movement of B. pseudomallei within densely populated Southeast Asia. The role of anthropogenic influences in both ancient and more recent dissemination of B. pseudomallei to Myanmar and elsewhere in Southeast Asia and globally requires further study.
Collapse
Affiliation(s)
- Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Mo Mo Win
- Department of Medical Research, Yangon, Myanmar
| | - Khwar Nyo Zin
- Microbiology Laboratory, Yangon General Hospital, Yangon, Myanmar
| | | | | | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Myo Maung Maung Swe
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, NT, Australia
| | - David A B Dance
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci Rep 2020; 10:5443. [PMID: 32214186 PMCID: PMC7096523 DOI: 10.1038/s41598-020-62300-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 11/12/2022] Open
Abstract
Melioidosis is a severe disease caused by the environmental bacterium Burkholderia pseudomallei that affects both humans and animals throughout northern Australia, Southeast Asia and increasingly globally. While there is a considerable degree of genetic diversity amongst isolates, B. pseudomallei has a robust global biogeographic structure and genetic populations are spatially clustered in the environment. We examined the distribution and local spread of B. pseudomallei in Darwin, Northern Territory, Australia, which has the highest recorded urban incidence of melioidosis globally. We sampled soil and land runoff throughout the city centre and performed whole-genome sequencing (WGS) on B. pseudomallei isolates. By combining phylogenetic analyses, Bayesian clustering and spatial hot spot analysis our results demonstrate that some sequence types (STs) are widespread in the urban Darwin environment, while others are highly spatially clustered over a small geographic scale. This clustering matches the spatial distribution of clinical cases for one ST. Results also demonstrate a greater overall isolate diversity recovered from drains compared to park soils, further supporting the role drains may play in dispersal of B. pseudomallei STs in the environment. Collectively, knowledge gained from this study will allow for better understanding of B. pseudomallei phylogeography and melioidosis source attribution, particularly on a local level.
Collapse
|
10
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
French CT, Bulterys PL, Woodward CL, Tatters AO, Ng KR, Miller JF. Virulence from the rhizosphere: ecology and evolution of Burkholderia pseudomallei-complex species. Curr Opin Microbiol 2020; 54:18-32. [PMID: 32028234 DOI: 10.1016/j.mib.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher T French
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Northern Arizona University, Department of Biological Sciences, Pathogen and Microbiome Institute 1395 S Knoles Drive, Flagstaff, AZ 86011, United States.
| | - Philip L Bulterys
- Department of Pathology, Stanford University, Lane Building, L235, 300 Pasteur Drive, Stanford, CA, 94305, United States
| | - Cora L Woodward
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Avery O Tatters
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Ken R Ng
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Jeff F Miller
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| |
Collapse
|
12
|
Rachlin A, Kleinecke M, Kaestli M, Mayo M, Webb JR, Rigas V, Shilton C, Benedict S, Dyrting K, Currie BJ. A cluster of melioidosis infections in hatchling saltwater crocodiles ( Crocodylus porosus) resolved using genome-wide comparison of a common north Australian strain of Burkholderia pseudomallei. Microb Genom 2019; 5. [PMID: 31433287 PMCID: PMC6755496 DOI: 10.1099/mgen.0.000288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative saprophytic bacillus and the aetiological agent of melioidosis, a disease of public-health importance throughout Southeast Asia and northern Australia. Infection can occur in humans and a wide array of animal species, though zoonotic transmission and case clusters are rare. Despite its highly plastic genome and extensive strain diversity, fine-scale investigations into the population structure of B. pseudomallei indicate there is limited geographical dispersal amongst sequence types (STs). In the ‘Top End’ of northern Australia, five STs comprise 90 % of the overall abundance, the most prevalent and widespread of which is ST-109. In May 2016, ST-109 was implicated in two fatal cases of melioidosis in juvenile saltwater crocodiles at a wildlife park near Darwin, Australia. To determine the probable source of infection, we sampled the crocodile enclosures and analysed the phylogenetic relatedness of crocodile and culture-positive ST-109 environmental park isolates against an additional 135 ST-109 B. pseudomallei isolates from the Top End. Collectively, our whole-genome sequencing (WGS) and pathology findings confirmed B. pseudomallei detected in the hatchling incubator as the likely source of infection, with zero SNPs identified between clinical and environmental isolates. Our results also demonstrate little variation across the ST-109 genome, with SNPs in recombinogenic regions and one suspected case of ST homoplasy accounting for nearly all observed diversity. Collectively, this study supports the use of WGS for outbreak source attribution in highly recombinogenic pathogens, and confirms the epidemiological and phylogenetic insights that can be gained from high-resolution sequencing platforms.
Collapse
Affiliation(s)
- Audrey Rachlin
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- *Correspondence: Audrey Rachlin,
| | - Mariana Kleinecke
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Mirjam Kaestli
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Jessica R. Webb
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
| | - Cathy Shilton
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Suresh Benedict
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Kitman Dyrting
- Berrimah Veterinary Laboratory, Department of Primary Industry, Fisheries and Mines, Berrimah Farm, Makagon Road, Berrimah, Northern Territory 0828, Australia
| | - Bart J. Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory 0811, Australia
- Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory 0811, Australia
| |
Collapse
|
13
|
Melioidosis: An Australian Perspective. Trop Med Infect Dis 2018; 3:tropicalmed3010027. [PMID: 30274424 PMCID: PMC6136632 DOI: 10.3390/tropicalmed3010027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei is endemic in northern Australia, with cases of melioidosis most commonly occurring during the wet season in individuals with diabetes, hazardous alcohol use, and chronic kidney disease. Pneumonia is the most common presentation and the majority of patients are bacteraemic—however, infection may involve almost any organ, with the skin and soft tissues, genitourinary system, visceral organs, and bone and joints affected most commonly. Central nervous system involvement is rarer, but has a high attributable mortality. Increased awareness of the disease amongst healthcare providers, ready access to appropriate antibiotic therapy and high-quality intensive care services has resulted in a sharp decline in the case fatality rate over the last 20 years. Further improvement in clinical outcomes will require a greater understanding of the disease′s pathophysiology, its optimal management, and more effective strategies for its prevention.
Collapse
|
14
|
Rothrock M, Locatelli A, Glenn T, Thomas J, Caudill A, Kiepper B, Hiett K. Assessing the microbiomes of scalder and chiller tank waters throughout a typical commercial poultry processing day. Poult Sci 2016; 95:2372-82. [DOI: 10.3382/ps/pew234] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
|
15
|
The melioidosis agent Burkholderia pseudomallei and related opportunistic pathogens detected in faecal matter of wildlife and livestock in northern Australia. Epidemiol Infect 2016; 144:1924-32. [PMID: 26935879 DOI: 10.1017/s0950268816000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Darwin region in northern Australia has experienced rapid population growth in recent years, and with it, an increased incidence of melioidosis. Previous studies in Darwin have associated the environmental presence of Burkholderia pseudomallei, the causative agent of melioidosis, with anthropogenic land usage and proximity to animals. In our study, we estimated the occurrence of B. pseudomallei and Burkholderia spp. relatives in faecal matter of wildlife, livestock and domestic animals in the Darwin region. A total of 357 faecal samples were collected and bacteria isolated through culture and direct DNA extraction after enrichment in selective media. Identification of B. pseudomallei, B. ubonensis, and other Burkholderia spp. was carried out using TTS1, Bu550, and recA BUR3-BUR4 quantitative PCR assays, respectively. B. pseudomallei was detected in seven faecal samples from wallabies and a chicken. B. cepacia complex spp. and Pandoraea spp. were cultured from wallaby faecal samples, and B. cenocepacia and B. cepacia were also isolated from livestock animals. Various bacteria isolated in this study represent opportunistic human pathogens, raising the possibility that faecal shedding contributes to the expanding geographical distribution of not just B. pseudomallei but other Burkholderiaceae that can cause human disease.
Collapse
|
16
|
Sarovich DS, Garin B, De Smet B, Kaestli M, Mayo M, Vandamme P, Jacobs J, Lompo P, Tahita MC, Tinto H, Djaomalaza I, Currie BJ, Price EP. Phylogenomic Analysis Reveals an Asian Origin for African Burkholderia pseudomallei and Further Supports Melioidosis Endemicity in Africa. mSphere 2016; 1:e00089-15. [PMID: 27303718 PMCID: PMC4863585 DOI: 10.1128/msphere.00089-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/05/2016] [Indexed: 12/22/2022] Open
Abstract
Burkholderia pseudomallei, an environmental bacterium that causes the deadly disease melioidosis, is endemic in northern Australia and Southeast Asia. An increasing number of melioidosis cases are being reported in other tropical regions, including Africa and the Indian Ocean islands. B. pseudomallei first emerged in Australia, with subsequent rare dissemination event(s) to Southeast Asia; however, its dispersal to other regions is not yet well understood. We used large-scale comparative genomics to investigate the origins of three B. pseudomallei isolates from Madagascar and two from Burkina Faso. Phylogenomic reconstruction demonstrates that these African B. pseudomallei isolates group into a single novel clade that resides within the more ancestral Asian clade. Intriguingly, South American strains reside within the African clade, suggesting more recent dissemination from West Africa to the Americas. Anthropogenic factors likely assisted in B. pseudomallei dissemination to Africa, possibly during migration of the Austronesian peoples from Indonesian Borneo to Madagascar ~2,000 years ago, with subsequent genetic diversity driven by mutation and recombination. Our study provides new insights into global patterns of B. pseudomallei dissemination and adds to the growing body of evidence of melioidosis endemicity in Africa. Our findings have important implications for melioidosis diagnosis and management in Africa. IMPORTANCE Sporadic melioidosis cases have been reported in the African mainland and Indian Ocean islands, but until recently, these regions were not considered areas where B. pseudomallei is endemic. Given the high mortality rate of melioidosis, it is crucial that this disease be recognized and suspected in all regions of endemicity. Previous work has shown that B. pseudomallei originated in Australia, with subsequent introduction into Asia; however, the precise origin of B. pseudomallei in other tropical regions remains poorly understood. Using whole-genome sequencing, we characterized B. pseudomallei isolates from Madagascar and Burkina Faso. Next, we compared these strains to a global collection of B. pseudomallei isolates to identify their evolutionary origins. We found that African B. pseudomallei strains likely originated from Asia and were closely related to South American strains, reflecting a relatively recent shared evolutionary history. We also identified substantial genetic diversity among African strains, suggesting long-term B. pseudomallei endemicity in this region.
Collapse
Affiliation(s)
- Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Benoit Garin
- Bacteriological Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Birgit De Smet
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Sciences, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Peter Vandamme
- Faculty of Sciences, Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - Marc C. Tahita
- Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | | | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| |
Collapse
|
17
|
Unprecedented Melioidosis Cases in Northern Australia Caused by an Asian Burkholderia pseudomallei Strain Identified by Using Large-Scale Comparative Genomics. Appl Environ Microbiol 2015; 82:954-63. [PMID: 26607593 DOI: 10.1128/aem.03013-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.
Collapse
|
18
|
Abstract
Melioidosis is an infectious disease caused by Burkholderia pseudomallei, a bacterium endemic in Southeast Asia and northern Australia. In New Caledonia, sporadic cases were first described in 2005; since then, more cases have been identified. To improve our understanding of melioidosis epidemiology in New Caledonia, we compared the local cases and B. pseudomallei isolates with those from endemic areas. Nineteen melioidosis cases have been diagnosed in New Caledonia since 1999, mostly severe and with frequent bacteraemia, leading to three (16%) fatalities. All but one occurred in the North Province. Besides sporadic cases caused by non-clonal strains, we also identified a hotspot of transmission related to a clonal group of B. pseudomallei that is phylogenetically related to Australian strains.
Collapse
|
19
|
Chapple SNJ, Price EP, Sarovich DS, McRobb E, Mayo M, Kaestli M, Spratt BG, Currie BJ. Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia. Am J Trop Med Hyg 2015; 94:68-72. [PMID: 26526925 DOI: 10.4269/ajtmh.15-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/22/2015] [Indexed: 11/07/2022] Open
Abstract
Melioidosis is a tropical disease of high mortality caused by the environmental bacterium, Burkholderia pseudomallei. We have collected clinical isolates from the highly endemic Northern Territory of Australia routinely since 1989, and animal and environmental B. pseudomallei isolates since 1991. Here we provide a complete record of all B. pseudomallei multilocus sequence types (STs) found in the Northern Territory to date, and distribution maps of the eight most common environmental STs. We observed surprisingly restricted geographic distributions of STs, which is contrary to previous reports suggesting widespread environmental dissemination of this bacterium. Our data suggest that B. pseudomallei from soil and water does not frequently disperse long distances following severe weather events or by migration of infected animals.
Collapse
Affiliation(s)
- Stephanie N J Chapple
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Erin P Price
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Derek S Sarovich
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Evan McRobb
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Mirjam Kaestli
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Brian G Spratt
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia; Imperial College, London, United Kingdom; Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
20
|
Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S, Rachmat RFN. Case-control investigation on the risk factors of melioidosis in small ruminant farms in Peninsular Malaysia. J Appl Microbiol 2015; 119:331-41. [PMID: 25891038 DOI: 10.1111/jam.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/30/2015] [Accepted: 04/12/2015] [Indexed: 01/13/2023]
Abstract
AIMS Epidemiology of melioidosis is poorly understood because its occurrence is influenced by complex interaction of environmental, climatic, physicochemical and host factors. We investigated the potential risk factors for the exposure to Burkholderia pseudomallei in small ruminants' farms in Peninsular Malaysia. METHODS AND RESULTS Melioidosis-positive (n = 33) and negative (n = 27) farms were selected and visited for interviews and environmental samples collection. The characteristics and putative disease risk factors were compared between the case and the control farms using Chi-square test and logistic regression analysis. The multivariable logistic regression analysis showed that the odds of melioidosis were significantly higher in farms that had bush clearing around farms (odds ratio (OR) = 6.61, 95% confidence interval (CI) = 1.12-38.84, P = 0.037), in farms with B. pseudomallei present in the soil (OR = 6.23, 95% CI = 1.03-37.68, P = 0.046), in farms that have other animal species present (OR = 7.96, 95% CI = 1.14-55.99, P = 0.037) and in farms that had flooding or waterlogging conditions (OR = 11.95, 95% CI = 1.39-102.6, P = 0.024) when compared to the odds of the disease in farms that did not have the above conditions. The odds of the disease in farms that treated their soils with lime were significantly lower (OR = 0.028, 95% CI = 0.003-0.29, P = 0.003) compared to the odds in those that did not. CONCLUSIONS The risk factors for the exposure to B. pseudomallei highlighted above may have contributed to the occurrence of melioidosis in animals in the study farms. SIGNIFICANCE AND IMPACT OF THE STUDY Information from the study may be helpful in planning control measures against melioidosis and have improved understanding of the epidemiology of the disease in livestock farms.
Collapse
Affiliation(s)
- H I Musa
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - L Hassan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Z H Shamsuddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Z Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - S Abdul Aziz
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - R F N Rachmat
- Department of Veterinary Services, Wisma Tani, Putrajaya, Malaysia
| |
Collapse
|
21
|
Effects of Colonization of the Roots of Domestic Rice (Oryza sativa L. cv. Amaroo) by Burkholderia pseudomallei. Appl Environ Microbiol 2015; 81:4368-75. [PMID: 25911477 DOI: 10.1128/aem.00317-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a saprophytic bacterium that causes melioidosis and is often isolated from rice fields in Southeast Asia, where the infection incidence is high among rice field workers. The aim of this study was to investigate the relationship between this bacterium and rice through growth experiments where the effect of colonization of domestic rice (Oryza sativa L. cv Amaroo) roots by B. pseudomallei could be observed. When B. pseudomallei was exposed to surface-sterilized seeds, the growth of both the root and the aerosphere was retarded compared to that in controls. The organism was found to localize in the root hairs and endodermis of the plant. A biofilm formed around the root and root structures that were colonized. Growth experiments with a wild rice species (Oryza meridionalis) produced similar retardation of growth, while another domestic cultivar (O. sativa L. cv Koshihikari) did not show retarded growth. Here we report B. pseudomallei infection and inhibition of O. sativa L. cv Amaroo, which might provide insights into plant interactions with this important human pathogen.
Collapse
|
22
|
Kasantikul T, Sommanustweechai A, Polsrila K, Kongkham W, Chaisongkram C, Sanannu S, Kongmakee P, Narongwanichgarn W, Bush M, Sermswan RW, Banlunara W. Retrospective Study on Fatal Melioidosis in Captive Zoo Animals in Thailand. Transbound Emerg Dis 2015; 63:e389-94. [PMID: 25583276 DOI: 10.1111/tbed.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 12/16/2022]
Abstract
Melioidosis is caused by Burkholderia pseudomallei and is an important zoonotic infectious disease causing high mortality from fulminant septicaemia in humans and a wide variety of animal species. The incidence of fatal melioidosis in zoo animals has been significant in many Thai zoos. A total number of 32 cases were evaluated throughout the Thai zoo animal populations. The highest prevalence of disease has been reported from the north-eastern region followed by the zoos in the southern part of the country, approximately 47% and 38%, respectively, while the other zoos reported sporadic infections. Herbivores and non-human primates were the most commonly affected animals with incidences of 59% and 28%, respectively. This appears to be a seasonal correlation with the highest incidence of melioidosis in zoo animals reported in the rainy season (44%) or subdivided monthly in June (19%) followed by September and November (16% and 12%, respectively). The route of infection and the incubation period still remain unclear. This retrospective study examined the clinical presentation in various zoo species, pathological findings and epidemiological data as well as conducting an in depth literature review.
Collapse
Affiliation(s)
- T Kasantikul
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok, Thailand.,The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - A Sommanustweechai
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok, Thailand
| | - K Polsrila
- Songkhla Zoo, Zoological Park Organization, Songkhla, Thailand
| | - W Kongkham
- Nakornratchasrima Zoo, Zoological Park Organization, Nakornratchasrima, Thailand
| | - C Chaisongkram
- Upper Esaan Wild Animal Adventure Park, Khonkaen- Udonthani, Khon Kaen, Thailand
| | - S Sanannu
- Dusit Zoo, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - P Kongmakee
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok, Thailand.,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - W Narongwanichgarn
- Biochemistry and Toxicology section, Department of Livestock Development, Bangkok, Thailand
| | - M Bush
- Smithsonian Conservation Biology Institute Front Royal, Virginia, VA, USA
| | - R W Sermswan
- Department of Biochemistry, Faculty of Medicine and Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - W Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
McRobb E, Kaestli M, Mayo M, Price EP, Sarovich DS, Godoy D, Spratt BG, Currie BJ. Melioidosis from contaminated bore water and successful UV sterilization. Am J Trop Med Hyg 2013; 89:367-8. [PMID: 23751401 DOI: 10.4269/ajtmh.13-0101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two cases of melioidosis at a residence in rural northern Australia were linked to the unchlorinated domestic bore (automated well) water supply, which was found to have a high concentration of Burkholderia pseudomallei. Using multilocus sequence typing, clinical B. pseudomallei isolates from both cases were identical to an isolate from the bore water supply. A simple UV sterilizer reduced B. pseudomallei from the domestic water supply to undetectable levels. We have shown that UV treatment is highly effective for remediation of water contaminated with B. pseudomallei and recommend its consideration in households where individuals may be at heightened risk of contracting melioidosis.
Collapse
Affiliation(s)
- Evan McRobb
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Limmathurotsakul D, Thammasart S, Warrasuth N, Thapanagulsak P, Jatapai A, Pengreungrojanachai V, Anun S, Joraka W, Thongkamkoon P, Saiyen P, Wongratanacheewin S, Day NPJ, Peacock SJ. Melioidosis in animals, Thailand, 2006-2010. Emerg Infect Dis 2012; 18:325-7. [PMID: 22304782 PMCID: PMC3310465 DOI: 10.3201/eid1802.111347] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We retrospectively estimated the incidence of culture-proven melioidosis in animals in Thailand during 2006–2010. The highest incidence was in goats (1.63/100,000/year), followed by incidence in pigs and cattle. The estimated incidence of melioidosis in humans in a given region paralleled that of melioidosis in goats.
Collapse
|